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Abstract: Interest in the potential cardiovascular (CV) benefits of omega-3 polyunsaturated fatty
acids (Ω-3) began in the 1940s and was amplified by a subsequent landmark trial showing reduced
CV disease (CVD) risk following acute myocardial infarction. Since that time, however, much
controversy has circulated due to discordant results among several studies and even meta-analyses.
Then, in 2018, three more large, randomized trials were released—these too with discordant findings
regarding the overall benefits of Ω-3 therapy. Interestingly, the trial that used a higher dose (4 g/day
highly purified eicosapentaenoic acid (EPA)) found a remarkable, statistically significant reduction in
CVD events. It was proposed that insufficient Ω-3 dosing (<1 g/day EPA and docosahexaenoic acid
(DHA)), as well as patients aggressively treated with multiple other effective medical therapies, may
explain the conflicting results of Ω-3 therapy in controlled trials. We have thus reviewed the current
evidence regarding Ω-3 and CV health, put forth potential reasoning for discrepant results in the
literature, highlighted critical concepts such as measuring blood levels of Ω-3 with a dedicated Ω-3
index and addressed current recommendations as suggested by health care professional societies
and recent significant scientific data.
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1. Introduction

As early as 1944, Sinclair described the rarity of coronary heart disease (CHD) amongst
Greenland Eskimos, who consumed a diet rich in fish, seal and whale [1]. More than
40 years ago, Bang and Dyerberg reported that despite low consumption of fruit, vegetables
and complex carbohydrates in exchange for a diet high in saturated fat and cholesterol,
serum cholesterol and triglyceride (TG) levels were lower in Greenland Inuit than in age-
matched residents of Denmark, who also demonstrated lower risk of myocardial infarction
(MI) [2]. These and other similar observations sparked interest in the potential benefits of
increased dietary fish intake, particularly the benefits of omega-3 polyunsaturated fatty
acids (Ω-3), for cardiovascular (CV) health.

Ω-3 confer CV benefits through TG reduction, anti-inflammatory and anti-arrhythmic
effects, vasodilation, reduced blood pressure, improved arterial and endothelial function,
favorable autonomic tone, and reduced platelet aggregation [3–5]. In particular, TG lev-
els are a historically well-studied, independent risk factor for CHD. Ω-3 or fish oil diet
supplementation is evidenced to lower TG levels in a dose-dependent fashion, whereby
3–4 g/day of eicosapentaenoic acid (EPA) or a combined EPA and docosahexaenoic acid
(DHA) reduces blood levels by 20–50% in those with high TGs [6].
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2. Controversies Surrounding Ω-3

The initial landmark trial for Ω-3 supplementation, GISSI-P, showed that 1 g/day Ω-3
(EPA + DHA) decreased the risk of death, non-fatal acute MI and stroke in patients with
recent MI (<3 months) [7]. With approximately 11,000 subjects, almost 4 years of follow up
with risk reduction of 14% in the combined primary endpoint and an overall 20% reduction
in fatal events, there was initial excitement. However, multiple subsequent studies have
failed to corroborate those results.

Since GISSI-P was published, however, there have been several fundamental develop-
ments in CV disease (CVD) research; for example, how intervention study arms are treated
with aggressive medical therapy. Only 5% of GISSI-P patients received statin therapy
at baseline [8], in contrast to the OMEGA trial, in which 81% of patients received statin
therapy at baseline. The lack of an Ω-3 benefit in the OMEGA trial may have been due to
the low rate of sudden cardiac death, total mortality and major adverse CV events (MACE)
within 1 year follow up after MI in those that received this improved optimal medical
therapy [9].

Further controversy resulted from articles in popular media which wrongly suggested
that Ω-3 ingestion, including that from fish, increased prostate cancer risk, with many
commentaries thereafter advising against the use of supplemental fish oil [10]. Habitual
high intake of fish and seafood in men who have prostate cancer, however, has been
linked to significantly improved survival. Accordingly, Japanese men, who consume
approximately 8 times more fish than their American counterparts, have a rate of prostate
cancer mortality many-fold lower [10]. Ultimately, a more thorough review of the literature
would suggest that increased Ω-3 consumption does not increase prostate cancer risk, but
decreases prostate cancer mortality in addition to reducing sudden cardiac death and CV
events [11,12].

