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Abstract: A one-dimensional gas comprising N point particles undergoing elastic collisions within a
finite space described by a Sinai billiard generating identical dynamical trajectories are calculated
and analyzed with regard to strict extensivity of the entropy definitions of Boltzmann–Gibbs. Due
to the collisions, trajectories of gas particles are strongly correlated and exhibit both chaotic and
periodic properties. Probability distributions for the position of each particle in the one-dimensional
gas can be obtained analytically, elucidating that the entropy in this special case is extensive at any
given number N. Furthermore, the entropy obtained can be interpreted as a measure of the extent of
interactions between molecules. The results obtained for the non-mixable one-dimensional system
are generalized to mixable one- and two-dimensional systems, the latter by a simple example only
providing similar findings.

Keywords: entropy; Gibbs factor; ideal gas; Sinai billiard; Stirling formula; causality one dimensional gas

1. Introduction

The second law of thermodynamics states that the entropy S of an isolated system
increases monotonically towards its thermodynamic equilibrium value [1–5]. Following
the systematic formulation of statistical mechanics by Gibbs and Boltzmann, the entropy
SG is a measure of the number of accessible micro-states of the system of interest in its
given macro state. For a micro-canonical ensemble the entropy is given by

SG = kB ln Ω (1)

with kB the Boltzmann constant and Ω the number of accessible micro-states describing
the macro-state [2–7]. In order to describe the entropy of a micro-canonical isolated system
in textbooks simple probability theories are used with imaginary boxes as well as the use
of the first order Stirling approximation, ln N! ≈ N ln N − N with an error proportional to
ln N, which poses issues in the thermodynamic limit (N → ∞) [8–11], unless the concept
of an entropy density [12], or even redefining the microscopic origin on entropy [13,14] is
introduced. Instead of using these somewhat ad hoc models to describe a micro-canonical
ideal gas, we study here a one-dimensional gas comprising N point molecules that undergo
elastic collisions within a finite space because it can be analytically calculated using the
Sinai billiard approach. The one-dimensional gas is special in the sense that there is
no mixing (collisions prevent particles from “overtaking” each other), the particles are
distinguishable (particles numbered initially according to their spatial position always
remain in that order), and it fulfills the ideal gas equation despite of the strong interaction
by the elastic collisions. As we shall demonstrate, the analytical calculation of the particle
position probability distribution for the one-dimensional gas using Sinai billiard yields
NN as the correct Gibbs factor and not the heuristically introduced N!. This derivation
further illustrates that the entropy is dictated by the interaction between particles. After
a quantitative analysis of the one-dimensional gas in Sections 2.1 and 2.2 its analytical
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analog is derived using the Sinai billiard approach in Section 2.3. In Section 2.4, a recoloring
concept is introduced to derive the entropy, followed by a two-dimensional extension of
this concept via an illustration by examples (Section 2.5), and by a revisitation of the Gibbs
paradox in Section 2.6. The results obtained are discussed thereafter (Section 3).

2. Theory
2.1. Standard Approach to Calculate the Configurational Entropy of a One-Dimensional Ideal Gas

Let us consider a diluted, ideal gas in a (one-dimensional) box with M (imaginary)
sites and N indistinguishable particles of point-like character and equal mass m (with
M� N because the gas is diluted). For simplicity, each site may be occupied with more
than one particle, which is possible since the particles are point-like. Following Gibbs (after
resolving the Gibbs paradox) the number of micro-states possible is [1,2]

Ω =
MN

N!
(2)

yielding

SG = kB ln
MN

N!
(3)

The number of micro-states is divided by N! because the particles are indistinguishable.
Furthermore, it is noted that the configurational space sites of which there are M are not
further defined here.

Using only the first term (i.e., the first order approximation) of the Stirling formula,
i.e., ln N! ≈ (N ln N − N), which is usually used in standard textbooks on statistical
thermodynamics, the following description of the Boltzmann entropy is obtained

SG = kBN ln M− kB ln N! ≈ kBN ln M− kB(N ln N − N) = kBN
(

ln
M
N

+ 1
)

(4)

After applying (and only after applying) the first term in the Stirling formula (shown
in brackets above) the entropy is of extensive nature [8], provided that the number of sites,
M, is chosen proportional to the system size, i.e., the number of particles, N.

Similarly, a model of a gas that does not allow two particles to occupy the same site
yields Ω = M!

(M−N)!N! and concomitantly

SG = kB ln
M!

