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Abstract: Computation offloading is one of the most important problems in edge computing. Devices
can transmit computation tasks to servers to be executed through computation offloading. However,
not all the computation tasks can be offloaded to servers with the limitation of network conditions.
Therefore, it is very important to decide quickly how many tasks should be executed on servers
and how many should be executed locally. Only computation tasks that are properly offloaded
can improve the Quality of Service (QoS). Some existing methods only focus on a single objection,
and of the others some have high computational complexity. There still have no method that could
balance the targets and complexity for universal application. In this study, a Multi-Objective Whale
Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve
the optimal offloading mechanism of computation offloading in mobile edge computing. It is the
first time that MOWOA has been applied in this area. For improving the quality of the solution set,
crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally,
an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to
obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-
Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm
(CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs
better in terms of the quality of the final solutions.

Keywords: edge computing; computation offloading; multi-objective; whale optimization algorithm

1. Introduction

With the rapid development of technologies, terminal devices, especially Internet
of Things (IoT) devices and smartphones, are limited in resources, while applications
running on them are resource-hungry. In this case, cloud computing allows data from
terminal devices to be processed at servers through the Internet, relieving computation
pressure at the terminal devices [1]. Unfortunately, some applications are latency-sensitive
and compute-intensive; cloud computing is not suitable for these applications [2]. As a
supplement of cloud computing, edge computing deploys small-size cloud-computing-like
capabilities at the edge of the network [3]. The main difference between these two technolo-
gies is reflected in the physical location where storing and processing are performed [4].
Edge computing turns centralized clouds into distributed pervasive fogs. Terminal devices
can send data to the closest server with lower latency and lower power consumption.
Moreover, edge computing has better cognition [5], agility and security [6]. Additionally,
the combination of 5G technology and edge computing produces new developments in
many areas, such as smart robots and smart farming [7].
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Computation offloading plays an essential role in edge computing. It is firstly pro-
ceeded in cloud computing and then used in edge computing. Devices can transmit
computation tasks to servers to be executed through computation offloading. Additionally,
not all the computation tasks can be offloaded to servers in common cases with the limita-
tion of network conditions [8]. Therefore, it should be quickly decided how many tasks
should be executed on servers and how many should be executed locally. Only properly
offloaded computation tasks can achieve the Quality of Service and increase the Quality
of Experience.

Optimizing computation offloading is typically formulated as a Mixed Integer Non-
Linear Programming (MINLP) problem, which is challenging to solve. The optimizing
approaches of computation offloading in mobile edge computing are separated into several
perspectives: game-theoretic methodology [9], machine learning methodology [10], queu-
ing theory, and linear programming concerning other algorithms. Researchers are trying
to solve computation offloading problems using various methods. Among these, game-
theoretic methodology and machine learning methodology are two major perspectives.
Many excellent works have been studied regarding the computation offloading problem.
For example, Gianni and Palmieri et al. [11] proposed a modified genetic algorithm for local
searching, which shows quite good results; Gianni and Tipaldi et al. [12] use rule-based
machine learning to optimize Markov decision process modelled spacecraft autonomy,
which also achieves effectiveness. Both the game-theoretic methodology and machine
learning methodology are reasonable and possible.

For the game-theoretic methodology, using game-theoretic approaches to determine
pure Nash equilibria is an efficient non-deterministic approach, and game-theoretic-based
techniques are widely utilized in this field. Chen et al. [13] jointly formulated the compu-
tation offloading problem and solved it using a game-theoretic approach by showing the
existence of a Nash equilibrium; Wang et al. [14] designed a partial computation offload-
ing method that optimized both communication and resources; Ma et al. [15] proposed
an energy-aware computation offloading algorithm; Dong et al. [16] proposed an evo-
lutionary game approach to optimize the task offloading in edge computing; Elgendy
et al. [17] proposed an efficient offloading algorithm achieving the computation offload-
ing decision for computation tasks, which use the method of finding the near-optimal
computation offloading and compression decision; Zhou and Jadoon [18] proposed a
partial computation offloading strategy based on game theory for multi-user edge com-
puting; Wang et al. [19] proposed a decentralized computation offloading algorithm with
multi-agent imitation learning.

For the machine learning methodology, approaches based on machine learning have
also been used in recent years for more and more pervasive devices which have appeared.
It is effective and practical but may have higher complexity than game-theoretic approaches
and need more resources, which mean this mechanism can be used on inherently limited
devices. Hossain et al. [20] presented an optimal binary computational offloading decision
using reinforcement learning; Huang et al. [21] investigate low-complexity computation
offloading strategies to minimize energy consumption and propose a distributed deep
learning-based offloading algorithm to achieve better convergence; Zhang et al. [22] evalu-
ate an online learning offloading framework for heterogeneous mobile edge computing
by conducting a failure recovery policy; Xie et al. [23] minimize service time by dividing
tasks into subtasks and apply the method proposed to the computation offloading problem
among vehicles; Cui et al. [24] use stochastic online learning that can learn from the changes
of dynamic systems, and the method is used for the distributed system; Xu et al. [25] design
an energy-aware computation offloading method to reduce the energy consumption and
adopt a Non-dominated Sorting Genetic Algorithm II (NGSA-II) to shorten the offloading
time of the computing tasks.

To clarify the effectiveness of these works. The advantages and weakness of these
works mentioned above are listed in Table 1.
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Table 1. The advantages and weakness of the works mentioned.

