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Abstract

Background: Pandemic community-acquired methicillin-resistant Staphylococcus aureus isolates (CA-MRSA) predominantly
encode the Panton-Valentine leukocidin (PVL), which can be associated with severe infections. Reports from non-indigenous
Sub-Saharan African populations revealed a high prevalence of PVL-positive isolates. The objective of our study was to
investigate the S. aureus carriage among a remote indigenous African population and to determine the molecular
characteristics of the isolates, particularly those that were PVL-positive.

Methodology/Principal Findings: Nasal S. aureus carriage and risk factors of colonization were systematically assessed in
remote Gabonese Babongo Pygmies. Susceptibility to antibiotics, possession of toxin-encoding genes (i.e., PVL,
enterotoxins, and exfoliative toxins), S. aureus protein A (spa) types and multi-locus sequence types (MLST) were
determined for each isolate. The carriage rate was 33%. No MRSA was detected, 61.8% of the isolates were susceptible to
penicillin. Genes encoding PVL (55.9%), enterotoxin B (20.6%), exfoliative toxin D (11.7%) and the epidermal cell
differentiation inhibitor B (11.7%) were highly prevalent. Thirteen spa types were detected and were associated with 10 STs
predominated by ST15, ST30, ST72, ST80, and ST88.

Conclusions: The high prevalence of PVL-positive isolates among Babongo Pygmies demands our attention as PVL can be
associated with necrotinzing infection and may increase the risk of severe infections in remote Pygmy populations. Many S.
aureus isolates from Babongo Pygmies and pandemic CA-MRSA-clones have a common genetic background. Surveillance is
needed to control the development of resistance to antibiotic drugs and to assess the impact of the high prevalence of PVL
in indigenous populations.
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Introduction

Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as

a community-acquired pathogen in many countries throughout

the world (community-acquired MRSA, CA-MRSA). CA-MRSA

mostly causes skin or soft-tissue infections as well as deep-seated

infections such as necrotizing pneumonia. Predominantly, CA-

MRSA encodes the Panton-Valentine Leukocidin (PVL), a S.

aureus exotoxin that induces lysis of monocytes and neutrophil

granulocytes [1]. In African countries, the occurrence of CA-

MRSA has been reported previously from Egypt [2], Mali [3],

Algeria [4] and Nigeria [5].

Interestingly, population analysis of global methicillin-susceptible

S. aureus (MSSA) isolates associated with PVL have recently

indicated that PVL-positive MSSA and MRSA are phylogenetically

related based on molecular epidemiological profiles and are

dynamically interrelating [6]. Moreover, it was shown, that PVL-

positive MSSA are a likely reservoir for the development of PVL-

positive MRSA [6] via integration of Staphylococcus cassette

chromosome mec (SCCmec) elements including the mecA gene

conferring methicillin resistance. Indeed, it is striking that reports

from African countries have recently described a high prevalence of

PVL-positive MSSA isolates in Nigeria [7] and Mali [3] and have

supported the hypothesis that at least one common European

MRSA clone associated with PVL (sequence type ST152 according

to multilocus sequence typing (MLST)) could originate from African

MSSA clones [3]. Interestingly, a study on S. aureus colonization in

Wayampi Amerindians in French Guiana revealed a predominance

of ST1223 which is highly divergent from other global STs [8].

Ruimy et al. hypothesize, that this association of highly divergent

clones in an isolated remote population may reflect the co-evolution

of humans and S. aureus as well as human migration [8,9].
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Consequently, we raise the question, whether the ‘‘out-of-

Africa’’ hypothesis, as shown for Helicobacter pylori [10], might also

be true for PVL-positive S. aureus clones now emerging across the

globe. To address this question, we aimed to collect systematically

S. aureus isolates independent from the healthcare setting, which is

associated with the dissemination of isolates adapted to the specific

selection pressure of the hospital environment. Therefore, we

performed a cross-sectional S. aureus carrier study among the

indigenous Pygmy population in Gabon. One to five percent of the

Gabonese population is comprised by Pygmy hunter-gatherers.

Almost 50% belong to the Babongo tribe, most of them are living

in Waka National Parc, Central Gabon.