(M− N)!N!
≈ kBN

(
ln

M
N

+ 1− N
M

)
(5)

Again, the first order approximation of Stirling’s formula, and ln(1 + x) ≈ x for
|x| � 1 were used. Since M� N, the two models are essentially equivalent. It is evident,
that these two presented approaches to calculate the configurational entropy of an ideal
gas are equivalent.

2.2. A Quantitative and Analytical Description of the Entropy of a One-Dimensional Gas with
Particles Having a Constant Absolute Velocity

A one-dimensional gas is described here as N single atom entities of point-like charac-
ter of mass m located within a finite space with length L (in the following figures L = 1). A
particle has a position coordinate x ∈ [0, L] and velocity v, which is related to the temper-
ature T of the system by equipartition of the kinetic energy, i.e., 1

2 kBT = 1
2 mv2 and thus

v = ±
√

kBT
m . That is, if all particles have the same absolute velocity. If a particle collides,

the collision is of elastic nature, i.e., v → −v at the collision; this includes also collisions
with the wall of the finite space.

For this model, the ideal gas equation, pV = NkBT with pressure p and volume V,
is fulfilled because pV = p L A = 〈F〉

A L A = 〈F〉L with A the area of the wall perpen-
dicular to the axis of the one-dimensional system and the time-averaged force on the
wall, 〈F〉 = 1

τ

∫ τ
0 F(t)dt = 1

τ

∫ τ
0 m dv

dt dt = 1
τ ncollm 2v. The number ncoll of collisions with
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the wall during the (long) averaging time period τ can be estimated by considering that the
particle closest to the wall has to travel, on average, twice the distance L/N between two
collisions: ncoll = τ/

(
2L
Nv

)
. This yields 〈F〉 = N

L mv2 and hence pV = Nmv2 = NkBT. In
other words, this very simple one-dimensional model with constant absolute velocities can
be considered a one-dimensional ideal gas. Furthermore, the restriction to a single absolute
velocity thereby enables an analytical solution of the entropy as we shall see. However, first
a simulation of a typical example of a three-particle system is calculated (see Material and
Methods for details). For the position of each particle, the probability density distributions
shown in Figure 1A are obtained. The yellow particle is predominantly located in the left
part of the space while it may still occupy positions in the entire box. Correspondingly,
the blue particle is rather in the middle and the green particle on the right side of the one-
dimensional box. In the case of four particles shown in Figure 1B, the location distributions
change slightly to accommodate the additional particle and collisions therein. Going from
a three- to a four-particle system, the individual distributions get sharper along the space
coordinate (see also below).

An analytical description of the probability density can be given by using a generalized
Sinai Billiard for which the probability density of a single particle in a N-dimensional
simplex is equivalent to N particles in a one-dimensional box [15–17]. The approach is
illustrated for a system of two particles with equal masses in Figure 2A.

The single particle in the two-dimensional triangle can be regarded as a one-dimensional
system with two particles. The x1 axis corresponds to the left wall, the x2 axis to the
right wall. If the particle comes from the top (along the vertical axis) as shown, it can be
considered particle 1, hitting the hypotenuse corresponds to the collision with particle
2, and the following horizontal motion corresponds to particle 2 that eventually hits the
right wall. In the example in Figure 1A, the red particle coming from the top, hitting the
wall, and going to the left therefore corresponds to a one-dimensional situation where
particle 1 comes from the left wall, while particle 2 does not move. After the collision,
particle 1 stopped moving, while particle 2 moves towards the right wall. Hence, to
study the configurational entropy (or the phase space) of the multi-particle system in a
one-dimensional box is equivalent to that of a single particle system in a N-dimensional
simplex (with all its properties). From the multi-particle system point of view, according
to Sinai [15], the probability density function for the position of particle p = 1, . . . , N,
numbered from left to right in a box of length L = 1, is then given by the beta distribution

fp(x) =
1

B(p, q)
xp−1(1− x)q−1 = p

(
N
p

)
xp−1(1− x)N−p (6)

for x ∈ [0, 1] and fp(x) = 0, otherwise (i.e., outside the box) with q = N + 1− p. The

beta function is given by B(p, q) =
∫ 1

0 tp−1(1− t)q−1dt = Γ(p)Γ(q)
Γ(p+q) in terms of the gamma

function Γ(z) =
∫ ∞

0 tz−1e−tdt. A proof of Equation (6) is given in Appendix A. The
probability density fp(x) is exemplified in Figure 1 for N = 3, 4, 12, 100,000.