Reference Methodology Advantages Weakness

[13] Game-theoretic Multi-user; practical Has no consideration on energy

[14] Game-theoretic Hybrid with dynamic voltage scaling Separately considers energy
minimum and latency minimum

[15] Game-theoretic Energy-aware; light Solutions not significant

[16] Game-theoretic Using online learning in the iterative algorithm Hard to implement

[17] Game-theoretic Multi-user; multi-task; secure Specialized application

[18] Game-theoretic Multi-user; low time complexity Only considers time overhead

[19] Game-theoretic For pervasive scenario; innovative Hard to implement

[20] Machine learning Multi-user; a simple procedure Not suitable for complex network

[21] Machine learning Multi-server; Multi-user; Multi-task Binary offloading

[22] Machine learning Conducts a failure recovery policy Low convergence

[23] Machine learning Partitioning to subtasks; parallel offloading High complexity

[24] Machine learning Fully distributed No synchronization between mobile
user and edge server

[25] Machine learning Optimal offloading solution High complexity; low convergence
for real-time application

It can be seen from Table 1 that the computation offloading optimization problem can
be solved in many aspects. Some methods have low complexity and easy to apply but only
have one target; some other methods are comprehensive but show high complexity and are
hard to implement. Finding a solution to strike a balance is needed, including key targets
in computation offloading optimization problems with reasonable complexity. The method
proposed in this not only paper takes multiple objections into consideration but also has
obvious advantages in convergence, diversity and complexity.

The Whale Optimization Algorithm (WOA) is an optimization algorithm proposed by
Australian scholars Mirjalili and Lewis in 2016 [26]. The WOA has promising advantages.
It is insensitive to the initial solutions, which may have a significant influence on some
traditional algorithms. Additionally, it has adaptive mechanisms to balance the explorative
and exploitative behaviors properly. It has been widely used in feature selection, parameter
extraction, engineering optimization, and other aspects. It does not need to compute
gradients, which is fit for computation offloading scenarios [27].

Tongbram et al. [28] introduce WOA into image segmentation with a noise detection
and reduction mechanism. Hassouneh et al. [29] combine WOA with a single point
crossover method and use the enhanced WOA to predict software faults. Abdel-Basset et al. [30]
adapt WOA for a DNA fragment assembly problem. Shanky et al. [31] designed an energy
resource allocation framework optimized based on WOA. As an expansion of WOA,
the Multi-Objective Whale Optimization Algorithm (MOWOA) was proposed to solve
optimization problems that have more than one target, inheriting the advantages of WOA.
A distributed clustering algorithm using multi-objective whale optimization is proposed
by Kotary et al. [32] for a peer-to-peer network. A multi-objective whale optimization
algorithm proposed by Wang et al. [33] is used to solve the energy-efficient distributed
permutation flow shop scheduling problem. Ehteram et al. [34] proposed a hybrid Artificial
neural network (ANN) with a multi-objective whale optimization algorithm designed to
perform suspended sediment load prediction.

WOA is introduced to solve computation offloading problems by Pham, Huong et al. [35]
and Pham, Quoc et al. [36]. Pham, Huong et al. employ WOA to solve the Transmit
Power Control (TPC) problems and they find the simplicity and efficiency of WOA on TPC
problems. Pham, Quoc et al. apply WOA to resource allocation optimization problems and
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obtain a promising conclusion. However, MOWOA has still not been applied to solving the
optimal offloading mechanism of the computation offloading in mobile edge computing.
The motivation for proposing MOWOA and improved MOWOA for the computation
offloading in this research is three-fold. First, the optimization problem in computation
offloading is an important problem that needs to be overcome. As with some methods list
in Table 1, the existing methods are not good enough or not practical. Finding a satisfying
solution is apparently required. Second, the whale optimization algorithm is universal
for many application areas with the advantages mentioned, and has many successful
applications [28–34]. Third, WOA is used to solve the optimization strategy of computing
offloading [35,36]. However, they only focus on just one factor and ignore the fact that
the optimization of computation offloading may be affected by multiple factors. Last,
considering that time consumption and energy consumption are the most important factors
in the computation offloading optimization problem, MOWOA has the potential to solve
the optimal offloading mechanism of computation offloading in mobile edge computing.
Therefore, in this paper, MOWOA can be used to solve the problem mentioned.

The key contributions of this paper are as follows. Firstly, a method of using MOWOA
to solve the optimal offloading mechanism of computation offloading in mobile edge
computing is proposed. Secondly, the parameters of the algorithm are modified to suit our
model. Furthermore, the gravity reference point method is employed to further improve
MOWOA. The improved MOWOA is named MOWOA2. Finally, in order to improve the
quality of the solution set, crowding degrees are introduced, which are defined as the
summation of the ratio of the difference of the objective functions of two adjacent solutions
with that of two extremum solutions; then, all solutions in the set are sorted in descending
order by crowding degrees.

The paper is organized as follows. Section 2 shows the computation offloading model
in edge computing. The MOWOA and MOWOA2 for solving the model are described in
Section 3. Section 4 presents numerical experiments and analyzes the performance of our
methods. Section 5 analyzes and discusses the performance of our methods. Finally, a brief
conclusion is given in Section 6.

2. The Computation Offloading Model

In this section, there will be a detailed discussion of the computation offloading model.
The edge computing system consists of an edge server and n mobile devices users with
each task, denoted by a set N = {1, 2, . . . , n}. There is a wireless base-station s, through
which the mobile device users can offload the computation to the edge computing servers.
Next, the communication and computation models are introduced in detail, both of which
play vital roles in mobile edge computing.

2.1. Communication Model

Firstly, the communication model with wireless access used in mobile edge computing
is introduced. The wireless base-station s manages the communications of mobile device
users. The set of wireless channels that s can use are denoted as M = {1, 2, 3, . . . , M}.
Moreover, X = (x1, x2, . . . , xn) is a decision vector, where xi(i = 1, 2, . . . , n) represents
that mobile device user i offloads xi × 100% of its task to be executed on edge servers, and
the rest (1 − xi) × 100% of its task to be executed locally. Such a kind of decision vector
is used to overcome the problems and disadvantages of the computation offloading model
that uses 0–1 planning. In the model, the transmission rate ri of user i is denoted as [37]

ri = ω log2

1 +
pihi

σ2 − pihi +
n
∑

j=1
pjhj

ri = ω log2

1 +
pihi

σ2 − pihi +
n
∑

j=1
pjhj

 (1)
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in which ω is the bandwidth of the channel, pi is the transmission power of user i, hi is
the channel gain between user i and base-station s, and σ2 represents the background

noise power. −pihi +
n
∑

j=1
pjhj represents the effects from other mobile device users. From

the communication model in (1) it can be determined that if too many mobile device
users choose to offload the computation via the same channel concurrently, this may
lead to severe interference and cause low data rates, which would negatively affect the
performance of mobile edge computing.