It is also important to consider the populations who show beneficial findings from Ω-3
intake as well. Trials such as GISSI-P and JELIS were conducted in Italian and Japanese pop-
ulations [7,13], respectively, who have higher baseline Ω-3 levels due to lifestyles composed
of increased fish and seafood intake as compared to the typical diet of Western populations.
One possibility is that there may exist a threshold effect regarding endogenous Ω-3 levels
and CVD benefits, as some studies have shown that participants with lower baseline Ω-3
levels have more impactful results after supplementation. Therefore, populations such as
those in GISSI-P and JELIS who may consume more fish on a regular basis and therefore
have higher baseline Ω-3 levels may require a lower dose of Ω-3 to achieve a clinical benefit,
as opposed to Western populations who on average consume less fish and likely require
a higher Ω-3 dose to achieve the same therapeutic benefit. Supporting this notion are
the findings of the REDUCE-IT trial [14], in which higher Ω-3 doses (4 g/day of highly
purified EPA) were associated with significant CVD benefits, and, in particular, a more
robust benefit in the US cohort.

3. Recent Data

In 2018, three large trials evaluating Ω-3 and CV health were released, with divergent
conclusions. The ASCEND trial found no reduction in CVD risk when 1 g/day EPA + DHA
was used for primary prevention in patients with diabetes [15]. There was no significantly
lowered incidence of serious vascular events in 15,480 patients after mean 7.4 years of
follow up. Not to be overlooked, however, there was a statistically significant 18% relative
risk reduction in vascular death, defined as death from CHD, stroke or other vascular
causes, which seems to be a meaningful endpoint that was not emphasized in this paper.

The VITAL trial administered 2000 IU/day vitamin D3 and 1 g/day Ω-3 (EPA + DHA)
for primary prevention of CVD and cancer in 25,871 patients and found no difference
between the intervention and placebo groups at a median of 5.3 years [16]. Nevertheless,
this trial, similar to ASCEND, also found a statistically significant reduction in total MI
which carried a hazard ratio (HR) of 0.71; 95% confidence interval (CI) 0.59–0.9 [16]. Patients
consuming fewer than 1.5 fish meals per week, who then received Ω-3 supplementation,
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had a significant reduction in MACE by 19% and risk of MI by 40%, suggesting the
importance of baseline and/or threshold Ω-3 levels to achieve a therapeutic benefit.

The REDUCE-IT trial administered icosapent ethyl (highly purified EPA formulation)
at 4 g/day to 8179 patients with established CVD or diabetes receiving statin therapy with
TG levels of 135–499 mg/dL and low-density lipoprotein levels of 41–100 mg/dL [14]. The
primary endpoint (composite of CVD death, non-fatal MI, non-fatal stroke, CV revascu-
larization or unstable angina) was reduced by 25% in the treatment group with a number
needed to treat (NNT) of 21 and reduced the secondary endpoint of MACE by 26% with a
NNT of 28. The subgroup including patients in the US demonstrated a HR of 0.74; 95% CI,
0.66–0.83 for the primary efficacy composite endpoint. The cohort of patients from the US
demonstrated a statistically significant 30% relative risk reduction and 2.6% absolute risk
reduction in all-cause mortality (NNT of 39) [17]. While the non-US subgroup also showed
significant reductions in the primary and key secondary composite endpoints, the US
subgroup demonstrated particularly robust risk reductions. However, the treatment group
did experience higher hospitalizations for atrial fibrillation or flutter and serious bleeding.