The mean position of particle number p counting from the left is (reintroducing the
length L)

〈
xp
〉
=

pL
N + 1

(7)

The mean position can also be obtained studying a single particle in an N-dimensional
simplex as illustrated for one particle in a two-dimensional space (corresponding to two-
particles system in a one-dimensional space) in Figure 2A,B.
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Figure 1. Probability density distributions for particle positions in a one-dimensional gas with
elastic collisions: (A) simulated for a three-particle system, (B) simulated for a four-particle system,
(C) analytical probability densities given by Equation (6) for a three-particle system, (D) four-particle
system, (E) 12-particle system, and (F) 100,000-particle system obtained using the so-called Sinai
billiard concept. A cartoon for the two systems at the top shows the point particles as spheres
color-coded like their corresponding probability distributions in the graphs. In (C), the probability
density for the yellow particle is f (x) = 3(1− x)2, for the blue particle f (x) = 6x(1− x), and for the
green particle f (x) = 3x2. In (F), the probability density is plotted only for every 10,000th particle
for clarity. In (G), a cartoon indicates the entropy calculation within the virtual small space around
position x in the middle of the large box with length L = 1. In (H), another virtual system located in
the region [0, x] is indicated. The cumulative probability density functions of the 10,000th, 20,000th,
and 30,000th particle within a 100,000 particle system (shown in (F)) are plotted below.
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Figure 2. Sinai Billiard for two-particle systems in a one-dimensional setting having (A) equal mass,
(B) unequal mass with m1 > m2, and (C) in the presence of mixing (i.e., particles passing each other
instead of colliding). According to Sinai, the motion of a single point particle (exemplified in red) in
the two-dimensional triangle is equivalent to that of two point particles in a one-dimensional box.
(B) To accommodate different masses of the two particles in the one-dimensional box, the triangles
side length must be multiplied by the unitless

√
m1 and

√
m2 according to the transformation with

x′1 =
√

m1 x1 and x′2 =
√

m2 x2. In (C) The Sinai Billiard for two particles with unequal mass that
can mix by tunneling is represented by a single particle in a triangle, that stays within a triangle
representing a collision or that leaves the triangle through the collision wall when tunneling. To
indicate the pore character of the hypotenuse it is drawn as a dashed line. The average positions〈

xp
〉

and
〈

x′p
〉

are also indicated.

From inspection of Figure 1, it is evident that the probability density distributions
narrow with increasing number of particles N. Analytically this can be described by the
standard deviation σ of the beta distribution given by

σp =
L

(N + 1)

√
p(N + 1− p)

N + 2
(8)

The standard deviation is smallest for particles near the left or right wall, where
σp ≈ L

N for large N, and largest for particles in the middle of the box, where σp ≈ L
2
√

N
for

large N. The standard deviation thus depends on the location of the particle p. Actually it
is the distance to the wall that matters.

In order to calculate the configurational entropy of this one-dimensional gas system
and to study its extensive character three approaches I-III are discussed in the following.
In approach I, we continue on the above standard deviation σp. We assume each particle
to be located within κ times the standard deviation (for instance, κ = 3 covers >99% of its
location) and the number of micro-states to be proportional to the accessible configuration
space (which requests removing the unit of L), i.e.,

Ω ∝
N

∏
p=1

κσp = κN
N

∏
p=1

L
(N + 1)

√
p(N + 1− p)

N + 2
= κN

(
L

N + 1

)N N!
(N + 2)N/2 ≈

κN LN N!
N3N/2 (9)
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yielding an entropy estimation SG = kB ln Ω that is not extensive, i.e., SG(λL, λN) 6= λSG(L, N),
even if we use the first order Stirling approximation. This is related to the non-local influ-
ence of the walls that influence the standard deviation of the particle positions not only
in their vicinity, but over the entire system. The corresponding standard deviations of a
system scaled by a factor λ in size and number of particles are approximately

√
λ fold larger

than for the original system, σλp(λL, λN) ≈ σp(L, N)
√

λ, whereas they should remain
constant for extensivity. That is, boundary effects decisively influence the bulk properties
of the system. This is not compatible with extensivity of a macroscopic thermodynamic
system that can in general only be realized if boundary effects are negligible.