Materials and Methods

Ethics statement
Ethical clearance was obtained from our institutional review

board (IRB, ‘‘Comité d’Éthique Régional Indépendant de

Lambaréné’’, Lambaréné, Gabon, protocol number: CERIL 15–

09). As the majority of Babongos are illiterate and mainly speak

the tribal language, we involved a local interpreter to provide

detailed information about the study and to obtain a documented

oral informed consent. We prepared a short written summary in

French that described the information presented to the Pygmies.

This document was signed or finger-printed by the participant, the

researcher and a witness who spoke French and Babongo. The

IRB approved the use of documented oral informed consent.

Study population
A cross-sectional survey of S. aureus nasal carriage in Babongo

Pygmies was conducted as part of the German-African network on

staphylococci and staphylococcal diseases (DFG PAK 296) and

took place in the Ikobé region, Central Gabon in November 2009.

All Babongo or mixed Babongo-Bantu inhabitants of the Ikobé

region were included if they provided a documented informed

consent. Exclusion criteria were (i) infections of nostrils and (ii) a

purulent rhinitis. Demographic data (self reported age, height,

weight, sex and ethnic group) were recorded for each subject.

Travel habits since birth and daily activities were recorded to

assess risk factors for S. aureus carriage. Global positioning data of

each village were taken by GPS-device (Garmin76 csx).

Bacterial isolates
Nasal swabs were stored in cool boxes and inoculated on SAID

agar plates (bioMérieux, Marcy l’Etoile, France) and Columbia

blood agar plates in the laboratory facilities of the Medical

Research Unit, Lambaréné within four days after sampling.

Presumptive S. aureus isolates were identified by colony character-

istics, catalase and latex agglutination test (Pastorex Staph-Plus,

Bio-Rad Laboratories, Marnes-la-Coquette, France). Species

identification and antibiotic susceptibility testing were performed

by Vitek 2 automated systems (bioMérieux, Marcy l’Etoile,

France). Molecular confirmation of S. aureus and determination

of methicillin-resistance were performed as described [11]. To

confirm susceptibility to penicillin, a blaZ PCR targeting the S.

aureus penicillinase was performed additionally [12].

Virulence factors, capsular polysaccharides and agr
subtypes

Panton-Valentine leukocidin (PVL) encoding genes (lukS-PV,

lukF-PV) were detected [13]. Staphylococcal pyrogenic toxin

superantigens (PTSAgs) were analyzed by detecting toxic shock

syndrome toxin (TSST-1) encoding genes (tst) and the enterotoxins

(sea, seb, sec, sed, see, seg, seh, sei and sej) [14,15]. Exfoliative toxins (eta,

etb and etd) and genes encoding members of the epidermal cell

differentiation inhibitor (edin-A, edin-B and edin-C) were detected by

gene amplification [14–17].

Capsular polysaccharide types 5 and 8 and accessory gene

regulator subtypes (agr I–IV) were identified by multiplex PCR

approaches [13,18].

Genotyping
S. aureus isolates were typed based on sequencing of the

hypervariable region of the S. aureus protein A gene (spa), spa types

were assigned on the Ridom SpaServer (http://spaserver.ridom.

de) curated by the SeqNet.org initiative [19]. Multilocus sequence

typing (MLST) was carried out for each isolate [20]. Relatedness

in allelic profiles was assessed using eBURST (version 3, http://

eburst.mlst.net). To affiliate the S. aureus sequence types (STs) of

the Pygmy population to known clonal complexes (CC), we

compared our dataset with the whole MLST database of S. aureus

using the stringent group definition of a minimum of 6/7 shared

alleles.

Statistics
Proportions of categorical variables were tested using Chi-

square test and Fisher’s exact test, where appropriate. Odds-ratio

and the 95% confidence intervals were calculated to test for

associations. The level of significance was a= 5%. All analyses

were performed using the software ‘‘R’’ (http://cran.r-project.org,

Version: 2.10.1) and package ‘‘epicalc’’.

