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Dr. John Collier traced the discoveries that elucidated the structure and function of the an-
thrax toxin in his talk “Anthrax Toxin,” which was part of the Microbiology Graduate Program
Seminar Series at yale School of Medicine on February 23, 2012. Dr. Collier, Professor of
Microbiology and Immunobiology at Harvard university, began by noting the advantages to
studying anthrax pathogenesis in a biosafety level-1 lab. This designation does not merely
facilitate his research, but also reflects a larger trend of basic research being leveraged to
develop translational applications. Basic research on toxin structure has led to the devel-
opment of a vaccine by Dr. Collier’s group. Next-generation prophylactics also may stem
from recent discoveries uncovering a role for cellular cofactors that mediate toxin function.
Finally, basic research into the toxin substructure has facilitated efforts to change the re-
ceptor tropism to target dysregulated cells for therapeutic purposes. The urgency around
biodefense agents makes the choice of research priorities a salient issue. As such, this au-
thor submits that basic research occupies a unique and lucrative niche driving clinical ap-
plications. 
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Hazard suits, biocontainment labs, and
public controversy. Even though Dr. John
Collier, Professor of Microbiology and Im-
munobiology at Harvard University, has
worked exhaustively on Bacillus anthracis,
the causative agent of anthrax [1], one is
hard pressed to find any of these in his lab.
Dr. Collier has devoted much of his career
to the study of bacterial toxins of diseases of
great public health importance. Instead of
being relegated to the bench, his work on
how the anthrax toxin (AT†) is able to cause
disease has yielded profound translational
contributions. As such, his review of the
field during his talk “Anthrax Toxin,” part
of the Yale Microbiology Graduate Program
Seminar Series on February 23, 2012, serves
as a powerful case study of how basic re-
search on biodefense agents can be an ef-
fective approach to devising clinically
relevant strategies to combat disease. 

How three individual components com-
bine to form the AT has been an area of in-
tense interest for Dr. Collier. Even though
the B. anthracis bacterium is classified as a
Category A Priority Pathogen by the Na-
tional Institute for Allergy and Infectious
Disease (NIAID) [2], Dr. Collier noted that
his work is classified as biosafety level
(BSL)-1. Because he works on individual
components of the toxin, which are nontoxic
until combined, he enjoys the relative ease
of conducting research without the addi-
tional regulation and resources required at
higher BSL levels. 

This fact merits a closer inspection of
why this claim is important. Indeed, this au-
thor supports the implicit assertion that re-
search on biodefense agents, even and
especially at the BSL-1 level, can have pro-
found translational consequences. Basic re-
search on AT has led to the development of
a more efficacious vaccine, the identifica-
tion of cellular cofactors that may assist with
toxin translocation, and the engineering of
novel therapeutics that utilize AT as a plat-
form for drug delivery. In light of the recent
controversies and recalibrations over high-
risk research, the importance and relevance
of fundamental research becomes an espe-
cially relevant issue.

Toxin-BASeD VACCine 
DeVeloPMenT

Although the bacterium cannot spread
from human to human, B. anthracis is an at-
tractive choice of bioweaponeers, due to its
formation of hardy spores and relatively
high morbidity and mortality rates [3,4].
Thus, countering a potential anthrax attack
using vaccines and prophylactic counter-
measures has been a biodefense priority for
several decades [5,6]. In order to survive and
replicate in an infected individual, B. an-

thracis must evade host defenses. One
mechanism is to selectively kill off cells of
the innate immune system [7,8]. To accom-
plish this, B. anthracis delivers components
of the multimeric AT into the bloodstream,
where they can encounter host immune cells
[9]. 