In approach II, we therefore calculate the accessible configuration space of a (sub)system
of length l � L comprising n� N particles located near the center of the original system
(Figure 1G). Such an approach is often done in theoretical calculations to get rid of issues
with the wall (i.e., boundary effects). The n particles of the subsystem thus correspond to
particles p ≈ N

2 of the original system. Assuming that the particles are located within κ
times the standard deviation from their mean position and that the number of micro-states
is proportional to the accessible configuration space, this yields the number of micro-states

Ω ∝ (κσN/2)
n ≈

(
κL

2
√

N

)n
=

(
κ2L2

4N

)n/2

=

(
κ2Ll
4n

)n/2

(10)

for the n-particle subsystem of length l in the center of the N-particle system of length L
(and thus n/l = N/L). The Boltzmann entropy is then given by

SG = kB
n
2

(
ln

l
n
+ const.

)
(11)

Note that ρ = n/l is the particle density and thus the term within the logarithm is of
intensive nature and the constant factor κ2L

4 was moved into the const., which is possible
since both κ2 and L are within this calculation arbitrary parameters (it is also noted that
the term κ2 results from the selection criterion of κ standard deviations). In the case of
calculating entropy differences it cancels out and is thus of no importance.

This yields an entropy description that is of extensive character for any number
of particles, n, located in the middle of a large box such that boundary effects can be
neglected. This is in contrast to the standard entropy of an ideal gas that holds only in the
thermodynamic limit with n→ ∞ (and this only under the assumption that the first order
term of the Stirling formula can be used, but see [8,18]). The entropy calculated here is
proportional to the number of particles of interest, n, and proportional to the logarithm
of the particle density. Note that the present derivation does not differentiate between
distinguishable and non-distinguishable particles.

Comparing the standard configurational entropy of the ideal gas (Equation (3)) with
the here derived one-dimensional analog of Equation (11) reveals that N! is replaced by NN

(in order to return to the general formalism, we again write N instead of n). This difference
has major consequences. As described, it makes entropy extensive for any particle number
and without assuming the Stirling formula. Furthermore, it gives the space-to-particle
number relationship a prominent role. In the case of the one-dimensional gas calculations
in Figure 1, it is evident that the particles j 6= p influence the position of particle p and its
location distribution. The more particles there are, the narrower the spatial distribution of
particle p becomes. In other words, the presence of all the (other) particles j restricts the
space of any given particle p (Equation (9)) and determines the mean location and standard
deviation (Equations (7) and (8)) of particle p via the density. Accordingly, the entropy is
affected by the interactions between particles.

In approach III, we follow Boltzmann’s concept by determining the probability of a
system to be in a given macro state [2]. For the one-dimensional cases this means that the
probability for a particle to be in the region [0, x] (with 0 < x ≤ L) is calculated by the
cumulative distribution function Fp(x) =

∫ x
0 fp(x′)dx′ of the beta distribution for each
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particle p with a mean position
〈

xp
〉
< x. Figure 1H shows the cumulative distribution

function of several particles at distributed locations. It is evident that for the particles
with mean position

〈
xp
〉
= pL

N+1 < x, the cumulative probability Fp(x) is very close to 1,
whereas for all particles with

〈
xp
〉
> x, this probability is almost 0. Because of the shape

of the positional probability distributions, it is assumed that the configuration space for
each particle is L

N and that the number of micro-states M ∝ L
N . This yields Ω = MN and,

without further approximations, a strictly extensive entropy

SG = kBN ln M = kBN
(

ln
L
N

+ const.
)

. (12)

In summary, three approaches are presented to calculate the configurational entropy
of the one dimensional gas with constant absolute velocity introduced in the beginning of
Section 2.2 quantitatively (Figure 1). All three are analytically solved and valid because
usually entropy differences are calculated. Approach I includes the effect of the wall, and
as such is not extensive because a merge of two systems with each two walls would yield a
reduction of the number of walls by two. Approaches II and III circumvent the issue with
the wall and allow the study of entropy extensivity.