Results

Study population
Nasal swabs were obtained from 99 Babongo Pygmies and 1

Babongo-Mitsogho living in the Ikobé region, Gabon. Study

participants came from five camp-like villages (GPS coordinates in

brackets) made up of about six to ten huts: ‘‘Village Tranquille’’

(S1u02.3929; E11u03.7449), ‘‘Tsibanga’’ (S1u02.5779; E11u05.6619),

‘‘Ossimba’’ (S1u02.4339; E11u04.6559), ‘‘Ndougou’’ (S1u02.3169;

Author Summary

Staphylococcus aureus is a bacterium that colonizes
humans worldwide. The anterior nares are its main
ecological niche. Carriers of S. aureus are at a higher risk
of developing invasive infections. Few reports indicated a
different clonal structure and profile of virulence factors in
S. aureus isolates from Sub-Saharan Africa. As there are no
data about isolates from remote indigenous African
populations, we conducted a cross-sectional survey of S.
aureus nasal carriage in Gabonese Babongo Pygmies. The
isolates were characterized regarding their susceptibility to
antibiotic agents, possession of virulence factors and
clonal lineage. While similar carriage rates were found in
populations of industrialized countries, isolates that
encode the genes for the Panton-Valentine leukocidin
(PVL) were clearly more prevalent than in European
countries. Of interest, many methicillin-susceptible S.
aureus isolates from Babongo Pygmies showed the same
genetic background as pandemic methicillin-resistant S.
aureus (MRSA) clones. We advocate a surveillance of S.
aureus in neglected African populations to control the
development of resistance to antibiotic drugs with
particular respect to MRSA and to assess the impact of
the high prevalence of PVL-positive isolates.

Staphylococcus aureus from African Pygmies
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E11u04.4179), ‘‘Soga’’ (S1u03.0209; E11u10.9639) and ‘‘Egouba’’

(S1u01.6389; E11u08.1239). All villagers who had been in the villages

during our visit met the inclusion criteria (n = 103). Three persons

from Egouba refused to participate. The age distribution of

participants showed a pagoda-shaped population pyramid with

45% of participants being #15 years old and 13% being $45 years

old (Figure 1). Overall, 46% of participants were female. Of all

participants, 65% have travelled at least to one of the nine capital

cities of Gabon since birth. Twenty-six percent (n = 26) of the

population had been hospitalized previously in dispensaries or

primary-care hospitals (Table 1).

S. aureus carriage and antimicrobial resistance
Culture of 100 nasal swabs identified 34 S. aureus isolates. The

carriage rate was 33%. From one participant, two phenotypically

different S. aureus isolates were isolated (white colonies with b-

hemolysis and yellow-white colonies with faint b-hemolysis). Of all

carriers, 42.4% were females (OR = 1.24, 95% CI = 0.49–3.15;

p = 0.62). Carriage differed between the five villages ranging from

0% (Ndougou, n = 5 participants) to 45.7% (Village Tranquille,

n = 46 participants, Table 1). There was an age-related carriage

pattern with a peak colonization of 53.9% in participants between

10 and 20 years of age and a decreasing prevalence in subsequent

age groups (Figure 1). No significant associations between S. aureus

carriage and any recorded risk factor were detected (not shown).

Of the totality of 34 S. aureus isolates, 64.7% (n = 22) were

susceptible to penicillin, blaZ PCR amplicons were only detected

in penicillin resistant isolates (n = 12). In addition, 94.1% (n = 32)

were susceptible to tetracycline and 88.2% (n = 30) to trimeth-

oprim-sulfamethoxazole. All isolates were susceptible to oxacil-

lin/methicillin, aminoglycosides, fluoroquinolones, macrolides,

lincosamides (including inducible clindamycin resistance), nitro-

furantoin, fosfomycin, rifampicin and vancomycin. Susceptibility

to oxacillin/methicillin was further confirmed by the absence of

mecA. Collecting and preparing medicinal herbs was not

significantly related to a lower prevalence of antibiotic resistance

(penicillin, tetracycline or trimethoprim-sulfamethoxazole) in

colonizing S. aureus isolates (OR = 0.23, 95% CI 0.02–1.51,

p = 0.078).

Virulence factors and agr groups
We detected 111 toxin encoding genes among 34 S. aureus

isolates indicating a high prevalence of toxin co-possession. Table 2

shows the prevalence of the virulence factors tested and assigns

these virulence factors to the total number of virulence genes,

which were simultaneously detected. Overall, 73.5% (n = 25) of all

isolates encoded one or more PTSAgs, with co-possession found in

15 isolates including 15 isolates (44%) that encoded the linked seg-

sei loci. The tst gene was not detected but PVL-encoding genes

were found in 55.9% (n = 19) of all isolates and were always co-

Figure 1. Pagoda-shaped population pyramid of the study population and S. aureus carriage rates (%) in different age groups. X-
axis indicates the percentage of male (M) and female (F) participants of the whole study population, y-axis represents age groups and the carriage
rate of S. aureus in the respective age group.
doi:10.1371/journal.pntd.0001150.g001
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detected with at least one other virulence determinant. The genes

seh and etd were always co-detected with PVL-encoding genes

(p = 0.238 and p = 0.113 respectively). Other virulence genes were

only partially co-detected with PVL: sea (80.0%, p = 0.36), seb

(14.3%, p = 0.03), seg/sei (60.0%, p = 0.67), edin-B (75.0%,

p = 0.63). PVL was not co-detected with sec (p = 0.03) and eta

(p = 0.44).