2.2. Computation Model

Then, the computation model is introduced. The tasks set are defined as C = {c1, c2, . . . , cn},
in which ci represents the total number of Central Process Unit (CPU) cycles needed to
finish the computation task of user i, and define the data size set B = {b1, b2, . . . , bn}, in
which bi represents the data size of the task of user i. Next, the computation overhead
in the field of both energy consumption and processing time for both local and remote
computing approaches are discussed.

(1) Local Computing: For the local computing approach, a mobile device user n
executes its computation task locally on the mobile device. The computation execution
time TL

i of the task user i locally is given as

TL
i =

u
ZL

i
(2)

where ZL
i is the computation capability (i.e., CPU cycles per second) of the mobile device

user i, u = (1− xi)ci. xi is the decision vector mentioned in Section 2.1. The xi referred to
below also has the same meaning. For the energy of the computation, it holds that

EL
i = η(ZL

i )
2
u (3)

in which η is the coefficient of the consumed energy per CPU cycle, which can be obtained
by the measurement method in [38] and it is set as 1 × 10−26.

(2) Remote Computing: for the remote computing approach, a mobile device user i
offloads its computation task to the edge servers via wireless base-station s.

Using computation offloading would cause extra overhead in the fields of time and
energy for transmitting the computation data. The total time overhead of mobile device
user i for offloading the task to edge servers is computed as

TM
i = v +

k
Zi

M (4)

in which ZM
i is the computation capability available for mobile device user n, and it is

determined by the servers. It can be supposed that the computation capability of each user
is equal, which means ZM

1 = ZM
2 = · · · = ZM

n . v = xibi
ri

, k = xici. bi is the time used by

user i to transmit data to servers and k
ZM

i
is the execution time that servers need for the task

from user i. Due to the fact that the data size of the computation results is usually much
smaller than that of input data, the time overhead of sending the result back is neglected.

Then, the total energy overhead for mobile device user i to offload the task to edge
servers is defined as

EM
i = piv + η(ZM

i )
2
k (5)

where piv is the energy consumption produced from user i to edge servers, during the data
transmission, and η(ZM

i )
2k is the energy consumption that servers need to execute the task

from user i.



Sensors 2021, 21, 2628 6 of 24

Finally, the optimization model is defined as:

min F(X) = ( f1(X), f2(X))

f1(X) =
n
∑

i=1
(TL

i + TM
i )

f2(X) =
n
∑

i=1
(EL

i + EM
i )

s.t. X = (x1, x2, . . . , xn), xi ∈ [0, 1] , i = 1, 2, . . . . . . , n

(6)

where f1(X) is the total time for computing the tasks, f2(X) is the total energy consumption
for those tasks, and n is the number of device users.

3. Multi-Objective Whale Optimization Algorithm (MOWOA) for Solving Model
3.1. Multi-Objective Optimization

The process of searching for the best solution or optimal value from an optimization
problem is referred to as optimization. The target of optimization can be single or more. The
optimization problems with more than one objective are called multi-objective optimiza-
tion [39]. This kind of problem can be found almost everywhere, such as in mathematics,
economics, engineering, computer science, etc. There are two kinds of methods commonly
used: the Pareto Method [40] and the Scalarization Method [41]. For the Pareto Method,
Pareto optimality is a situation where no individual or preference criterion can be better off
without making at least one individual or preference criterion worse off or without any
loss thereof. In this paper, a multi-objective method based on Pareto Method is used.

3.2. Whale Optimization Algorithm

WOA is a swarm intelligence optimization algorithm, which is inspired by the unique
hunting method of the humpback whales, which is called the bubble-net attacking approach
shown in Figure 1.

Figure 1. Bubble-net attacking behavior of humpback whales.

Groups of krill or small fishes are the preferred food of humpback whales. When
humpback whales are hunting, they have two kinds of behaviors associated with a bubble-
net [42]. One is named upward-spirals. They dive down and start to create bubbles in a
spiral shape around the prey and swim up toward the surface; another is named double-
loops with three stages: the coral loop, lobtail, and capture loop. The thought of WOA is
to imitate the behaviors of humpback whales, and the flowchart of the method is shown

in Figure 2, where w is a random number in [0,1] and
→
A is a vector whose definition is on

formula (7).
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Figure 2. Flowchart of the whale optimization algorithm.

Before the search agent updates its position,
→
r ∈ [0, 1] is a randomly generated vector

to calculate
→
A and

→
C . The coefficient vector

→
A and

→
C are calculated as follows:

→
A = 2 ·→a ·→r −→a (7)

→
C = 2 ·→r (8)

where
→
a is a vector that linearly decreased from two to zero in the iterations.

3.2.1. Encircling Prey

If w < 0.5 and
∣∣∣∣→A∣∣∣∣ ≤ 1 , the stage of encircling prey starts. Humpback whales can

recognize the location of prey and encircle them. The current best candidate solution is
supposed to the target prey or is close to the optimum. After the best search solution is
defined, the other search solutions will hence try to update their positions towards the best
search solution. This behavior is represented by the following equations:

→
D =

∣∣∣∣→C × →Pt
∗ −

→
Pt

i

∣∣∣∣ (9)

→
Pt+1

i =
→
Pt

i −
→
A×

→
D (10)
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where t indicates the current iteration,
→
Pt
∗ is the position vector of the best solution obtained

so far,
→
Pt

i is the position vector, | | is the absolute value.
→
Pt
∗ should be updated in each

iteration if there is a better solution.

3.2.2. Bubble-Net Attacking

If w ≥ 0.5 , the stage of bubble-net attacking starts. Inside the shrinking enclosure,
humpbacks follow spiraling paths toward their prey, a method known as bubble-net
foraging. Therefore, WOA calculates the distance between the whale and its prey when it
uses the spiral method to update its position. In order to simulate the spiral motion of the
humpback whale, the mathematical formula is as follows:

→
Pt+1

i =
→
D
′
· ebl · cos(2πl) +

→
Pt
∗ (11)

where
→
D =

∣∣∣∣→Pt
∗ −

→
Pt

i

∣∣∣∣ indicates the distance of the i th whale to best solution obtained so

far, b is a constant for defining the shape of the logarithmic spiral, l is a random number in
[−1,1].