AT is comprised of 83-kilodalton (kDa)
Protective Antigen (PA), which serves as a
pore [10,11] to translocate the other two
components, 89-kDa Edema Factor (EF)
and 90-kDa Lethal Factor (LF). Once deliv-
ered to the cytosol, EF acts as an adenylate
cyclase [12], adding a cyclic AMP (cAMP)
molecule onto critical proteins in neu-
trophils, leading to inactivation of these
cells. The targeting of endothelial cells also
results in fluid leakage and excess fluid
build-up, known as edema. LF similarly in-
activates host protein function via its pro-
tease domain, which irreversibly cleaves
members of the mitogen-activated protein
kinase-kinase (MAPK-K) family [13,14].
The impaired immune response combined
with edema promotes bacterial replication in
the bloodstream, leading to septic shock and
possibly death.

The anthrax exotoxin is a critical viru-
lence factor for B. anthracis pathogenesis
[15,16]. Because of the requirement for the
toxin in disease progression, developing a
formulation targeting the toxin has been a
priority for pharmaceutical companies inter-
ested in a vaccine. The federal government
established Project BioShield in 2004,
which sought to invest in vaccines and pro-
phylactic agents to employ for defensive
purposes. BioShield contracted for 29 mil-
lion doses of Anthrax Vaccine Absorbed
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(AVA) [17], an efficacious first-generation
vaccine. AVA is comprised of an impure
preparation of cultured supernatants from an
avirulent B. anthracis strain. 

The PA subunit alone was known to be
sufficient for protection against B. anthracis

challenge [18,19]. Thus, second-generation
vaccines were developed that utilized re-
combinant approaches in a subunit vaccine.
Vaccines based on recombinant PA (rPA)
have been shown to successfully induce ro-
bust antibody-mediated protection [20].
However, next-generation vaccines also
must address technical challenges such as
reducing the high rate of dosing and im-
proving stability over time and a range of
temperatures. 

To differentiate themselves from other
rPA formulations, Dr. Collier’s group took a
different approach based on their research to
develop a third-generation anthrax vaccine.
Dr. Collier and colleagues noted that rPA
could be optimized to increase immuno-
genicity and safety during human adminis-
tration. Their variant takes advantage of
structural and functional studies that have
elucidated the fundamental organizing prin-
ciples of the AT pore. The pore is comprised
of either a heptameric [21] or octameric [22]
circular complex of PA proteins. Under con-
ditions of low pH, as occurs in the endo-
some, the PA “prepore” spontaneously
converts into a bonafide membrane-span-
ning pore [23]. This is accomplished by the
movement of loops that face outward from
the pore lumen, moving down into the mem-
brane and forming a 100Å linear pore [24].
This pore is capable of keeping substrates in
an unfolded conformation and stimulating
their translocation through the membrane
into the cytosolic compartment. 

Critical to pore functioning is the action
of residue Phe427, which resides on the
loops that swing into a pore conformation at
low pH. Phe427 forms a ring-like complex
called the Φ clamp with other Phe residues
in the pore [25]. The Φ clamp is thought to
function as a hydrophobic seal that preserves
the local proton gradient in the pore, main-
taining the force of directed diffusion dur-
ing translocation [26]. Charge reversal

mutations near the Φ clamp act as a domi-
nant negative inhibitor of pore function. Dr.
Collier’s construct, which contains a double
K397D D425K mutation, is capable of bind-
ing to other PA subunits but unable to
translocate LF or EF through the pore [27].
The dominant-negative PA is more im-
munogenic than native PA, potentially due
to increased affinity by immune recognition
proteins.

