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The reconstruction of dynamic magnetic resonance imaging (dMRI) from partially sampled k-space data has to deal
with a trade-off between the spatial resolution and temporal resolution. In this paper, a low-rank and sparse
decomposition model is introduced to resolve this issue, which is formulated as an inverse problem regularized by
robust principal component analysis (RPCA). The inverse problem can be solved by convex optimization method.
We propose a scalable and fast algorithm based on the inexact augmented Lagrange multipliers (IALM) to carry out
the convex optimization. The experimental results demonstrate that our proposed algorithm can achieve superior
reconstruction quality and faster reconstruction speed in cardiac cine image compared to existing state-of-art
reconstruction methods.

1. Introduction

Dynamic MRI (magnetic resonance imaging), an essential
medical imaging technique, allows noninvasiveness, nonio-
nization visualization, and analysis of anatomical and
functional changes of internal body structure through time.
However, MRI sampling speed is relatively slow due to the
need of physical and physiological conditions such as nuclear
relaxation and peripheral nerve stimulation [1]. One way for
accelerating MRI is to reconstruct high-resolution images
from undersampled k-space data. However, such undersam-
pling violates the Nyquist criterion and often results in
aliasing artifacts if the traditional linear reconstruction is
directly applied.

To address this issue, there are so much research efforts
to accelerate MRI acquisition process using hardware and
software [2–4]. Among them, compressed sensing (CS) has
been proved to be able to increase imaging speed and effi-
ciency in MRI application [5–7]. The CS theory requires

image sparsity and incoherence between the acquisition
space and representation space [8]. Fortunately, the MR
image sequence often provides redundant information in
both spatial and temporal domains, which presents favorable
conditions for the application of CS. In addition, the idea is
easily extended to the reconstruction of dynamic MRI (dMRI)
images due to extensive spatio-temporal correlations that
result in sparser representations. The k-t FOCUSS is a success-
ful method, which imposes a sparsity constraint in the tempo-
ral transform domain by using the FOCUSS algorithm [9],
and extends the FOCUSS technique with motion estimation
and compensation to compressed sensing framework for
cardiac cine MRI. But the limitation of the prediction schemes
on sparsifying the residual signal sets back the further
improvement when the motion is aperiodic.

Recently, researchers have made great efforts to exploit
the low-rank property of matrices instead of simply sparsity
of vectors. Lingala et al. proposed a k-t SLR algorithm that
exploited the low rank prior and global sparsity in
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Karhunen-Louve Transform (KLT) domain for MRI recon-
struction [10]. However, the algorithm failed to take into
account the structural sparsity of the MRI image, and the
limitation held back the further improvement. Some studies
presented patch-based dictionary learning techniques for
dMRI reconstruction [11, 12]. However, a major challenge
in learning sparse dictionary is that such patch-based
learning cannot be effectively employed for dMRI recon-
struction. Because the size of dMRI sequence is large, it
is inefficient to learn dictionaries for such large datasets
[13]. Even though we take no account of computational
limitations, it is not practical to acquire such huge dMRI
training sequences for learning sparsifying dictionaries.
Currently, robust principal component analysis (RPCA)
has been used in recovering dynamic images to explore
the low-rank structure of data [14, 15]. The RPCA decom-
poses the data in low rank and sparse components, where
the low rank component models the temporally correlated
background information and the sparse component repre-
sents the dynamic information. k-t RPCA [16], a method
developed for dMRI, uses the low-rank plus sparse decom-
position prior to reconstructing dynamic MRI from part of
the k-space measurements. In this method [16], the image
reconstruction is regularized by a low-rank plus sparse
prior, where the Fourier transform is used as the sparsify-
ing transform and the alternating direction methods of
multipliers (ADMM) is applied to solve the minimization
problem in the temporal direction. The shortcoming of
k-t RPCA is that the results of reconstructed image are
easily affected by the noise, since the noise will generally
be represented by highly sparse coefficients during the
sparsifying transform.

In this paper, aims to the shortcoming of k-t RPCA, we
propose an efficient numerical algorithm based on inexact
augmented Lagrangian method (IALM) instead of ADMM
to solve the optimization problem and accelerate the dMRI
reconstruction. The experimental results demonstrate that
our proposed algorithm can achieve more satisfactory recon-
struction performance and faster reconstruction speed in
given cardiac cine sets.

2. Theory Background

The dynamic MRI data acquisition in the k-t space can be
expressed as follows:

y k, t = x r, t exp −2πjk · r dr + n k, t , 1

where y k, t represents the measured k-t space signal, x r, t
denotes the desired dynamic image series, and n k, t is the
measured noise, which can be reasonably modeled by an
additive white Gaussian distribution [16, 17].