3.2.3. Random Search for Prey

If w < 0.5 and
∣∣∣∣→A∣∣∣∣ > 1 , the stage of a random search for prey starts. In the process

of hunting prey, whales need to locate their prey. Once the location is established, the
whales are able to encircle their prey. The current best search agent is assumed as the target
prey; all the whales will update their position with the tendency of moving closer to the
prey. This procedure will iterate until preset conditions are reached. The calculation model
for individuals to update their own position is expressed by the mathematical formula
as follows:

→
D =

∣∣∣∣→C × →
Prand −

→
Pt

i

∣∣∣∣ (12)

→
Pt+1

i =
→

Prand −
→
A×

→
D (13)

where
→

Prand is a randomly generated position vector within the boundary range,
→
Pt

i is

the i th position vector generation t of search agents, and
→

Pt+1
i is the i th position vector

generation t+1 of search agents.

3.3. The MOWOA for Solving the Proposed Model

The original WOA is one objective. Kumawat et al. [43] suitably modified the method
to solve multi-objective problems, which is known as MOWOA, which has good ex-
ploration and exploitation in a given search space. It also has been proven with faster
convergence and fewer parameters. MOWOA has been applied to solve many problems.
However, MOWOA has still not been applied to solve the optimal offloading mechanism of
computation offloading in mobile edge computing. Therefore, in this paper, MOWOA for
the optimal offloading mechanism of computation offloading is proposed and adaptively
modified to suit our model. Then, the pseudocode of the main procedure of MOWOA is
shown in Algorithm 1. The pseudocode of the Non-Dominate sort and crowding degree
Sort (ND-C_sort) function is shown in Algorithm 2.
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Algorithm 1: MOWOA

1: Initialize the whale’s population and set it as Ppopulation
2: Hpopulation← [], set size of Hpopulation as capacity // Hpopulation represents the
external archives
3: While t < maximum number of iterations do
4: Normalize the boundary values when search agents are out of the preset bound value

5: (Hpopulation,
→
Pt
∗) = ND−C_sort(Hpopulation, Ppopulation, capacity)

6: For each search agent do

7: Update
→
a ,
→
A,
→
C , l and w

8: If w < 0.5 and
∣∣∣∣→A∣∣∣∣ ≤ 1 then

9: Update the position of the current search agent by using (10)

10: Else if w < 0.5 and
∣∣∣∣→A∣∣∣∣ > 1 then

11: Select a random search agent (Xrand)
12: Update the position of the current search agent by using (13)
13: Else if w ≥ 0.5 then
14: Update the position of the current search by using (11)
15: End if
16: End for
17: t = t + 1
18: End while
19: Return Hpopulation

Algorithm 2: ND-C_sort function

Function : (Hpopulation,
→
Pt
∗) = ND−C_sort (Hpopulation, Ppopulation, capacity)

Input: Hpopulation, Ppopulation, capacity

Output : Hpopulation,
→
Pt
∗

1: Add Ppopulation into Hpopulation
2: Update Hpopulation with the non-dominated solution of Hpopulation based on formula (6)
3: The solutions in Hpopulation are sorted by crowding degree by formula (14)
4: If size (Hpopulation) > capacity then
5: Solutions that have poor crowding degrees are eliminated
6: End if

7: The optimal solution
→
Pt
∗ is selected from Hpopulation by the roulette selection method by using (15)

In the beginning, the parameters of MOWOA and computation model are input. First,
initialize the whale’s population and set it as Ppopulation of size m; Hpopulation is defined
as the external archives and the size of Hpopulation is named capacity.

If any target function in Fi is not greater than Fj and there exists at least one smaller
than Fj, it can be regarded as Fi dominate Fj. The decision vector initialized as ranging from
zero to one is substituted into formula (6), for solving F1, F2, . . . , Fm. Additionally, it was
merged with the current non-dominated solution set Ht−1 to be Ht by comparing it with
the vectors in Ht−1, where t is the current generations in the iterations of the algorithm.
The corresponding decision vector of these target function vectors is also saved. For each
solution in Ht, they will be sorted according to the target function. Then, the crowding
degrees of all solutions are calculated based on the formula shown as,

di =
2

∑
j=1

f i+1
j − f i−1

j

f max
j − f min

j
(14)

where i represents the i th solution in Ht. All solutions in the set Ht are sorted in descending
order by the crowding degree.
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The optimal solution
→
Pt
∗ is selected from Ht by the roulette selection method. The

probability for each solution to be chosen can be calculated as,

p(Fi|Ht) =
k− i + 1

k
∑

j=1
j

(15)

where Ht is the solution set, k represents the number of the solution sets. Fi is the target
function of the i th solution.

Then, WOA is used to update the position of the search agents of the next generation

based on
→
Pt
∗.When the preset maximum iteration times are reached, Ht is the optimal

non-dominated solution set, including the corresponding decision vectors.

3.4. The MOWOA2 for Solving the Proposed Model

As the gravity reference point method has the advantages of a better spread of the
solution set, the combination of the gravity reference point method with MOWOA can
further improve the performance of the computing offloading mechanism in mobile edge
computing. In this paper, an algorithm named MOWOA2 by hybridizing the gravity
reference point method with MOWOA is proposed. The closer the gravity reference point
is, the more attractive it is to the current solution and the greater the weight coefficient is.