2.3. Determining the Entropy of a One-Dimensional Ideal Gas by a Recoloring/Renumbering Concept

Again a one-dimensional ideal gas is described as N indistinguishable entities of point-
like character within a finite space with length L. If a designated particle (either numbered
or colored as in Supplementary Movie S1) collides with another particle, then at the moment
of collision the number/color of the two particles can be exchanged as the two particles
are indistinguishable. With this renumbering/recoloring scheme it appears that each
particle—in the following called pseudo-particle—moves inside the one-dimensional box
at constant velocity without any collisions, but those with the walls covering thereby M/N
distinct micro-states with M = L

∆x spatially localized micro-states where ∆x << L/N is
the spatial extension of a micro-state. The division by N is due to the number of collisions
(i.e., recoloring events or exchange between two particles) from wall to wall reducing the
number of micro-states accordingly. Furthermore, each pseudo-particle behaves on average
the same and moves independent of the others. The total number of such micro-states for
the entire system of N pseudo-particles is then

Ω =

(
M
N

)N
=

(
L

N∆x

)N
(13)

yielding the entropy

SG = kBN
(

ln
L
N

+ const.
)

(14)

2.4. Extensions to Two Dimensions

The situation with the one-dimensional ideal gas is special in the sense that each
particle is distinguishable. For instance, particle number 9 from the left always remains
number particle 9 because the one-dimensional nature of the system and the collisions
make it impossible for particles to pass each other (but see Section 2.6). One may thus argue
that the “normalization” NN presented here is valid only for the one-dimensional ideal
gas and not for two- and three-dimensional systems. In the following section, the above
arguments are extended to the two-dimensional ideal gas (described by N indistinguishable
point particles within a finite two-dimensional space of size L× L) by an argumentation
only using two different approaches of recoloring, which is permitted since the particles
are in principle indistinguishable. In the first case shown in Supplementary Movie S2, a
recoloring is done whenever two point particles exchange their position numbering along
one coordinate axis. For example, if the red-colored particle 9 from the left moves to the
right beyond the green particle 10, at the moment when particle 10 becomes the ninth
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particle from the left it is colored red and particle 9 is colored green. With this recoloring
scheme along one coordinate axis, the pseudo-particles defined by the coloring behave
as in the one-dimensional case. In the given example, the red pseudo-particle is always
number 9 from the left and the green pseudo particle is always number 10 and thus the
pseudo-particles are restricted in space by the presence of the others. This argument can
be done in both dimensions, and thus the same conclusion as in the one-dimensional
case is evident: It is the number of particles that restrict the conformational space of the
pseudo-particle of interest, yielding a NN term within the logarithm. Alternatively, the
recoloring of the particles is done at each collision between two particles. This means that
each particle moves independently of the others as described in Section 2.3 for the one-
dimensional ideal gas, but now within a two-dimensional space. Borrowing the derivation
from the one-dimensional case (in Section 2.3) with M micro-states with M = L2

∆x2 and N
collision/recoloring events yielding M

N distinct micro states, we get

Ω =

(
M
N

)N
=

(
L2

N∆x2

)N

(15)

resulting with Equation (1) in the entropy

SG = kBN
(

ln
L2

N
+ const.

)
(16)

with N/L2 the particle density and hence the term in the logarithm is intensive and also
shows a 1/NN dependency as in the derivations for the one-dimensional gas, yielding
again a strictly extensive entropy. It must be noted that for this derivation of the entropy
description of a 2D gas, an extension from one to two dimensions has been done entirely
by argumentation: By using the Supplementary Movie S2, the independence between the
two dimensions is hypothesized, yielding Equation (15), and as such Equation (16) can
thus only be regarded a conjecture.

2.5. Absence of Ideal Gas Mixing and the GIBBS Paradox in a One-Dimensional System

The so called Gibbs paradox describes the odd finding that by mixing two ideal
gases, the Boltzmann entropy will increase only if the two gases are of distinct nature
(whatever the distinctness is) and the change of entropy is thereby not dependent on the
nature or degree of distinctness [2]. To elaborate on this paradox in the one-dimensional
scenario, we consider a box of length L = 1 with 2 particles having the same mass m with a
corresponding box of two particles with unequal mass with m1 > m2. In Figure 2A, the
Sinai billiard representation of the system with equal mass is shown, while in Figure 2B
the system with two particles with distinct mass is shown by one particle moving within
a right-angled triangle with side lengths

√
m1 and

√
m2. In the latter example after a

vertical motion and hitting the hypotenuse, the particle moves in both directions x′1 and
x′2. This situation translated into the one-dimensional case corresponds to the heavier
particle with mass m1 coming from the left wall and colliding with the non-moving particle
2 with mass m2. After the collision, particle 1 moves back to the left wall, while particle
2 moves to the right wall. The average horizontal and vertical position of the particle is〈

x′1
〉
= 1

3
√

m1 and 〈x′2〉 = 2
3
√

m2, which can either be calculated straightforwardly or by
comparing Figure 2A,B using the geometric theorem of intersecting lines. This yields in
real space 〈x1〉 = 1