In this paper, the solution of this problem is to find
the closest representation of the MR image x r, t from
undersampled measurement y k, t . Since the k-t space is
partially sampled, (1) is converted to an inverse problem
and can be rewritten as a vector [18].

Y = RFX + n, 2
where Y = y1∣⋯∣yT , X = x1∣⋯∣xT , n = n1∣⋯∣nT , T is the
total number of frames, F is the Fourier transform operator,
and the measurement matrix R is the undersampled mask
applied on the k-space.

2.1. CS-Based MR Image Reconstruction. The CS approach
[5, 19] was proposed to reconstruct the MR image X from
the partially sampled k-space data Y by exploiting the
sparsity transform and convex optimization algorithms.
The problem will be solved if we can find the sparsest vector
satisfying (2),

min
X

DX 0 s t Y− RFX 2 ≤ ε, 3

where · 0 is l0-norm, counting the number of nonzero
entries in the vector, D is the sparsifying transform or dictio-
nary, and ε is a small constant. Unfortunately, (3) is NP-hard
problem, which needs to be solved by a brute force search.
The CS theory [8] proves that the convex relaxation
approach referred to as l1 minimization can be replaced with
the l0-norm in (3),

min
X

DX 1 s t Y− RFX 2 ≤ ε, 4

where · 1 is l1-norm, meaning the sum of absolute values
of the vector.

2.2. Low-Rank and Sparse Decomposition Model for MR
Image Reconstruction. CS-based techniques that exploit spar-
sity of the image in the transform domain have been success-
fully used for MR image reconstruction. However, the
performance of CS is primarily dependent on the specific dic-
tionary or sparsifying operator, which limits the maximum
achievable acceleration rate. Therefore, some researchers
tried to investigate a few new approaches to reconstruct
MR image [20–24]. In those methods, low-rank matrix
recovery is a popular technique in medical image processing.

The basic assumption is the same as [18], that is, the
image X is simultaneously sparse (in a transform domain)
and low rank. The problem is to recover X, given fewer k-
space samples Y than the number of elements in the matrix.
We assume that the approximate rank of the matrix is r and
the size of single frame image isM ×N . When the matrixX is
low rank, which has only r M +N − r degrees of freedom
instead of MN , it is possible to recover the matrix X from
lesser number of samples by solving the rank minimization
problem,

min
X

rank X s t Y−M X 2 ≤ ε 5

However, the rank minimization problem, that is, solving
(5), is combinatorial and known to be NP-hard [25]. There-
fore, convex relaxation is often used to make the minimiza-
tion tractable.

min
X

X ∗ s t Y−M X 2 ≤ ε, 6

whereM denotes any linear operator and X ∗ is the nuclear
norm, which is defined as
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X ∗ = 〠
r

i=1
σi, 7

where σ1, σ2,…, σr are the singular values of X and r is the
rank of X.

To recover X from the given Y, X can be decomposed
into a superposition of a low-rank matrix A and a sparse
matrix E.

X =A + E 8

X is recovered as the solution of the following
optimization:

min
A,E

A ∗ + γ E 1 s t Y−M A + E 2 ≤ ε , 9

where low-rank matrix A has few nonzero singular values
and represents the background component, sparse matrix E
has few nonzero entries and corresponds to the changes,
and γ is a tuning parameter that balances the contribution
of the l1-norm relative to the nuclear norm.

3. The Proposed Method

In principal component pursuit (PCP) model [26], to solve
(9) can be posed as an optimization problem by using regu-
larization rather than strict constraints [15]. Hence, (9) can
be converted as

min
L,S

Y−M A + E 2
F + λL A ∗ + λS TE 1, 10

where the parameters λL and λS trade off data consistency
and T is a sparse transform basis.

Equation (10) is a RPCA problem that involves mini-
mizing a combination of the nuclear norm and l1-norm.
Otazo et al. Study [15] adopted the iterative thresholding
scheme to solve (10); however, the iterative thresholding
technique converges slowly. So, we presented an inexact
augmented Lagrange multipliers (IALM) algorithm to
solve the RPCA problem [27]. According to the constraint
conditions of (6),

MHy =A n + E n =X n , 11

whereMH is a dual operator, X n contains the measurement
noise, and A n and E n are low-rank element and sparse ele-
ment, respectively. We applied IALM method to solve the
following optimization problem:

min
L,S

A n

∗
+ λ TE n

1
+ 〈 ,MHy−A n − E n

+ μ

2 MHy−A n − E n
2

F
,

12

where is a Lagrange multiplier to remove the equality con-
straint and μ is a small positive scalar. The condition
∑+∞

k=1 μ
−1
k = +∞ implies that μk cannot grow too fast. The

IALM method for solving the RPCA problem can be
described as Algorithm 1.