In this paper, two objective functions of time and energy consumption are defined.
When the time objective function f1(X) takes the maximum, the corresponding solution is

called
→
X1;when the energy objective function f2(X) takes the maximum, the corresponding

solution is called
→
X2. When X =

→
X1, the value of f1(X) and f2(X) calculated based on

fomula (6) is denoted as time1 and energy1 respectively, similarly, when X =
→
X2, the value

of f1(X) and f2(X) calculated based on fomula (6) is denoted as time2 and energy2 respec-
tively. for each solution in solution set H:

• Compute the time and energy of the current solution, and compute the distance between

the current solution and
→
X1,

→
X2, which are denoted as dis1 and dis2:

dis1 =

√
(time− time1)2 + (energy− energy1)2 (16)

dis2 =

√
(time− time2)2 + (energy− energy2)2 (17)

• Compute the weight parameter. The nearer gravity reference point has a more attrac-
tive force to the current solution, so the weight becomes larger:

λ1 =
(dis1 + dis2)− dis1

dis1 + dis2
=

dis2
dis1 + dis2

(18)

λ2 =
(dis1 + dis2)− dis2

dis1 + dis2
=

dis1
dis1 + dis2

(19)

• Update the position of the current solution:

→
D1 =

∣∣∣∣→C × →
X1−

→
Xt
∣∣∣∣ (20)

→
D2 =

∣∣∣∣→C × →
X2−

→
Xt
∣∣∣∣ (21)

→
Xt+1 = λ1 ∗

∣∣∣∣→Xt −
→
A×

→
D1
∣∣∣∣+ λ2 ∗

∣∣∣∣→Xt −
→
A×

→
D2
∣∣∣∣ (22)
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After all the positions of the solutions are updated, use the non-dominated sort
function to update solution set H.

The pseudocode of the Gravity function is shown in Algorithm 3.

Algorithm 3: Gravity function

Function: (Tpopulation) = Gravity (Hpopulation, capacity)
Input: Hpopulation, capacity
Output: Tpopulation
1: Tpopulation← Hpopulation
2: For each solution vector of Hpopulation do
3: Update the position of the current solution vector by using (22)
4: Return the out-of-bounds solution vector to the boundary
5: End for

6: (Tpopulation,
→
Xt
∗) = ND-C_sort(Tpopulation, Hpopulation, capacity)

4. Numerical Experiments

This section will carry out numerical experiments based on the system model above
and the algorithm proposed. A multi-user computation offloading system is simulated,
Some useful results are obtained by using MOWOA, MOWOA2, GrEA [44], the Multi-
objective Evolutionary Algorithm by Decomposition (MOEA/D-DE) [45], the Multi-objective
Evolutionary Algorithm based on Decomposition with Dynamical Re-source Allocation
(MOEA/D-DRA) [46], NSGA-III [47], the Epsilon Multi-objective Evolutionary Algorithm
(e-MOEA) [48], and CGbAIS [49,50], respectively. Moreover, the algorithms are coded in
MATLAB 2016a, and all tests are performed on a PC with a Windows 10 operating system
and 8 GB of RAM. The detailed parameters of the multi-user computation offloading
system are shown in Table 2.

Table 2. Detailed parameters of the multi-user computation offloading system.

Symbol Description Value

c size of data 4.5 × 104–5.0 × 104 kB
P maximum transmission power 10–100 W
fl computation capacity of local devices 0.5–1 GHz
fc computation capacity of edge servers 10 GHz
L distance between local devices and edge servers 1–30 m
ω channel bandwidth 5.0 × 10−3 GHz
σ2 background noise power 1.0 × 10−13 w

Moreover, CPU cycles b and channel gain h are shown as b = 0.2c and h = 1/L4.

4.1. Performance Indicators

Here are several indicators to evaluate the multi-objective optimization algorithms,
such as Generational Distance (GD), convergence metric γ, Spacing, diversity metric ∆,
Hypervolume (HV), Inverted Generational Distance (IGD), C-metric and Knee-driven
Dissimilarity (KD). The performance of multi-objective algorithms should be judged from
the convergence, uniformity and spread of the solution set. The indicator Spacing can
evaluate the uniformity of the solution set well, but this indicator does not consider the
convergence and spread of the solution set. The indicator HV can both evaluate the
convergence and spread of the solution set. The collaborative use of Spacing and HV
can cover the assessment criteria overall. Additionally, in most cases, indicators need a
real Pareto front to evaluate the performance of a multi-objective optimization algorithm.
However, the real Pareto front in practical problems is hard to acquire. Fortunately, both
Spacing and HV do not need to have a known Pareto Front, which fits our requirement
exactly. Therefore, two indicators are used as metrics: Spacing [51] and HV [52]. The
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Spacing metric can be used to measure the uniformity of the solution set of multi-objective
algorithms, especially in the two-dimensional case (which fits nicely with this article). If
Spacing is smaller, it means better uniformity of the solution set. The larger the HV, the
better the performance of convergence and spread of the solution set. Their definitions are
denoted as:

Spacing =
|PF|

∑
i=1

di − d
|PF| (23)

HV = δ

(
∪

x∈S
[ f1(x), r∗1 ]× [ f2(x), r∗2 ]

)
(24)

4.2. Numerical Results and Analysis

In this section, the detailed experimental results are reported. To investigate the
performance of each algorithm in different situations, the number of users is set to 30, 45,
and 60, respectively.

To better examine the MOWOA proposed, the result of our method is compared
with that of GrEA, MOEA/D-DE, MOEA/D-DRA, NSGA-III, e-MOEA, and CGbAIS. The
iteration times of all algorithms is set to 30. The quantity of search agents of MOWOA
and MOWOA2 is 100. The capacity of external archives of MOWOA and MOWOA2 is 30.
Correspondingly, the amount of search agents of GrEA, NSGA-III, and e-MOEA is 30, and
all these three algorithms are employed with real number coding. For MOEA/D-DE and
MOEA/D-DRA, the probability that parent solutions are selected from the neighborhood
is 0.9. Additionally, the maximal number of solutions replaced by a child solution is two.
Both MOEA/D-DE and MOEA/D-DRA are employed with the penalty-based boundary
intersection (PBI) [53] to disintegrate. As for CGbAIS, population size is set as 100; memory
capacity is set as 30; crossover probability is set as 0.4; the diversity evaluation parameter
is set as 0.95; the number of iterations is set as 30.

The different performances of these algorithms when the user number is 30, 45, and 60,
respectively, are shown in Tables 3–5. To be specific, it includes min/mean time and energy
required to obtain the result and the Spacing and HV of the solution set. It should note that
when the user number is 30, 45, and 60, respectively, the reference point of computing HV
is (1.28, 450), (1.84, 900), and (2.38, 800), respectively. The mean values of time and energy
consumption are obtained by performing 100 experiments.