Dr. Collier has translated this finding
into a proprietary rPA formulation rooted in
the dominant negative PA strategy. Initial
tests in a rat model of LF toxicity showed
protection when immunized with the mu-
tated PA proteins [28]. Early thermostability
studies have been successful [29], a primary
consideration in its ability to be stockpiled.
As it may be more efficacious than other vac-
cines, the vaccine may require fewer admin-
istrations than the six AVA currently requires
to achieve protection. The vaccine is being
commercialized by Soligenix, Inc. through a
licensing agreement with Dr. Collier. As of
press time, Dr. Collier’s vaccine is being
tested as SGX204 for both preventive and
prophylactic indications. According to Soli-
genix, Inc., the proof of concept and animal
testing phases were completed, with the
compound currently in phase 1 clinical trials
[30]. Thus, this compound has immediate
translational applicability to developing
medical countermeasures for anthrax infec-
tion. Dr. Collier’s basic research into the crit-
ical residues in the PA pore led to the
solution-identification of dominant negative
mutations, opening up immediate commer-
cial and translational applications.

iDenTiFyinG CellulAR 
ConSPiRAToRS oF DiSeASe

Cellular cofactors of anthrax toxicity
may represent an additional area that can be
translated for prophylactic purposes. Recent
evidence shows that while anthrax toxin is
sufficient to form a membrane pore and di-
rect the toxic proteins LF and EF into the
cell, this process may be enhanced by cellu-
lar cofactors. This is compelling not only for
the previously underappreciated role for cel-
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lular proteins in AT translocation, but also
because these cellular proteins represent at-
tractive novel targets for possible therapeu-
tic intervention. 

The classical paradigm in the field was
that cellular receptors have a role only at the
initial steps in AT trafficking. After PA is se-
creted from B. anthracis, it can bind to ubiq-
uitous cellular receptors ANTXR1 [31] or
ANTXR2 [32]. PA binding to ANTXR1 or
ANTXR2 renders it susceptible to prote-
olytic cleavage by furin proteases [33],
yielding a 63-kDa peptide (PA63) that is ca-
pable of binding LF and EF substrates [34].
After substrate binding is initiated, the PA63
prepore [11] and bound substrate are endo-
cytosed through a clathrin-dependent mech-
anism [35,36]. Events downstream of these
initial actions have been assumed to be
largely independent of cellular cofactors.

The traditional model posited that sub-
strate denaturation and translocation were
driven solely by only changes in pH [23] in
the endosomal microenvironment or electric
potential in artificial systems [37,38]. Once
environmental changes partially denature
substrates [39], unfolding and protein “ra-
cheting” through the pore was thought to be
self-sustaining. This is likely mediated
through the Φ and α clamps, which may act
to preserve the proton gradient driving
translocation [25] and support an unfolded
conformation by non-specific binding [40],
respectively. Indeed, support for this was
shown that in artificial lipid bilayers con-
taining only phospholipids and assembled
AT, translocation was observed with no fur-
ther requirements for exogenous cellular
proteins [25,37]. However, recent work has
raised the possibility that although AT com-
ponents are both necessary and sufficient for
substrate translocation, cellular proteins may
further optimize this process. 

Recently, cellular proteins have been
implicated in both the early process of sub-
strate unfolding and the late process of pro-
tein refolding after a substrate has completed
translocation. The N-terminal domain of LF
(LFn) contains the PA-binding domain and
is used as a model peptide for stimulating ef-
ficient translocation [41,42]. Diptheria

Toxin fragment A (DTA) is often used as a
model non-native substrate for the PA pore.
This catalytic domain contains ADP-ribosy-
lation activity, which causes death in sus-
ceptible cells. When LFn is fused to DTA
(LFnDTA), translocation can be measured
as a function of cell death resulting from
ADP-ribosylation of cellular proteins [43].
Using this approach, Tamayo and colleagues
investigated the role for cellular proteins that
enhance the native unfoldase activity of the
PA pore [44]. Using a trypsin protease pro-
tection assay, they identified the eukaryotic
chaperone BiP (GRP78) as acting to unfold
LFnDTA. Importantly, siRNA-mediated
knockdown of BiP prevented intoxication of
J774 macrophages by LF and EF. Further,
cellular extracts containing ß-Cop, a com-
ponent of the eukaryotic coatomer protein I
(CopI) complex, were found to enhance
translocation of LFnDTA compared to basal
levels of native LF [45]. As before, anti-
body-mediated immunodepletion of ß-Cop
from cellular extracts impaired this translo-
cation. 