For Algorithm 1, if μk is nondecreasing and
∑+∞

k=1 μ
−1
k = +∞, then Ak, Ek converges to an optimal

solution A∗, E∗ for the RPCA problem. The advantage of
unbounded μk is that the feasibility condition
Ak + Ek =X can be approached more quickly because
X −Ak − Ek = k − k−1 /μk−1 and k are bounded. In
Algorithm 1, the singular value thresholding (SVT) operator
[28] is defined as

SVTλ D =UΛλ Σ VH , 13

where D =UΣVH is any singular value decomposition of
D. Λλ Σ is a soft-thresholding operator, which can be
defined as

Λλ x = x
x
max x − λ, 0 14

4. Experimental Results and Discussion

Experiments were run in MATLAB V7.14.0 (R2012a) with
the computing environment being an Intel Core i7-2640M
CPU, 4.0GB memory, and a 64-bit Win7 operating sys-
tem. The proposed algorithm was validated by experi-
ments using two cardiac cine sets. The first dataset was
obtained from Bio Imaging and Signal Processing Lab
(http://bispl.weebly.com/), which contains nt = 25 temporal
frames of size nx = ny = 256 with a 345 × 270mm2

field of
view (FOV) and 10mm slice thickness. The second dataset
was acquired from the website of Dr. Caballero (http://www.
doc.ic.ac.uk/~jc1006/index.html), which was introduced by
Caballero et al. [12] and the relevant imaging parameters
were as follows: the image matrix size = 256 × 256 nx × ny ,
the number of temporal frame = 30 nt , FOV = 320 ×
320mm2, and slice thickness =10mm. Two widely used
sampling trajectories, Cartesian and radial undersampling
strategies, were exploited for the acquisition of the MR data
set in the k-space domain. Figure 1 shows the sampling masks
used in the study and their effect on the magnitude of a
temporal frame.

Input: Multicoil undersampled k-t data y; space-time
multicoil encoding operator M; sparsifying transform T ;
weight parameter λ.
Initialization: Set 0 = 0; E0 = 0; k = 0; μ0 > 0; X0 =MHy;
ρ > 0; iter = 0.
Loop: Repeat until convergence

Update A: U , S,V = svd Xk − Ek + μ−1k k ;
Ak+1 =UΛμ−1k

S VT .

Update E: Ek+1 = Λλμ−1k
Xk −Ak+1 + μ−1k k .

Update : k+1= k + μk Xk − Ak+1 − Ek+1 .
Update μk+1: μk+1 = ρμk.
Update Xk+1: Xk+1=Ak+1 + Ek+1 −MH M Ak+1 + Ek+1 − y

Update k, iter: set k← k + 1; iter← iter + 1.
End Loop.

Output: Ak, Ek

Algorithm 1: The proposed algorithm.
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We compared the proposed method against k-t SLR
[10] and k-t RPCA [16] in reconstruction accuracy and
reconstruction speed. Quantitative image quality assess-
ment was performed by using the metrics of peak signal
to noise ratio (PSNR) and structural similarity index
(SSIM) [29]. The PSNR is used to evaluate the difference
of reconstruction image and the full-sampled image, which
can be defined as

PSNR = −10log10
X̂−X 2

F

X 2
F

, 15

where X̂ is a reconstruction image and X represents the full-
sampled image.

The SSIM is a new method for measuring the similarity
between the reconstructed image and the fully sampled
image. We adopted the SSIM to measure the difference of
reconstruction image and the fully sampled image at each
time frame xn

nt
n=1 the SSIM index between the recon-

structed image xRec and the fully sampled image xF at one
same frame is evaluated as

SSIM x, y =
2μxRμxF + c1 2σxRxF + c2

μ2xR + μ2xF + c1 σ2xR + σ2
xF
+ c2

, 16

where μxR and μxF are the mean intensity of the reconstructed
image xRec and the fully sampled image xF , σxR and σxF are
the standard deviation of image xRec and xF , σxRxF is the
covariance of xRec and xF , c1 = K1L

2 and c2 = K2L
2 are

constants where L is the dynamic range, 255 for 8-bit gray-
scale images. K1 = 0 01 and K2 = 0 03 are parameter values
suggested by Wang et al. [29].

The k-t SLR uses a combination of TV and nonconvex
Schatten p-norms with p = 0 01; some parameters are
selected based on the suggested values in the public software
package (penalty parameters β1 = 10−9 for Schatten and
β2 = 10−2 for TV norms, maximum number of 50 inner and
9 outer iterations). In k-t RPCA, two regularization parame-
ters are μ = 200 and ρ = 1 5 for the regularization and decom-
position, respectively.