Table 3. The values of indicators using different algorithms when the user number is 30. The bold number is the best value
in this column.

Algorithms/Indicators
Time Energy

Spacing HV
Min Mean Min Mean

MOWOA2 1.1918 1.2193 4.6888 × 10−18 76.0509 0.1658 35.3101

MOWOA 1.2111 1.2295 13.8006 48.0954 0.2797 28.6767

GrEA 1.1961 1.2173 124.0556 151.2140 0.3128 25.9536

MOEA/D-DE 1.2449 1.2499 161.8432 181.1392 0.0552 9.9063

MOEA/D-DRA 1.2119 1.2569 270.9970 352.4629 0.3245 6.9231

NSGA-III 1.1983 1.2220 93.1188 161.1363 0.3042 25.7863

e-MOEA 1.2270 1.2312 92.5499 102.4075 0.0375 18.8615

CGbAIS 1.2217 1.2289 122.3683 146.6156 4.7710 18.5727
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Table 4. The values of indicators using different algorithms when the user number is 45. The bold number is the best value
in this column.

Algorithms/Indicators
Time Energy

Spacing HV
Min Mean Min Mean

MOWOA2 1.6741 1.7173 32.3088 261.5592 1.7120 122.7615

MOWOA 1.7090 1.7449 12.4587 163.7678 0.7835 104.9165

GrEA 1.7760 1.8074 523.8285 678.7592 1.2088 25.9536

MOEA/D-DE 1.8322 1.8341 244.5273 256.1590 0.0475 5.0817

MOEA/D-DRA 1.7628 1.7915 448.4761 528.7081 0.7596 34.6198

NSGA-III 1.7062 1.7303 251.1581 339.2763 0.6388 82.3174

e-MOEA 1.7669 1.7747 353.0988 374.1175 0.0129 19.6814

CGbAIS 1.7125 1.7238 495.4125 536.6364 2.9393 50.4503

Table 5. The values of indicators using different algorithms when the user number is 60. The bold number is the best value
in this column.

Algorithms/Indicators
Time Energy

Spacing HV
Min Mean Min Mean

MOWOA2 2.2020 2.2251 13.9848 161.6287 0.8601 132.9202

MOWOA 2.2043 2.2268 5.7005 141.6998 0.5095 132.8395

GrEA 2.2184 2.2352 380.6338 434.3730 0.2987 65.8733

MOEA/D-DE 2.3167 2.3200 511.3582 521.6261 0.0352 18.2733

MOEA/D-DRA 2.3208 2.3416 613.6902 655.5079 0.4611 10.6627

NSGA-III 2.2063 2.2313 335.7004 400.5358 0.2607 77.3336

e-MOEA 2.2675 2.2880 399.0791 448.6972 0.0882 43.1851

CGbAIS 2.2650 2.2693 484.9868 496.5318 0.8152 36.0765

From Table 3, MOWOA2 has a better result than the other algorithms from analysis of
the time and energy consumption, which is 1.1918 for the shortest time and 4.6888 × 10−18

for the lowest energy. This value has a huge difference in magnitudes from the results
of other algorithms. Tables 3 and 4 represent that the lowest energy consumption and
average energy consumption of MOWOA are better than the other algorithms except for
MOWOA2, while MOWOA2 has the best time and energy consumption.

Additionally, an interesting phenomenon is found by comparing Tables 3–5. As the
user number increases, the time consumption has the tendency to increase; however, the
energy consumption seems not to obey the rule. In particular, the minimum and mean
energy consumption are 13.9848 and 161.6287, respectively, when the user number is 60.
While the values are 32.3088 and 261.5592, respectively, when the user number is 45 can
be seen. It can be supposed that the energy consumption is not a linear relation with the
increase in user number.

It can be shown from Tables 3–5 that when user number is 30, 45, and 60, the HV
value of the MOWOA is 28.6767, 104.9165, and 132.8395, higher than other algorithms
except MOWOA2. It means the MOWOA has better convergence and multiformity than
other algorithms. Moreover, Tables 3–5 represent the HV value of MOWOA2 as 35.3101,
122.7615, and 132.9202, respectively, in the corresponding situation. That means that the
improved whale optimization algorithm, MOWOA2, will further exploit its advantages,
and its overall performance is much better than the other algorithms. Additionally, it can
be seen that the HV index of the MOEA/D-DE, MOEA/D-DRA and e-MOEA algorithms
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is very poor, all of which rank at the bottom in all three cases. The reason is that these three
algorithms based on decomposition strategy can achieve good results by decomposing the
optimization of many objectives, which shows that the convergence and diversity of the
solution sets obtained by them are not good. It suggests that the decomposition strategy is
not appropriate for this problem.

Then, it can be seen from Tables 3–5 that, when the number of users is 30 and 45, the
Spacing value of the solution set of e-MOEA is the best, with values of 0.0375 and 0.0129,
respectively. When the number of users is 60, the Spacing index for the MOEA/D-DE
solution set is the best, at 0.0352. This shows that the two algorithms perform well in the
aspect of uniformity. In these three cases, the Spacing indexes of the CGbAIS solution set
are 4.7710, 2.9393 and 0.8152, respectively, which are almost all the worst. This indicates
that the uniformity of CGbAIS is not good. Considering the structure of the CGbAIS
algorithm, this algorithm adopts the maximum and minimum distance method, which
can group the solutions based on distance. Then, some solutions with near distance are
deleted from grouped solutions and only one solution is reserved, to simplify the solution
set. However, this also leads to a decrease in uniformity. When the number of users is 30,
MOWOA2 and MOWOA are not too bad for uniformity, with Spacing of 0.1658 and 0.2797,
respectively, ranking third and fourth among the eight algorithms. However, as the user
size increases, they tend to show worse uniformity. With the increase in the number of
users, the space of the feasible domain increases, resulting in a larger distance between
the solutions obtained by the MOWOA2 and MOWOA. Therefore, the Spacing indexes
obtained by the two algorithms are higher than those of other algorithms.