This study led to the characterization of
another cellular cofactor involved in the dis-
tal steps of substrate binding to the PA pore.
After proteins complete translocation, they
exit the pore in a linearized, unfolded state.
Chaperone proteins must bind to the translo-
cated substrates to mediate refolding into an
active conformation. Dmochewitz and col-
leagues recently reported that CypA and
Hsp90, well-characterized cellular chaper-
ones, are required for the restoration of
LFnDTA ADP-Ribosylation activity [46].
Interestingly, downregulating these proteins
with pharmacological inhibitors protected
cells from intoxication. 

Thus, for cellular proteins that may en-
hance both early and late steps during in-
toxication, robust protection is observed
when these proteins are downregulated
through various mechanisms. Because of the
preliminary experimental validation, these
proteins may be attractive targets for future
therapeutic interventions in human studies.
Indeed, characterization of the anthrax toxin
receptor has led to subsequent therapeutic
interventions in combating angiogenesis
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[47]. Taken together, these results may serve
as the basis for future applications to target
these proteins as a therapeutic approach to
countering anthrax infection. 

enGineeRinG The TRAnSloCon
AS A PePTiDe DeliVeRy SySTeM 

While AT co-opts host machinery to ef-
fect cellular dysfunction, researchers are
seeking to co-opt the activity of AT for ben-
eficial purposes. Dr. Collier’s group is com-
pleting work using the finely calibrated
translocation system to target and deliver
proteins of therapeutic benefit to a specific
subset of cells. Given the robust assembly
and delivery of substrates by PA, Collier and
colleagues are investigating whether they
can manipulate this system to selectively tar-
get and kill dysregulated human cells in var-
ious disease contexts. 

In the final portion of his talk, Dr. Col-
lier offered insights into current work in the
lab focusing on engineering AT to deliver
toxic proteins exclusively into specified
cells. His team has fused the epidermal
growth factor (EGF) protein to the previ-
ously characterized C-terminus of the PA re-
ceptor domain [48]. His group is
investigating if this fusion can change the re-
ceptor specificity of AT to bind the EGF re-
ceptor (EGFR). As certain types of cancers
have upregulated EGFR at the cell surface
[49], AT bound to EGF would specifically
target cancerous cells for intoxication. Be-
cause the receptor tropism is altered, this
could function in a precise manner, homing
in on dysregulated cells while leaving
healthy cells intact. Indeed, Dr. Collier de-
scribed preliminary experiments indicating
that the chimeric fusion competes with free
EGF for binding to EGFR, whereas native
AT does not. Future work will continue in
the lab on this promising translational appli-
cation, which has seen many benefits using
a similar paradigm with other fusion pro-
teins.

If Dr. Collier is successful, he will have
optimized a system he conceived in the early
1980s. He previously described a fusion pro-
tein consisting of DTA fused to EGF as a

technique to downregulate EGFR overex-
pressing cells [50]. With this strategy, the
domain containing the ADP-riboslylation
activity of DT is delivered specifically to
pathogenic, EGFR-overproducing cells.
Subsequent work by Dr. John Murphy’s
group in the 1990s saw commercial success
with the replacement of the receptor binding
domain of DT with interleukin-2 (IL-2) to
yield chimeric DT-IL2 [51]. This fusion pro-
tein operates in an analogous manner to that
of Dr. Collier’s group, whereby the ADP-ri-
bosylating activity of DT would intoxicate
cells expressing IL-2 receptors at the sur-
face. A similar fusion expressing the DT cat-
alytic domain (DT389) fused to IL-2 is
marketed as Ontak® (Denileukin diftitox)
by Eisai Corporation, having gained full
FDA approval in 2008 [52]. It is indicated
for the treatment of cutaneous T-cell lym-
phoma, characterized by high IL-2 receptor
expression in cancerous cells. Thus, Dr. Col-
lier’s work seems poised to take advantage
of the promising field of toxin fusion thera-
peutics as a platform for selective drug de-
livery.