3 and 〈x2〉 = 2
3 identical to the case of the system with two particles

of equal mass (Figure 2A, Equation (7)). Similarly, the standard deviations of particles 1
and 2 are given by σ′1 =

√
2

6
√

m1 and σ′2 =
√

2
6
√

m2, which translates to σ1 = σ2 =
√

2
6 in

the real space, again identical to the result for the system with two equal-mass particles
(Equation (14)). It appears obvious that extending this finding to a system of N particles
with distinct masses represented by a N-dimensional simplex with side lengths √mp
will still yield Equations (7) and (8) for the mean positions and standard deviations of
localization. Hence, the entropy of a mixed one dimensional gas system is the same as its
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homogeneous analog. Translated to the mixing of two systems, which is the topic of this
section, if two one-dimensional gas systems are just mixed, the entropy does not change
irrespective of whether the gas molecules are of homogeneous or heterogenous mass.

In summary, in the one-dimensional gas there is not only no Gibbs paradox present,
but there exists also no mixing entropy. The latter is due to the impossibility of mixing the
positions of the gas particles. This also means that the mixing entropy is solely generated
by the mixing of the positions and not by enlarging the accessible volume of each gas upon
removing a wall.

2.6. Introducing a Mixing in a One-Dimensional Ideal Gas

The situation of mixing two gases in a one-dimensional box discussed in the preceding
section demonstrates that a one-dimensional system as described cannot model the mixing
happening naturally in a two- or three-dimensional system. In order to do so, we need
to introduce a trick to introduce mixing in the one-dimensional gas box. This is possible
by letting once in a while two point-particles tunnel freely through each other instead of
undergoing a collision between them (as described in Section 2.3 for particles with equal
mass). With this concept, the two gases will eventually mix completely irrespective of
the frequency or rate and rhythm (periodic, deterministic, or probabilistic) of tunneling.
In such a scenario and the principle of thermodynamics to compare only equilibria, the
Sinai billiard approach of Figure 2B for two point particles of different mass with the
property of both tunneling and colliding needs to be extended to two equivalent triangles
facing each other at the hypotenuse as shown in Figure 2C with the collision wall (i.e., the
hypotenuse) being absent/porous from time to time. This approach reduces the system
not only from two point particles in one dimension to a single one in two dimensions,
but directly illustrates the increase of the configurational space of the pseudo-particle by
a factor of 2 along with a concomitant increase of the standard deviation of its position
as well as the entropy, which changes by a factor of ln 2 as expected, because the two
triangles are equal (Figure 2C). In the case of two particles with the same mass, the triangle
is symmetric in nature and thus the collision wall is not required to be absent from time to
time to describe by Sinai billiard a two particle system, yielding no increase of any sort as
discussed above. By extension to a 2N-particle system using a 2N-dimensional simplex,
it can be demonstrated that this extended one-dimensional gas system can also represent
the mixing of two ideal gases with different particle masses. Furthermore, it shows that
any mass difference will yield the same entropy increase as expected. The knowledge on
distinguishable or not distinguishable particles is required, as either the case of Figure 2A,C
needs to be applied, however, without the N! introduced by Gibbs and yielding the factor
NN making the entropy again extensive for any number of particles as above.

3. Discussion

By studying the entropy of the one-dimensional ideal gas quantitatively and analyti-
cally using the Sinai billiard approach, we find that its entropy is extensive for any number
of particles N. The present derivation shows that the origin of the extensive character of the
entropy is due to the NN term within the logarithm and that this is valid for any number of
particles. This contrasts with the standard description of the Boltzmann entropy with the
initially heuristic introduction of the N! within the logarithm by Gibbs and the rationale
for this term to be the indistinguishability of the gas particles.