Three recent meta-analyses demonstrated equally inconsistent results [18–20]. Unlike
previous studies, a meta-analysis by Bernasconi et al. [21] used all available evidence in
measuring the effect of Ω-3 dosage and was the first to use meta-regression to examine
other potential sources of heterogeneity in prior studies. EPA + DHA was associated with
statistically significant lowered risk of CHD events and MI with equivalent risk reductions
of 9% and 13%, respectively. Importantly, this risk reduction was dose dependent for MI,
as each additional 1 g/day was associated with a significant risk reduction of 9%. The
benefits of a 35% reduction in fatal MI and 9% reduction in CHD mortality tended to occur
at lower doses (<800 to 1200 mg/day), which agrees with the findings of Mozaffarian and
Rimm [22]. Ultimately, this study found reduced risk of MI (NNT of 272), CHD events
(NNT of 192), fatal MI (NNT of 128) and CHD mortality (NNT of 431). The pooled analysis
of CV events and dose–response effect from this meta-analysis are shown in Figures 1
and 2, respectively. This analysis revealed that EPA + DHA supplementation results in a
statistically significant risk reduction for the outcomes of MI, CHD events, fatal MI and
CHD mortality. For CVD events and MI, the slope is negative and significantly non-zero
(p < 0.01), indicating that the higher dosages used in the included studies are associated
with increased protection [21]. For CVD events, the estimates for the slope translate to a risk
reduction of 5.8% for each additional 1 g/day intake, and 9% risk reduction for MI. This
paper also did not find any statistical benefit of total EPA dosage compared with combined
EPA/DHA dosage, nor did it find a significant association between year of publication and
overall impact of EPA/DHA to improve CVD outcomes, meaning the more recent studies
showed similar overall benefits as did the older studies when optimal medical therapy was
less advanced (Figures 1 and 2).
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Figure 1. Pooled results from meta-analysis. This figure showed the pooled estimate of relative
risk and 95% CI, as well as the number of studies and combined number of participants. CHD =
coronary heart disease; CVD = cardiovascular disease; MI = myocardial infarction. Reproduced with
permission from: Bernasconi, A.A., Wiest, M.M., Lavie, C.J., Milani, R.V., Laukkanen, J.A. Effect of
Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta-Regression of
Interventional Trials. Mayo. Clin. Proc. 2020; S0025-6196(20)20985-X.
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Figure 2. Dose–effect relationship for the prevention of CVD events. The horizontal axis shows the
EPA + DHA dosage in grams per day. The vertical axis shows the treatment effect (log-relative risk).
The area of each study square is proportional to its regression weight (inverse-variance of relative risk
estimate). Reproduced with permission from: Bernasconi, A.A., Wiest, M.M., Lavie, C.J., Milani, R.V.,
Laukkanen, J.A. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis
and Meta-Regression of Interventional Trials. Mayo. Clin. Proc. 2020; S0025-6196(20)20985-X.
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Another recent meta-analysis of 13 trials demonstrated that Ω-3 supplementation
lowers the risk of MI, CHD death, total CHD, CVD death and total CVD, after excluding
REDUCE-IT from the analysis [23]. Including REDUCE-IT in the analysis resulted in an
even stronger inverse association for these outcomes, though REDUCE-IT introduced
significant heterogeneity (due to the substantially higher treatment dose of 4 g/day in
this trial).

4. The Critical Importance of Dosage

There is mounting evidence that higher doses of Ω-3 interventions appear more likely
to demonstrate CVD and other clinical benefits. Deficiencies of many nutrients can lead to
debilitating and life-threatening chronic disease, which can be corrected with repletion of
the deficient nutrient. Supplementation, on the other hand, does not have as profound an
effect in people who are nutrient replete. For example, administration of thiamin in wet
Beri-Beri can be curative and life-saving [24], whereas supplementation in patients with
normal thiamin levels would not be so dramatic. Likewise, studies such as VITAL have
shown the most CVD benefit in patients with the lowest baseline levels of Ω-3 [16], who
may represent the ideal population for this therapy.

High-dose Ω-3 appeared to be beneficial in multiple studies, in addition to the results
produced by REDUCE-IT. OMEGA-REMODEL found that 4 g/day Ω-3 (EPA + DHA) for
6 months after acute MI demonstrated a reduction in adverse left ventricular remodeling,
non-infarct myocardial fibrosis and serum biomarkers of systemic inflammation beyond
the current guideline-based standard of care [25]. Further, the finding that Ω-3 EPA + DHA
levels >1.5 g/day are typically required for a clinically meaningful change in TG levels
further explains the inconsistent results in trials using lower doses (e.g., 1 g/day) [18].
Goodfellow et al. [26]. Administered Ω-3 of EPA + DHA at 4 g/day and measured endothe-
lial function at baseline and after 4 months of therapy, finding a significant improvement
in arterial flow-mediated dilation along with significant TG reduction whereas placebo led
to no change in either parameter.