Among the accessory gene regulator subtypes, agr III was the

most prevalent (61.76%, n = 21) followed by agr I and II (17.65%,

n = 6 each) and agr IV (2.94%, n = 1, Table 3). Isolates encoding

PVL-encoding genes were significantly less associated with agr I

(OR = 0; 95% CI: 0–0.52, p = 0.002) but often co-occurred with

agr III (OR = 3.1, 95% CI: 0.62–17.29, p = 0.107). sea was

significantly associated with agr II (OR = 41.12, 95% CI: 2.74–

2679.92, p = 0.002). There was no significant association of all

other virulence genes with any agr type.

Capsular polysaccharides
Detection of capsular polysaccharide (CP) encoding genes

revealed a high prevalence of type 8 (CP8, 82.4%, n = 28)

followed by type 5 (CP5, 14.7%, n = 5). One isolate was CP gene

non-typable (2.9%). Interestingly, the PVL-encoding genes were

co-detected with CP5 in 20% (OR = 0.16, 95% CI 0–1.91,

p = 0.146), and with CP8 in 64.3% (OR = 8.44, 95% CI 0.79–

447.45, p = 0.066). The heterogeneous distribution of CP was also

reflected by a significant association of CP5 with agr I (OR =

41.12, 95% CI 2.74–2679.92, p = 0.002) and CP8 with agr III

(OR = infinity, 95% CI 2.6–infinity, p = 0.001).

Table 1. Demographic characteristics of the Babongo population in the Ikobé region, Gabon.

Demographic data
Village
Tranquille Tsibanga Ossimba Ndougou Soga Egouba Total

No. participants 46 15 19 5 13 2 100

Mean age in years (range) 21.7 (0.17–84) 23.0 (2–47) 22.4 (0.08–70) 31 (3–49) 30.8 (6–49) 37.5 (35–40) 23.8 (0.08–
84)

Female (%) 50 40 47.4 20 53.8 0 46

Mean weight (kg) 6SD 30.09616.67 39.49619.09 34.47618.82 46.66625.47 39.45611.25 48.3561.91 34.74617.64

Mean height (m) 6SD 1.1960.33 1.3860.26 1.2860.36 1.2860.27 1.4360.16 1.5360.04 1.2860.31

Travelling since birth (%) 73.9 53.3 57.9 40 61.5 100 65

Health care contact (%) 19.6 33.3 42,1 40 7.7 50 26

No. S. aureus carriers (%) 21 (45.7) 2 (13.3) 5 (26.3) 0 4 (30.8) 1 (50) 33

Penicillin resistance (%) 33.3 50.0 40.0 NAa 40.0 0 35.3

Tetracycline resistance (%) 9.5 0 0 NAa 0 0 5.8

Trimethoprim-sulfamethoxazole
resistance (%)

19.4 0 0 NAa 0 0 11.8

spa type (%) t084 (19.1), t148
(9.5), t159 (4.8),
t1848 (33.3), t186
(14.3), t1931 (4.8),
t311 (4.8), t5941
(9.6)

t148 (50),
t570 (50)

t148 (20), t186
(20), t189 (20),
t1931 (20), t6020
(20)

NAa t127 (20),
t189 (20),
t5941 (40),
t6025 (20)

t1848 (100)

anot applicable.
doi:10.1371/journal.pntd.0001150.t001

Table 2. Co-possession of virulence factor-encoding genes.