The one-dimensional ideal gas described here has a volume per particle Vp = V/N,
which is the major determinant of the entropy per particle (via the logarithm). A physical
meaning of this entity is, on the one hand, that the number of micro-states is proportional
to the volume Vp that a single particle is able to access on average, which is inversely
proportional to the number of particles N, to the power of N. This finding also yields
zero for the Boltzmann entropy of a fully occupied ideal gas (i.e., every micro-state is
occupied by a particle) as one would expect, but which is actually not the case for the
Boltzmann entropy calculated by the standard textbook approach (for details see [8]). On
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the other hand, since the volume Vp for particle p decreases with increasing number of
particles in the system, all the other particles in concert define, by colliding with it, the
configurational space of particle p as shown in Figure 1. Vp can thus be regarded as a
measure of the history of the collisions of the particle since the particle is restricted only by
its collisions with others. The entropy can therefore be regarded a measure of the potential
causal chain of interactions, which is the sum of all the interactions between the particles.
This interpretation contrasts with the Boltzmann approach because it relies not on the
statistical description of particles moving randomly, with the randomness introduced by
collisions, but it compiles and therefore represents a memory of the entire history of a
particle’s deterministic trajectory. When time is defined as the metric of causality, the
causal history of the system yields an entropy that describes the causal chain between
cause and events [19]. While this proposition on the nature of entropy contrasts entirely to
the concept of Boltzmann the mathematical formulas are very similar and even the same
if in the case of the Boltzmann entropy only the first order term of the Stirling formula is
applied, which has its problems though [8]. In this context, it is interesting to note, that the
derivation of the Sackur–Tetrode entropy of the ideal gas using quantized space/energy by
Sackur used also a volume per particle approach [20]. However, it must also be noted that
the one dimensional gas discussed here is only a special case.

The presented calculations also shed light on the so-called Gibbs paradox. At the heart
of the Gibbs paradox is the mixing of two gases, which consist of either distinguishable
or non-distinguishable particles, yielding in the first case a mixing entropy of 0, while in
the second case the mixing entropy is dependent on the volume (and particle numbers
of the subsystems). The odd finding is that, based on the standard approach, the mixing
entropy is either zero if the particles are strictly indistinguishable or has the same positive
value for all the distinguishable cases irrespective of how distinct the gases are. In the
first one-dimensional case that we discussed here, this problem does not arise because
there is no mixing entropy whether the mass of the two gases are different or not. Only by
letting the gas particles tunnel from time to time is a mixing obtained along with a discrete
increase of the entropy as calculated in the 3D standard case irrespective on the nature
of mixing, but dependent on the particle’s mass difference between the two gases. This
finding not only shows that the extended model of the one-dimensional gas appears to
recapitulate all the properties of an ideal gas, but also shows that the entropy increase by
mixing two gases is due to the mixing per se.

In summary, our study of the one-dimensional ideal gas reveals an extensive entropy
that lacks the normalization term N! introduced by Gibbs to resolve the Gibbs paradox. In-
stead, the normalization factor is NN . Of course, the present analysis of a one-dimensional
gas is a special case. However, the extended one-dimensional model presented here ap-
pears to mimic all essential properties of an ideal gas. Furthermore, thermodynamics must
hold for any system since it is “the only physical theory of universal content which [. . . ] will
never be overthrown, within the framework of applicability of its basic concepts” as stated
by Einstein [21], and its constructive microscopic analog—statistical mechanics—should
hold for any system covering such complex human enterprises as policy making and
sustainability [22], as well as the idealized and rather simple system under study here, the
one-dimensional gas. Under the assumption that this special case could be generalized, this
would suggest that the Gibbs factor could be in general NN and not N!. While this sugges-
tion contrasts standard statistical thermodynamics (because standard partition functions
also contain the N! [3–5]), it is in line with another concept of entropy derived by using
time as a discrete variable that measures causality yielding an entropy that is a measure
of causality [13,14,19] and thus redirects the origin of entropy away from the statistical
mechanics approach by Boltzmann towards an argument dependent on the causal history
of particles, which is in the example given the collisions between the particles.
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4. Material and Methods
A Mathematica Script to Describe Quantitatively the One-Dimensional Ideal Gas

A Mathematica script was established to describe quantitatively a one-dimensional
ideal gas comprising N particles. As an example, the four-particle system is described here
in detail. The velocity of the particle is described by

velocity[initialvelocity_, length_, phaseshift_, time_] :=
initialvelocity SquareWave[(initialvelocity time)/(2 length) + phaseshift]

where initialvelocity is the initial velocity of the particle, length the length of the one-
dimensional box, phaseshift the starting position, time the time variable, and the built-in
Mathematica function SquareWave that alternates between +1 and −1 with unit period
mimics the elastic collisions. Similarly, the position of the particle is described by

position[initialvelocity_, length_, phaseshift_, time_] :=
length TriangleWave[{0,1}, (initialvelocity time)/(2 length) + phaseshift − 0.25]

with the built-in Mathematica function TriangleWave describing the collisions with the wall.
Figure 3 illustrates for a single particle the velocity and position over time t.
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Figure 3. Motion of a single particle in a one-dimensional box of length L = 1. The x coordinate of
the single particle between 0 and L = 1 of the box versus time t is shown in yellow, while the velocity
v versus time t is shown in blue. In addition, several cartoons of a single particle represented by a
yellow sphere within the one-dimensional box show snapshots of the motion of the particle with
arrows indicating the direction of the movement. The dashed lines highlight the positions from the
cartoons in the graph.