In order to make the conclusion more intuitive and convincing, statistical methods
were introduced. Single-sample t-tests were used to examine significant differences be-
tween the Spacing and HV of MOWOA2 and other algorithm metrics. As performing
single-sample t-test needs to meet normality distribution, the normality test of the sample
was per-formed on all the other algorithms indexes except MOWOA2, which was used as a
reference value. When the number of samples is small, the results of normality test should
be measured by using the Kolmogorov–Smirnov (K-S) index. The results of normality tests
are shown in Table 6.

Table 6. Normality Test of samples used by all other algorithms except the Multi-Objective Whale
Optimization Algorithm (MOWOA2).

Kolmogorov–Smirnov

Sig.

Spacing30 0.001

HV30 0.200

Spacing45 0.200

HV45 0.174

Spacing60 0.200

HV60 0.200

As shown in Table 6, Sig values are 0.2 and 0.174, both of which are larger than 0.05.
Therefore, they obey normal distribution, which meets the condition of a single sample
t-test. Furthermore, the Sig value of Spacing is 0.001 < 0.05 when the number of users is
30, which does not conform to the normal distribution, so the single sample t-test cannot
be used.

The single-sample t-test was then used to examine the significant differences, with 95%
confidence intervals selected by default. As can be seen from Table 7, all Sig.(two-tailed)
values of all test results for these indicators are less than 0.05, so it is considered that the
test value is significantly different from the sample mean. The Spacing and HV indexes of
MOWOA2 are significantly different from those of other algorithms.
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Table 7. The single-sample t-test of MOWOA2.

Sig. (2-Tailed);

Spacing30 /

HV30 0.008

Spacing45 0.002

HV45 0.005

Spacing60 0.001

HV60 0.009

Time and energy consumption obtained by the different algorithms when the user
number is 30, 45 and 60 are shown in Figures 3–5, respectively. They indicate the differences
in convergence and diversity among different algorithms. Compared with the solution sets
of the other algorithms, the solution sets of both MOWOA and MOWOA2 are distributed
on the lower left in the three Figures, which show that MOWOA and MOWOA2 are closer
to the Pareto optimal front. Therefore, the two algorithms proposed in this paper have the
advantages in convergence and diversity. In addition, in terms of convergence, the two
algorithms perform equally and, in terms of diversity, the position of a redpoint is near to
the abscissa axis in Figures 3–5, which indicates MOWOA2 improved by using the gravity
reference point method can enhance the ability of exploration. Therefore, MOWOA2 is
better than MOWOA.

Figure 3. Time and energy consumption of the different algorithms when the user number is 30.
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Figure 4. Time and energy consumption of the different algorithms when the user number is 45.

Figure 5. Time and energy consumption of the different algorithms when the user number is 60.

From Figure 3, it can be seen that the shape of the solution sets obtained by these
algorithms in the target function space are different. The shape of the solution sets of
MOEA/D-DRA resembles a cloud, which means the convergence of the algorithm is the
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worst of all algorithms. The lines of the solution sets of MOWOA and MOWOA2 are
apparently much closer to the Pareto Front. In addition, although the graphs obtained by
other algorithms appear linear, they are far away from the Pareto Front, indicating that
their solution set is not optimal.

From Figure 4, the shape of the solution sets of both GrEA and MOEA/D-DRA are
divergent, which shows the convergence of the algorithms is worse than that of other
algorithms. The lines of the solution sets of MOWOA and MOWOA2 are apparently much
closer to the Pareto Front. Although the shape of the solution set obtained by NSGA-III
is also linear, it is inferior to our proposed algorithms. Moreover, the graphs obtained by
CGbAIS, e-MOEA and MOEA/D-DE appear relatively concentrated, which indicates that
the diversity is poor, and it is far away from Pareto Front, which also indicates that the
convergence is poor.

From Figure 5, the shape of the solution sets of MOEA/D-DRA and e-MOEA are
slightly divergent and far away from Pareto Front when the user number is 60, which
shows that the convergence of the algorithms is worse than that of other algorithms. The
lines of the solution sets of MOWOA and MOWOA2 are apparently much closer to the
Pareto Front. Although the shape of the solution set obtained by NSGA-III is also linear, it
is inferior to our proposed algorithms. Furthermore, the graphs obtained by CGbAIS, e-
MOEA and MOEA/D-DE appear relatively concentrated, which indicates that the diversity
is poor, and it is, which also indicates that the convergence is poor.

From Figures 6–11, the box figures of the solution sets of energy and time consumption
are shown when the user number is 30, 45, and 60, respectively. The red line is the average
energy consumption of different solution sets by different algorithms. The diversity of
solution sets can be objectively judged according to the length of the blue rectangles. The
box figures of energy consumption obtained by different algorithms for different numbers
of users can be seen from Figures 6–8, The box figures of time consumption obtained by
different algorithms for different numbers of users can be seen from Figures 9–11.

Figure 6. Energy consumption of the different algorithms when the user number is 30.
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Figure 7. Energy consumption of the different algorithms when the user number is 45.

Figure 8. Energy consumption of the different algorithms when the user number is 60.
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Figure 9. Time consumption of the different algorithms when the user number is 30.

Figure 10. Time consumption of the different algorithms when the user number is 45.
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Figure 11. Time consumption of the different algorithms when the user number is 60.

The average energy consumptions of the solution sets obtained by MOWOA and
MOWOA2 are obviously lower than that obtained by other algorithms. The average time
consumption of the solution sets obtained by MOWOA2 is obviously lower than that
obtained by other algorithms.

The length of the rectangles obtained by MOWOA2 is obviously longer than that ob-
tained by other algorithms, which indicates the diversity of the solution sets of MOWOA2 is
excellent. In particular, the length of the rectangles obtained by MOWOA2 is longer than
that of MOWOA, which means the diversity of MOWOA2 is better than MOWOA when
applying the gravity reference point method.