Heart transplant patients who received 4 g/day Ω-3 versus placebo as prophylaxis
against cyclosporine-induced hypertension demonstrated a systolic blood pressure reduc-
tion of 2 +/− 4 mm Hg in the Ω-3 group versus an increase in 17 +/− 4 mm Hg in the
placebo group, with a diastolic increase of 10 +/− 3 mm Hg and 21 +/− 2 mm Hg in the
treatment and placebo groups, respectively, following 6 months of treatment [27]. The
authors concluded that Ω-3 supplementation at 4 g/day (EPA + DHA) was effective for
prophylaxis against cyclosporine induced hypertension, which occurs in a high proportion
of patients following heart transplantation [28].

In summary, the populations of Japan and Italy in the JELIS and GISSI-P trials, re-
spectively, who demonstrated significant CVD benefits with lower-dose (1–2 g/day) Ω-3
EPA + DHA may have demonstrated such due to a “threshold level” which reaches the
therapeutic window of Ω-3. This can explain why higher doses (e.g., 4 g/day) may be
required to demonstrate CV benefit, particularly in studies of American populations with
lower baseline Ω-3 levels. Figure 3 demonstrates a hypothetical Ω-3 threshold effect with
supplement doses of 1 g/day and 4 g/day of EPA + DHA. While GISSI-P originally showed
CVD protective effects with an Ω-3 formulation of EPA + DHA, REDUCE-IT and JELIS
showed quite dramatic effects using EPA alone. However, a recent large meta-analysis
found no statistical difference between the total EPA or combined EPA + DHA dosage on
the effects on MACE [21].

This figure demonstrates a hypothetical representation of the proposed threshold
effect of Ω-3. An Ω-3 index > 8% has been suggested to predict lower CV risk [6]. Groups
are shown according to both low and high baseline Ω-3 levels (blue bars). Increases in Ω-3
index achieved with both low-dose (1 g/day) and high-dose (4 g/day) supplementation
of Ω-3 EPA + DHA are shown (orange bars). In the low supplementation group (1 g/day,
first two columns), only patients with high baseline Ω-3 levels reached the 8% therapeutic
threshold, suggesting that a dose of 1 g/day of EPA + DHA may be ineffective in those
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with lower baseline Ω-3 levels. In those receiving a higher dose (4 g/day of EPA + DHA,
columns 3 and 4), both groups are more likely to reach the therapeutic threshold. This is a
hypothetical representation and further study is required to support this theory.
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5. Ω-3 Index

One aspect that has been lacking from this field of research for a long time, however, is
a concerted methodology of measurement. Hereto now, most research has utilized average
fish consumption or arbitrary supplement dosing, often not considering this source of Ω-3
or the individual’s initial or concluding Ω-3 blood levels. The Ω-3 index is a measurement
of serum Ω-3 levels (EPA + DHA), with multiple potential uses in research and clinical
practice. The Ω-3 index has been proposed as an indicator of increased CHD risk when
<4% [6], which also coincidently reflects the estimated average American serum level of
Ω-3 [29]. An individual is at low risk when their Ω-3 index is >8% [30,31]; and studies
have shown that achieving an Ω-3 index > 8% can potentially reduce the risk of fatal CHD
by approximately 35% [29,32]. A large meta-analysis of global studies using biomarkers of
Ω-3 in 45,637 patients without CHD revealed that higher Ω-3 levels are strongly correlated
with lower incidence of fatal CHD [33]; this is an inverse relationship whereby higher
Ω-3 levels are associated with lower risk of CHD in a continuous gradient fashion. Just
as hemoglobin A1c is the clinical standard for assessing glycemic status, the Ω-3 index
is a superior method for evaluating long-term Ω-3 status [29]. Adequate diagnostics for
indicating Ω-3 intake is critical to ensuring a personalized approach to prescribing EPA
and DHA for an individual to achieve health outcomes. For clear reasons, this index can
also be used as a target in clinical trials to reduce heterogeneity in trial design. Effective
use of the Ω-3 index as a clinical diagnostic and research tool may be the key to resolving
the controversy surrounding Ω-3 therapy.