Toxin gene
Single
possession No. coexistent virulence factors (%) Total,

1 2 3 4 5 No. (%)

lukS-PV, lukF-PV (PVL) 0 2 (5.9) 6 (17.7) 7 (20.6) 3 (8.8) 1 (2.9) 19 (55.9)

sea 0 0 2 (5.9) 1 (2.9) 2 (5.9) 0 5 (14.7)

seb 0 4 (11.8) 0 2 (5.9) 1 (2.9) 0 7 (20.6)

sec 0 0 0 4 (11.8) 0 0 4 (11.8)

seg-sei 0 0 0 11 (32.4) 3 (8.8) 1 (2.9) 15 (44.1)

seh 0 0 3 (8.8) 0 0 0 3 (8.8)

eta 0 0 0 1 (2.9) 0 0 1 (2.9)

etd 0 0 1 (2.9) 2 (5.9) 0 1 (2.9) 4 (11.7)

edin-B 0 0 0 3 (8.8) 0 1 (2.9) 4 (11.7)

hlg 4 (11.8) 6 (17.7) 6 (17.7) 14 (41.2) 3 (8.8) 1 (2.9) 34 (100)

doi:10.1371/journal.pntd.0001150.t002
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Genotyping
We identified 13 different spa types among 34 S. aureus isolates

(Table 4). The most prevalent spa types were t1848 (23.5%, n = 8),

t084, t148, t186 and t5941 (each 11.8%, n = 4). One participant

carried two phenotypically different S. aureus isolates which had

different spa types (t6025, t5941). Three spa types (t5941, t6020,

t6025) have not been described before.

Ten different STs were found by MLST showing a Simpson’s

index of diversity (1-D) of 0.89 (Table 4). Among these, a hitherto

unknown ST, designated ST1662 was detected. The most frequent

ST was ST30 (23.5%, n = 8), exhibiting the following characteristics:

t1848, agr III, CP8 and lukS-PV/lukF-PV-positive. PVL-encoding

genes were found in isolates associated with spa types (ST) t1931

(ST1), t311 (ST5), t084 (ST15), t1848 (ST30), t5941 (ST80) and t159

(ST121, Table 4). STs did not cluster in distinct groups according to

eBURST analysis. Interestingly, when comparing the STs of this

study with the whole MLST database, all the STs of Babongo S. aureus

isolates represented the predicted founders of their respective clonal

complex, only the novel ST1662 was a singleton.

Inter-village variation
Detailed inter-village comparison revealed demographic differ-

ences between the six camp-like villages (Table 1). The number of

participants was imbalanced ranging from two in ‘‘Egouba’’ to 46

in ‘‘Village Tranquille’’ which is the biggest Babongo camp and

the residence of the Babongo leader in the Ikobé region. Except

for ‘‘Egouba’’, resistance to penicillin was equally distributed

among isolates from different camps. Resistance to tetracyline and

trimethoprim-sulfamethoxazole was only found in ‘‘Village

tranquille’’ (Table 1). There was no predominance of a single

spa type or ST in a certain village. However, the following spa types

were only found in one village: t084, t159, t311 (‘‘Village

Tranquille’’), t570 (‘‘Tsibanga’’), t6020 (‘‘Ossimba’’) and t127,

t6025 (‘‘Soga’’, Table 1).

Discussion

To our knowledge, this is the first investigation of S. aureus

isolates from a semi-nomadic indigenous African population. It

provides a characterization of susceptibility to antimicrobial drugs,

virulence factors and the clonal structure of the isolates. The main

findings of our study are the high prevalence of PVL-positive

isolates and the same genetic background of Babongo S. aureus

isolates as pandemic clones.

Our survey needs to be considered as a representative

population-based study, because it covers more than 30% of the

Babongo population [21], has a balanced distribution of sex and

shows a pagoda-shaped population pyramid typical of a

developing community (Figure 1). Due to the semi-nomadic

lifestyle of the participants, we cannot give the exact total number

of the population in each village, but the total Pygmy population in

the study area is estimated to be 300 persons [21]. The S. aureus

carriage rate of 33% among Babongo Pygmies is similar to those

reported worldwide ranging from 25 to 35% [22,23]. Carriage

corrected for age groups showed the highest colonization in

teenagers (54%). This is comparable to the nasopharyngeal

carriage rate reported from Europe showing a peak prevalence

of over 50% at the age of ten years [24]. The absence of S. aureus in

Ndougou is probably due to the small sample size of this village

(n = 5, Table 1) and the higher mean age of the participants as

carriage declines in older age groups (Figure 1).