The data in Figure 1B has been obtained from the simulation of a typical case with the
following starting conditions of the four particles:

coordinate[20, 10, 0.13, t], coordinate[12.7, 10, 0.41, t],
coordinate[7.31, 10, 0.25, t], coordinate[2.33, 10, 0.05, t]
The positions of the four particles p = 1, 2, 3, 4 as a function of time were then

evaluated using the expression
RankedMax[{coordinate[20,10,0.13,t], coordinate[12.7,10,0.41,t],
coordinate[7.31,10,0.25,t], coordinate[2.33,10,0.05,t]}, p]
This description also integrates collisions between two colored particles as being

equivalent to an exchange of the two colors when two (pseudo-)particles pass each other
unhindered. In other words, the left-most particle (yellow in Figure 1B) always remains
the left-most particle, while the right-most particle (green in Figure 1B) remains always the
right-most one, etc.

Next, the time evolution of the system was simulated from time t = 0 to 1000 in steps
of 0.001 and the probability distributions of the particle positions were evaluated, yielding
the histogram with 50 subdivisions along the x-axis shown in Figure 1B:

Histogram[Table[RandomVariate[dd[p],10^5],{p,1,4}],50]
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with
dd[p_] := EmpiricalDistribution[Table[RankedMax[{coordinate[20, 10, 0.13, t],

coordinate[12.7, 10, 0.41, t], coordinate[7.31, 10, 0.25, t], coordinate[2.33, 10,
0.05, t]}, p], {t, 0, 1000, 0.001}]]

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/e23091188/s1. Video S1: Movie of the 1D gas highlighting the recoloring concept; Video S2:
Movie of a 2D system with the recoloring concept.
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Appendix A

To prove Equation (6), we use Sinai’s result that almost all trajectories of the single
particle are ergodic and fill the interior of the N-dimensional simplex densely and uniformly.
The probability density fp(x) for the coordinate xp of the particle can therefore be obtained
by fixing xp = x while integrating a uniform density over the N-dimensional unit simplex:

fp(x) = N!
1∫

0

dx1

1∫
x1

dx2 · · ·
1∫

xp−1

dxpδ(x− xp)

1∫
xp

dxp+1 · · ·
1∫

xN−1

dxN (A1)

The normalization factor N! results from the volume 1/N! of the unit simplex. To
evaluate this integral, we first consider the n-dimensional integral

Vn(x) =
1∫

x

dx1

1∫
x1

dx2 · · ·
1∫

xn−1

dxn =
(1− x)n

n!
(A2)

as can be seen by induction: V1(x) = 1− x for n = 1, and, assuming that the formula is
correct for n− 1,

Vn(x) =
1∫

x

dx1Vn−1(x1) =

1∫
x

dx1
(1− x)n−1

(n− 1)!
=

1
(n− 1)!

(1− x)n

−n

∣∣∣∣1
x
=

(1− x)n

n!
(A3)

Note that Vn(0) = 1/n! is the volume of a n-dimensional simplex. The integrals over
xp+1, . . . , xN in Equation (A1) can be replaced by VN−p(xp),

fp(x) = N!
1∫

0

dx1 · · ·
1∫

xp−1

dxpδ(x− xp) VN−p(xp) (A4)

Because of δ(x− xp) = 0 for xp > x, the upper bound 1 of the integral over xp can be
replaced by x. Since x1 ≤ x2 ≤ · · · ≤ xp−1, the same applies to the upper bounds of all
remaining integrals:

https://www.mdpi.com/article/10.3390/e23091188/s1
https://www.mdpi.com/article/10.3390/e23091188/s1
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fp(x) = N! VN−p(x)
x∫

0

dx1 · · ·
x∫

xp−2

dxp−1 = N! VN−p(xp) xp−1
1∫

0

dx1 · · ·
1∫

xp−2

dxp−1 (A5)

and hence

fp(x) = N! VN−p(x) xp−1Vp−1(0) = N!
xp−1

(p− 1)!
(1− x)N−p

(N − p)!
(A6)

This completes the proof of Equation (6).
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