6. Heart Failure

The benefits of Ω-3 have also been studied in heart failure (HF) patients, and the
most impressive study focusing on Ω-3 in this population was the GISSI-HF trial [32].
This study, conducted in Italy, involved 1 g/day Ω-3 (EPA + DHA) or placebo in nearly
7000 HF patients (91% with reduced ejection fraction (HFrEF)) followed for a median of
3.9 years. Not only did this trial confirm the safety of Ω-3 in HF patients, but also found
a NNT of 56 over 3.9 years to prevent one death or NNT of 44 to avoid one death or
hospital admission for CVD reasons. Based on the results of GISSI-HF, the American Heart
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Association (AHA) provides a class IIa indication that Ω-3 treatment is reasonable among
patients with HFrEF [33].

However, the AHA does not provide recommendations for Ω-3 use in the primary
prevention of HF due to a lack of data [33]. A meta-analysis of 7 prospective studies with
176,441 subjects and 5480 incident cases of HF found a lower risk of HF with higher intake
of marine Ω-3 (Relative risk 0.85; 95% CI, 0.73–0.99, p = 0.04) [34]. Block et al. [35]. measured
EPA levels in 6,562 patients over 13 years, finding that plasma EPA levels were significantly
lower in HF patients compared to HF-free patients (p = 0.005), and this benefit was noted
among patient groups with either preserved or reduced ejection fractions. The possibility
that increased Ω-3 may reduce HF incidence warrants further study. An AHA scientific
advisory suggests a general dietary recommendation for 1–2 fish servings per week to
prevent HF [36].

Not only is it possible that Ω-3 can reduce HF incidence, Ω-3 may be beneficial in end-
stage HF as well. A small study of 14 patients with New York Heart Association class III–IV
HF received 8 g of Ω-3 vs. placebo for 18 weeks, showing a significant 59% reduction in
tumor necrosis factor-α (TNF-α) levels, and 39% decrease in interleukin-1 (IL-1), and body
weight increase (due to decreased cachexia), whereas the placebo group demonstrated a
significant 44% increase in TNF-α and no change in IL-1 [37]. While underpowered, these
findings show promise that Ω-3 may represent a novel therapeutic approach in treating
end-stage HF with cachexia. These mechanisms of decreased inflammation may explain
the beneficial findings of GISSI-HF.

Effects of Ω-3 have also been studied extensively in various forms of CVD, with
several studies demonstrating improvements in CVD risk factors, including atheroscle-
rosis, atrial and ventricular arrhythmias, hyperlipidemia, peripheral arterial disease and
ischemic stroke [3]. An extensive discussion regarding the benefits of Ω-3 therapy for these
conditions is beyond the scope of this article and has been discussed previously [3,4,33].
Studies regarding Ω-3 and HF have been emphasized here due to recent HF guidelines
suggesting that Ω-3 treatment is reasonable among HFrEF patients, and mounting evidence
that suggests Ω-3 may be beneficial in reducing HF incidence as well.

7. Molecular Mechanisms

The mechanisms responsible for the CVD benefits of Ω-3 intake have not been clearly
established, though recent research provides new insights. Some CVD Benefits from Ω-3
therapy may be attributable to metabolites which are potent anti-inflammatory mediators.
For example, the resolvin E series of metabolites are synthesized from EPA and actively
reduce leukocyte tracking to the site of inflammation, promote the clearance of inflamma-
tory cells and suppress cytokine production [38]. Multiple animal studies have shown the
benefits of these anti-inflammatory mediators post-MI [39]. Administration of resolvin
E1 attenuates the infarct size in rats subject to ischemia/reperfusion injury and resolvin
D1 induces a switch to anti-inflammatory M2 macrophages in the left ventricle to prevent
myocardial fibrosis [40,41].