Resistance to beta-lactams was rare. Only 35.3% of the isolates

were resistant to penicillin, no MRSA was detected. This high

prevalence of isolates susceptible to penicillin might be an indirect

Table 3. agr subtypes of S. aureus strains and number of co-
occurring virulence-genes.

agr subtype No. virulence factor encoding genes (%)

1 2 3 4 5 6

agr I (n = 6) 2 (33.3) 0 0 4 (66.7) 0 0

agr II (n = 6) 1 (16.7) 0 2 (33.3) 1 (16.7) 2 (33.3) 0

agr III (n = 21) 1 (4.8) 6 (28.6) 4 (19.1) 9 (42.9) 0 1 (4.8)

agr IV (n = 1) 0 0 0 0 1 (100) 0

Total 4 6 6 14 3 1

doi:10.1371/journal.pntd.0001150.t003

Table 4. Molecular characteristics of S. aureus isolates from Babongo Pygmies.

Sequence
type (ST)

Clonal
complex (CC)

MLST allelic
profile spa type agr subtype

Capsular
type (CP)

lukS-PV,
lukF-PV (%)

No.
isolates

1 1 1-1-1-1-1-1-1 t1931 III 8 + (100) 2

1 1 1-1-1-1-1-1-1 t127 III 8 - (0) 1

5 5 1-4-1-4-12-1-10 t570 II nta - (0) 1

5 5 1-4-1-4-12-1-10 t311 II 5 + (100) 1

15 15 13-13-1-1-12-11-13 t084 II 8 + (75%) 4

30 30 2-2-2-2-6-3-2 t1848 III 8 + (100) 8

72 72 1-4-1-8-4-4-3 t148 I 5 - (0) 4

80 80 1-3-1-14-11-51-10 t5941 III 8 + (100) 4

88 88 22-1-14-23-12-4-31 t186 III 8 - (0) 4

88 88 22-1-14-23-12-4-31 t6020 III 8 - (0) 1

121 121 6-5-6-2-7-14-5 t159 IV 8 + (100) 1

188 188 3-1-1-8-1-1-1 t189 I 8 - (0) 2

1662 singleton 3-1-6-19-13-13-11 t6025 III 8 - (0) 1

anot typeable.
doi:10.1371/journal.pntd.0001150.t004
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marker of a limited use of antibiotic agents in this population.

However, community-associated MRSA (CA-MRSA) can also

emerge in remote populations as shown for Australian Aborigines

and North-American Indians [25–27]. The toxin gene profile

differed clearly from European carrier isolates. Whereas we

detected similar rates of sea, sec, seh and eta, the prevalence of genes

encoding other superantigens and exfoliative toxins were higher in

the Babongo S. aureus isolates compared to isolates originating

from Europe: seb (20.6 vs. 3.8%), etd (11.7 vs. 5.2%) and edin-B

(11.7 vs. 6.2%) [28]. Surprisingly, genes encoding SED-SEJ and

TSST-1, which are common among carrier and clinical isolates in

Europe (approx. 7–15% and 15–25% respectively) [14,28,29],

were not detected in this Pygmy population.

The distribution of the capsule types was biased towards CP8 vs.

CP5 (82.4% vs. 14.7%) compared to asymptomatic carriers in

Europe (approx. 60–75% vs. 10–35%) [23,30,31]. CP5 and CP8

have been shown to impact the virulence of S. aureus and the

clinical course of infection [32,33]. Capsular polysaccharide

expression is part of the agr regulon, we showed significant

association of CP5 with agr subtype I (p = 0.002) and CP8 with agr

subtype II (p = 0.001). This distribution of CP among agr subtypes

has also been shown in isolates derived from bovine mastitis [34].