Similarly, the method requires the specification of three
parameters λ, ρ, and μ. We set μ0 = 1 5/ X 2 and ρ = 1 2.
We may take X−Ak − Ek F/ X F < 10−7 as the stopping
criteria for Algorithm 1. We chose a fixed weight parameter
λ =max nx ∗ny, nt −1/2 by the suggestion of the authors of
[16]. The proposed algorithm was verified by experiments
using the fully sampled cardiac cines (two mentioned data-
sets above) with two different sampling trajectories.

For simulating the acceleration of the k-space, the fully
sampled k-space data was artificially subsampled by using

(a)

(b) (c)

(d) (e)

Figure 1: Example of two undersampling masks and their effect on reconstruction image. (a) A magnitude temporal frame from one of the
cardiac cine datasets. (b) The Cartesian undersampling mask for a magnitude temporal frame. (c) The zero-filled inverse Fourier transform
reconstruction image. (d) The pseudo-radial sampling acquisition for a magnitude temporal frame. (e) The zero-filled inverse Fourier
transform reconstruction image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2: Comparison of the reconstruction results with different methods on the first cardiac dataset. The acceleration rate is 4 or sampling
ratio is about 0.25. Fully sampled image (a) and undersampling mask (b), undersampled by zero-filled directly (c), reconstructions using k-t
RPCA (e), k-t SLR (g), and proposed method (i) with their respective residuals (d, f, h, j).
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variable density (sampling factor) random sampling. To
test the robustness of the proposed method, the k-space
data of the two datasets are corrupted with additional com-
plex Gaussian white noise with fixed standard deviation
σ = 15 Firstly, this method was tested on the first cardiac
dataset by using different sampling models with variable
sampling ratio. A comparison of the visual quality was
showed in Figure 2, which compares the reconstruction
results between the proposed method (Algorithm 1) and
the other methods. The acceleration factor is approximately
4 (about 25% of acquired samples) for Cartesian sampling
masks. Figure 3 shows the PSNR of the reconstructed results
for Cartesian sampling and pseudo-radial sampling as a
function of sampling factor. It can be seen that the perfor-
mance of the proposed method outperforms the other two
methods with pseudo-radial sampling acquisition. But the

performance at lower sampling ratio is slightly lower than
the k-t SLR method with Cartesian sampling. Additionally,
SSIM at each time frame is shown in Figure 4 for both
Cartesian and radial sampling at the same sampling factor
(an acceleration factor of approximately 6 with about 16.4%
of acquired samples). The experimental results reveal that
the proposed method achieved a superior reconstruction
result in terms of SSIM and hence the advantage of our
method is more relatively evident when pseudo-radial
sampling is used instead of Cartesian sampling.

Moreover, we tested our proposed method on the second
cardiac dataset by using same experimental method. Figure 5
provides the visual evaluations for radial sampling with an
acceleration rate of 4 (about 25% of acquired samples).
Quantitative results (PSNR performance) are reported for
Cartesian sampling and pseudo-radial sampling in Figure 6.
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Figure 3: PSNR performance of different reconstructions evaluated versus the sample ratio for the first cardiac MRI dataset with Cartesian
sampling (a) and radial sampling (b).
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Figure 4: SSIM performance of different reconstructions versus each time frame for the first cardiac MRI dataset at acceleration factor 6 with
Cartesian sampling (a) and radial sampling (b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5: Comparison of the reconstruction results with different methods on the second cardiac dataset. The number of radial trajectory is
74 and sampling ratio is about 0.25. Fully sampled image (a) and undersampling mask (b), undersampled by zero-filled directly (c),
reconstructions using k-t RPCA (e), k-t SLR (g), and proposed method (i) with their respective residuals (d, f, h, j).
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It is observed that the performance of reconstructions by
using the two sampling models is similar to Figure 3.

Figures 3 and 6 indicate that both the proposed and the
other two methods are effective to the choice of Cartesian
sampling with higher sampling ratios. However, the choice
of pseudo-radial sampling ensures that the greater perfor-
mance can be obtained at lower sampling ratios. Moreover,
it can be acquired that the proposed method is more robust
in a cardiac cycle.

We also evaluated the execution time of the three
methods by using different sampling models with variable
sampling factors on different datasets. Table 1 shows the
average computational time for reconstructing the cardiac
MRI images in complete temporal frames. From the
Table 1, it can be known that our method is faster than the
other two methods, and it is more potential for online dMRI
reconstruction.

5. Conclusion

In this paper, we proposed a scalable and fast algorithm
(IALM) for solving RPCA optimization problem to recover
dMRI sequence from highly undersampled k-space data.
Our proposed algorithm has a generalized formulation
capability of separating dynamic MR data into low-rank
component and sparse component. And this algorithm
reconstructs and separates simultaneously dynamic MR data
from partial measurement. Experiments on cardiac datasets

have validated the efficiency and effectiveness compared to
the state-of-the-art methods.
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