In Figure 6, it can be seen that the average energy consumption of the solution sets of
MOWOA is the lowest, and that of MOWOA2 is the second-lowest when the user number
is 30. However, it does not show that the average energy consumption of the solution sets
obtained by MOWOA2 is worse than that of MOWOA. In fact, it can be seen from Figure 9
that the average time consumption of the solution sets of MOWOA2 is the lower than
that of MOWOA when the user number is 30. As mentioned in the previous part of the
article, time and energy consumption are mutually exclusive targets. The solution set of
MOWOA2 trades higher energy consumption for lower time consumption.

In Figures 6 and 9, although the time consumption of GrEA is slightly lower than that
of MOWOA2 when the number of users is 30, the energy consumption of GrEA is much
higher than that of MOWOA2.

In Figures 8 and 11, When the user number is 60, it shows that the average time and
energy consumption of the solution sets of MOWOA and MOWOA2 are almost the same,
both of which are better than other algorithms.

It can be observed from these figures that time consumption and energy consumption
of the solution sets obtained by MOEA/D-DE, MOEA/D-DRA, GrEA, e-MOEA, NSGA-III,
and CGbAIS are worse than that obtained by MOWOA and MOWOA2 under the three
different settings.

To sum up, we can conclude that MOWOA2 applied to computation offloading
mechanism optimization has excellent performance on convergence and diversity.
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5. Discussion

In this paper, MOWOA based on the non-dominated sort is applied to solve the
computational offloading model. Then, in order to further improve the extensiveness of
the solution set, the gravity reference point method is proposed and applied to improve
MOWOA, which is named MOWOA2. The box charts show that the extensiveness of the
MOWOA2 algorithm is better than that of MOWOA, and it is also better than the other
six algorithms.

Furthermore, the experience results show that the energy consumption of MOWOA
and MOWOA2 are significantly lower than that of other algorithms. The time consumption
is only slightly lower than other algorithms. This is because time and energy consumption
are mutually exclusive. An explanation of this can be drawn from the figures and tables.
For example, it can be seen from Table 3 that the energy consumption of MOWOA2 is
higher than that of MOWOA while its time consumption is lower than that of MOWOA. As
seen from Figure 4, MOWOA and MOWOA2 still are in the same Pareto Front, though the
distribution of MOWOA2 is closer to the vertical axis. This indicates that the convergence
of the two algorithms is the same; the different distribution of the solution sets lies in
the fact that MOWOA2 increases the diversity of solution sets by introducing the gravity
reference points method. In addition, it can be seen from the figures that the solution sets of
MOWOA and MOWOA2 are closer to the origin, indicating that they are closer to the true
Pareto Front. This proves that the convergence of MOWOA and MOWOA2 is better than
other algorithms. In addition, the HV Index of MOWOA and MOWOA2 is significantly
different from that of other algorithms. Higher HV values indicate that the two algorithms
have excellent comprehensive performance, including convergence and diversity.

It is a pity that the uniformity of MOWOA and MOWOA2 measured by the Spacing
metric is inferior to other algorithms. Finally, in order to obtain the most appropriate
number of search agents for MOWOA2, the algorithm was tested with the number of
search agents as 50, 80, 100, 120, and 150 when the number of users was 30, 45, and 60,
respectively. The minimum and mean time consumption, the minimum and mean energy
consumption and the average running time of MOWOA2 under these conditions were
obtained, as shown in Table 8.

Table 8. The results of adjusting parameters.

The Number of
Users

Number of
Search Agents

Time Energy Average
Running TimeMin Mean Min Mean

30

50 1.1782 1.2062 19.2116 68.5468 0.2259s

80 1.1723 1.2025 18.9858 64.4145 0.2925s

100 1.1690 1.2005 18.2421 63.1191 0.3470s

120 1.1687 1.2003 18.4659 63.3787 0.4033s

150 1.1684 1.1997 18.8542 64.5663 0.4927s

45

50 1.7108 1.7473 30.5254 250.4384 0.2278s

80 1.7050 1.7419 28.4220 248.0583 0.3120s

100 1.7002 1.7400 27.3841 248.3327 0.3608s

120 1.6980 1.7391 27.2972 248.8614 0.4267s

150 1.6979 1.7388 27.6336 249.5070 0.5292s

60

50 2.2138 2.2351 15.5345 163.3253 0.2648s

80 2.2059 2.2323 14.9360 161.8343 0.3515s

100 2.2016 2.2284 14.6777 157.6920 0.4045s

120 2.2011 2.2235 14.4166 157.5522 0.4659s

150 2.2008 2.2223 14.8116 158.1516 0.5535s
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It can be seen from Table 8, with the increase in the number of search agents, that
the minimum and mean time and energy consumption decrease. That is, the convergence
performance of the algorithm is gradually enhanced. This is because the number of
solutions generated by the algorithm increases, which guarantees that the algorithm will
explore more possible solutions. However, when the number of search agents is 100, the
trend of decline is no longer obvious. When the number of search agents reached 150, the
algorithm’s minimum and mean energy consumption rebounded in all three cases, while it
time consumption was only slightly reduced. Most importantly, as the number of search
agents increases, so does the average run-time of the algorithm. This means that blindly
increasing the number of search agents in pursuit of the improvement of convergence
performance is not a good choice because it will lead to a longer running time of the algorithm.
Therefore, a compromise was chosen—the number of search agents was set to 100.

6. Conclusions

In this paper, we apply MOWOA to solve the optimal offloading mechanism of the
computation offloading in mobile edge computing. Since the extensiveness of the solution
set of MOWOA on this problem is not good enough, the gravity reference point method is
proposed to improve it, which is named MOWOA2. Under different numbers of users, we
compare the performance of MOWOA2 with some other classical optimization algorithms.
The experimental results show MOWOA2 is high-performance, showing high convergence,
good diversity, and low complexity. However, it can be found that the uniformity of
MOWOA2 is not good enough. In the future, we will continue to make improvements to
MOWOA2 to overcome this shortcoming.

As a matter of fact, the real scenario of edge computing is much more complicated.
Therefore, how to broaden the practicability of the algorithm in the complex communication
and offloading environment still has a long way to go. There are still many factors we
need to consider. In the future, we will try to apply other intelligent algorithms to the
computation offloading problem. Moreover, we will conduct further research on continuing
to improve the performance of MOWOA and apply this algorithm to other areas.

7. Patents
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