Interestingly, more than 55% of the S. aureus isolated from

Babongo Pygmies carried PVL-encoding genes. This prevalence

is comparatively high as only 1–2% of clinical methicillin-

susceptible S. aureus (MSSA) isolates from Europe are PVL

positive [13,35]. PVL is a bacteriophage-encoded pore-forming

toxin, which causes necrosis of tissues and has cytocidal effects on

human neutrophils [1]. The clinical role of PVL is not yet fully

understood and its role as a virulence factor remains controver-

sial. PVL can be associated with necrotizing pneumonia in

humans [36]. A rabbit model of necrotizing pneumonia has

clearly demonstrated that PVL both activates polymorphnuclear

leucocytes (PMNs) and macrophages and induces necrosis of

PMNs [37]. Infected rabbits had the same clinical features of

necrotizing pneumonia as described in humans, i. e. lung necrosis,

edema, hemoptysis and death [37]. The high prevalence of PVL-

positive S. aureus strains could therefore be a risk for Babongo

Pygmies to develop necrotizing infections. However, studies with

different animal models have shown conflicting results concerning

the role of PVL. Some animal studies suggested PVL as major

virulence factor in a mouse pneumonia model [38]. Other studies

indicate that phenol soluble modulins might enhance the cytolytic

effect of PVL [39] or have shown that a-hemolysin (a-toxin) or a

point mutation in the agr P2 promoter are responsible for an

increased virulence of PVL-positive strains in mice [40,41]. In

addition, other experiments did not find any evidence for PVL as

a virulence factor in a murine model [42,43]. However, it is

known that PVL acts differentially on neutrophils of various

species as PVL has a strong cytotoxic effect on human neutrophils

but not on murine neutrophils [1]. Thus, the impact of a high

prevalence of PVL-positive strains in a healthy Babongo

population is still unclear. Further prospective studies are needed

to analyze if PVL has an impact on the incidence of S. aureus

infections in a neglected population.

Noteworthy, the presence of PVL-encoding genes was not

associated with one distinct clonal lineage, but was distributed

among different STs and spa types. A high prevalence of PVL

could be a common feature of Sub-Saharan S. aureus isolates as

high prevalence of PVL has been also found in non-pygmy

populations from South Africa (100%), Mali (100% in S. aureus

ST152), and Nigeria (42.7%) [3,7,44]. In contrast to our

investigation, all but one of these studies included clinical isolates

and might be therefore biased. However, high prevalence of PVL

encoding genes is frequently found in pandemic CA-MRSA-clones

and certain MSSA lineages (ST1, ST5, ST30, ST80) appear to be

a reservoir of CA-MRSA [6]. In our study, we found very

common STs (ST1, ST30, and ST121) amongst the Babongo

Pygmies, some of them are pandemic clones [6,45]. This is

surprising as the Babongo Pygmies split apart from other humans

at least 50,000 years ago and still live in isolated areas [46].

However, it is unclear, whether the same genetic background of

Babongo S. aureus isolates and pandemic clones reflects the global

spread of distinct clones or if it is the result of separate evolutionary

processes in different geographic regions where the same successful

clones were independently selected.

As shown for Helicobacter pylori, bacterial polymorphisms may

reflect human phylogeography and historical migrations [47]. The

genetic diversity in H. pylori decreases with geographic distance

from East Africa mirroring the migration of its human host [10].

Interestingly, the Simpson’s index of diversity among S. aureus STs

from Babongo Pygmies was higher (0.89) than in a comparably

remote Amerindian community in French Guiana (0.82), but was

still lower than in urban communities in France, Algeria, Moldavia

and Cambodia (0.92, 0.93, 0.92, 0.91) [8]. This is possibly due to a

higher exchange and transmission between people from different

regions and communities in the urban setting. Comparing genetic

diversity of S. aureus isolates from isolated population may

contribute to the discussion whether S. aureus shows a similar co-

evolution and phylogeographical distribution patterns as observed

for H. pylori [8,10]. To confirm this, more population-based carrier

studies are needed from different geographic regions to address

possible factors of S. aureus transmission between a given isolated

population and its neighboring communities.

One limitation of our study is the small sample size which might

be only increased if those inhabitants who went hunting in the

deep rain forest would have been included. Healthy male

subsistence hunter might therefore be underrepresented. In

addition, we failed to collect confident data about the use of

antimicrobial drugs to analyze its impact on the carriage of

resistant isolates. This limitation was due to a poor documentation

of antibiotic treatments in the personal health care files and due to

difficulty in recalling reliably the intake of antimicrobial agents.

Another limitation of our study is the missing data about the

incidence of S. aureus-related infections to assess the impact of the

high prevalence of PVL on developing invasive disease. To record

more confident data about the use of antibiotic drugs for each

participant and to survey the incidence of S. aureus infections,

future prospective studies are warranted.

In conclusion, our study provides the first insight in S. aureus

isolates from an African Pygmy population. While we found a high

prevalence of PVL-positive isolates, its impact on the incidence of

S. aureus infection in remote populations is not clear yet. Many S.

aureus isolates had the same genetic background as pandemic CA-

MRSA clones raising the question of a common ancestor. We

recommend a close surveillance of S. aureus isolates in remote

indigenous African population to control the emergence of

resistant isolates and to investigate the role of PVL-positive S.

aureus isolates in neglected communities.
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