Drug delivery is the most immediate
application of repurposing toxins for thera-
peutic use, but other creative approaches
may provide additional platforms for mo-
lecular delivery. Dr. Collier noted in the
seminar that the PA pore is capable of bind-
ing a broad array of peptides in addition to
its native LF and EF substrates. That is, LF
and EF contain a polybasic leader sequence
[53] that is recognized by the pore or auxil-
iary cellular elements. However, this recog-
nition is promiscuous, where the PA pore
can translocate substrates with multiple
amino acids combinations in the leader se-
quence. This is likely due to the function of
the α clamp, which binds peptide helices
non-specifically and could confer broad
specificity to recognize multiple substrates
[40]. 

Dr. Collier observed that LFn fused to
an N-terminal His-6 tag was competent for
translocation [37]. Further, an N-terminal
Lys-6 sequence fused to the model non-na-
tive substrate DTA was found to translocate,
albeit inefficiently [54]. Thus, as leader se-
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quences containing exclusively basic
residues are competent for translocation, it is
an attractive possibility that the adaptability
of the PA translocon could be leveraged. Per-
haps compounds of interest could hijack the
AT translocation machine to gain access to
cellular cytosolic compartments. In the fu-
ture, AT will likely be engineered to both de-
liver toxic molecules to pathogenic cells as
well as deliver beneficial compounds to a
broad range of human cells.

PeRSPeCTiVeS

The cost and ease of research remain
salient considerations as biomedical research
budgets are stretched thin. These factors also
represent a major difference between basic
and applied research approaches. 

Although intrinsically valuable, live-
pathogen work, often consisting of “ap-
plied” research approaches, has limitations
not observed in subunit research. According
to a Sandia National Laboratories survey
[55], 38 percent of investigators reported di-
verting research funds to comply with secu-
rity protocols. At the federal level, the
estimated biodefense budget for the National
Institutes of Health (NIH) in 2005 allocated
8.9 percent of total expenditures specifically
for the construction of biosafety laboratories
[56]. Further, as additional administrative re-
sponsibilities accrue, the productive time
that can be devoted to research is reduced.
This effect can be quantified as a measure of
publications produced in a given year nor-
malized by the amount of federal funding in
that year [57]. After select agent require-
ments were enhanced in 2002, the number
of B. anthracis publications per million dol-
lars reduced 5-fold compared to the output
before 2002 [57]. These indirect costs and
consequences must be considered in the total
cost effectiveness of live-pathogen, select
agent research. 

Basic biodefense research, in contrast,
is largely insulated from these accessory
costs and loss of research efficiency. Indeed,
the federal government continues to include
basic research in its portfolio of biodefense
research priorities. The 2005 NIH biode-

fense budget provided for $550.2 million for
basic research, representing almost one-third
of total biodefense expenditures [56]. These
resources appear to be a sound investment
when basic anthrax toxin research, for ex-
ample, provides a source for translational
applications. 

Indeed, the elucidation of how sub-
strates are recognized and translocated
through the AT pore has achieved profound
relevance to countermeasures for this dis-
ease. Dr. Collier’s work has been, and will
likely continue to be, leveraged in the de-
velopment of efficacious vaccines and pro-
phylactic compounds against anthrax
infection. There are also new insights into
repurposing AT as a molecular delivery sys-
tem that will selectively target dysregulated
cells in the context of overproliferation. 

When basic research is included in the
portfolio of approaches against our most dan-
gerous pathogens, it yields results while re-
maining independent of the constraints of
applied biodefense research. As such, basic
biodefense research represents a lucrative area
for discovering next-generation translational
applications that are necessary for the contin-
ued protection of the general population.
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