In addition to anti-inflammatory effects, Ω-3 may reduce arrhythmias via direct
inhibition of sarcolemmal ion channels which may stabilize electrical activity and prolong
the relative refractory period of the cardiomyocytes [42]. Anti-arrhythmic effects have been
demonstrated in both animal as well as human studies. EPA dose dependently reduced
pulmonary vein spontaneous beating and the amplitude of delayed afterdepolarizations
in rabbit tissue [43]. Prolonged atrial refractoriness has been shown in humans with Ω-3
supplementation (6 g/day EPA + DHA for at least 1 month) with reduced vulnerability to
induce atrial fibrillation [44], though trials such as STRENGTH and REDUCE-IT showed
increased rates of atrial fibrillation. It is possible that higher doses, such as 6 g/day, may
be needed for some anti-arrhythmic effects. Ω-3 also improve endothelial function by
increasing nitric oxide production by directly stimulating endothelial nitric oxide synthase
gene and protein expression [45]. Ongoing research regarding these molecular pathways is
required to better understand the CVD benefits of Ω-3.
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8. Dietary Sources and Guidelines

Fish oil is obtained in the human diet through seafood, specifically oily fish, such as
salmon, sardines, herring, mackerel, albacore tuna, and trout [3,29], or Ω-3 supplementa-
tion. Ω-3 levels are naturally high in wild fish, whereas farm-raised fish tend to be grain
fed and have resultant lower Ω-3 levels. Ω-3 are not synthesized de novo, rather they
stem from unicellular organisms such as algae, at the base of the marine food chain [12].
Fish consume algae in the wild and as a result compose their own Ω-3, whereas most
farm-raised fish (including tilapia and catfish) are not fed this natural diet and thus have
low Ω-3 levels. However, farmed Atlantic salmon, because they are fed ground fish meal,
have Ω-3 as high or higher than wild salmon. On the other hand, fish that are naturally low
in fat, such as cod, scallops, lobster, mussels and shrimp, contain lower levels of Ω-3 [29].
Generally, shark, swordfish, tilefish and king mackerel contain high levels of mercury and
frequent ingestion should be avoided [29]. Of note, mercury is water soluble and protein
bound, and is therefore present in the muscle of fish but not as readily in the oil; as a result
of this and high-quality manufacturing, fish oil supplements contain negligible amounts of
mercury [3].

Plant sources of Ω-3, primarily in the form of alpha-linolenic acid, include soybean,
flaxseed, chia, hemp, linseed, rapeseed (canola oils) and tree nuts [5]. Because plant Ω-
3 are converted to EPA and DHA in limited amounts, plant-based Ω-3 should not be
considered a replacement for preformed Ω-3 EPA and DHA. Further study is required
to better understand the role of plant-based Ω-3, and how they may play a stronger role
in health and may also be a sustainable source, such as in the case of algae, which does
naturally contain EPA and DHA [4].

The current (2015–2020) dietary guidelines for Americans recommend consumption
of approximately 8 ounces per week of a variety of seafood for the general population,
which would be expected to provide an average daily intake of approximately 250 mg of
EPA and DHA [46]. That amount of 250 mg/day is associated with reduced cardiac deaths
among individuals with and without pre-existing CVD [46]. The 8 ounces of seafood or 2
servings per week can be sustainable and environmentally friendly and is recommended
by the AHA [36]. However, that amount will not increase the Ω-3 index to a level > 8%.
A daily intake of between 1 and 2 g/day of Ω-3 EPA + DHA is required to achieve an Ω-3
index > 8%, and an individual’s ultimate dose is largely dependent on their background
diet of other fats, specifically omega-6 fatty acids.

The 2019 American College of Cardiology/AHA guidelines for the primary prevention
of CVD offer a class I recommendation for a diet emphasizing the intake of vegetables,
fruits, legumes, nuts, whole grains and fish to decrease CVD risk factors [47]. A 2018
science advisory from the AHA regarding Ω-3 recommends consumption of non-fried
seafood 1–2 times per week for CVD benefits, including reduced risk of CVD death, CHD,
and ischemic stroke [36]. Recently, a Pesco-Mediterranean diet (a traditional Mediterranean
diet, with fish as the primary animal protein source) with time-restricted food intake
(intermittent fasting) has been proposed to be beneficial for CV and neurologic health,
though prospective and randomized studies are needed to confirm efficacy [48].

9. Late-Breaking Trials

Two Ω-3 trials were released in late 2020, which did not find any CV benefits of Ω-3
therapy in high-risk patients. OMEMI used a lower-dose intervention (1.8 g/day EPA + DHA
in addition to standard medical care) in elderly patients (age 70–82) following acute MI
(2–8 weeks) [49]. There was no statistically significant difference in outcomes between
treatment and placebo groups, which may be explained by insufficient Ω-3 dosing.

The results of the STRENGTH trial add substantially more confusion. Participants in
this international study had dyslipidemia, high TG and low levels of high-density lipoprotein
cholesterol, and received 4 g/day of a carboxylic acid formulation of EPA + DHA or corn oil
placebo in addition to standard medical therapy [50]. The study was prematurely ended
after 1384 patients experienced a primary endpoint (composite CV death, non-fatal MI,
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non-fatal stroke, coronary revascularization or unstable angina) due to a low probability of
clinical benefit using this carboxylic acid Ω-3 formulation, according to an interim analysis.
There was no significant difference in the primary endpoint occurrence between groups.

The stark difference in findings between STRENGTH (no benefit of 4 g/day carboxylic
acid formulation of EPA + DHA) and REDUCE-IT (robust CV benefit using 4 g/day highly
purified EPA) add to the confusion surrounding the topic of Ω-3 and CV health. It has
been argued that the placebo group receiving mineral oil in the REDUCE-IT trial may have
had increased harm caused by the mineral oil, which was associated with >30% increase in
C-reactive protein levels [50]. However, the FDA subsequently awarded a label claim for
CVD event reduction for icosapent ethyl based on analyses that concluded that the effects
of mineral oil could not entirely explain the observed differences in outcomes. It is also
possible that the DHA component of the STRENGTH intervention may have led to harm
in the treatment group. However, this is unlikely as DHA has not demonstrated adverse
CVD events and DHA concentrations were modest and did not correlate with event rates.
STRENGTH and REDUCE-IT both reported increased atrial fibrillation events. Our recent
meta-analysis is being updated to include these studies, and although the overall results
are slightly weakened, the overall findings remain strongly in favor of Ω-3 improving CVD
outcomes [21].

10. Conclusions

The Ω-3 index is an objective measurement of endogenous Ω-3 levels, specifically for
EPA and DHA, and can be used to evaluate: baseline Ω-3 status, response to Ω-3 therapy,
as a clinical target for CV health and, if used consistently in clinical trials, can make future
study more easily interpretable and comparable. Effective implementation of diagnostics
for Ω-3, including use of the Ω-3 index as a clinical and research tool, may be the key to
resolving much controversy surrounding the efficacy of Ω-3 therapy.

Multiple trials continue to use an Ω-3 intervention dose of 1 g/day of EPA + DHA,
which demonstrated significant CVD benefits in the landmark GISSI-P trial. However,
trials demonstrating a benefit with this low dose, such as GISSI-P, GISSI-HF and JELIS,
were performed in Italian and Japanese populations with higher baseline Ω-3 intake in
their regular diet, which may account for their ability to reach a therapeutic level of Ω-3
which confers CVD benefits. The efficacy of modern medical therapy for CVD can further
confound the benefits of Ω-3 supplementation due to reduced overall CVD events. Patients
in Western nations or nations with lower Ω-3 intake in general may require higher-dose
interventions (e.g., 2–4 g/day of EPA + DHA) to reach a therapeutic effect of Ω-3.

Several decades and countless dollars have been spent studying the relationship
between Ω-3 and CVD without reaching a consensus among clinicians. There is, however,
clear evidence from multiple studies that higher doses of Ω-3 (2–4 g/day of EPA + DHA)
appear to be safe and to reduce CVD events in multiple CVD populations, which warrants
further study to conclusively determine the potential benefits of this safe, inexpensive, and
well-tolerated therapy.
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