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Abstract

Diffusion MRI studies consistently report group differences in white matter

between individuals diagnosed with schizophrenia and healthy controls. Neverthe-

less, the abnormalities found at the group-level are often not observed at the indi-

vidual level. Among the different approaches aiming to study white matter

abnormalities at the subject level, normative modeling analysis takes a step towards

subject-level predictions by identifying affected brain locations in individual sub-

jects based on extreme deviations from a normative range. Here, we leveraged a

large harmonized diffusion MRI dataset from 512 healthy controls and 601 individ-

uals diagnosed with schizophrenia, to study whether normative modeling can

improve subject-level predictions from a binary classifier. To this aim, individual

deviations from a normative model of standard (fractional anisotropy) and advanced

(free-water) dMRI measures, were calculated by means of age and sex-adjusted z-

scores relative to control data, in 18 white matter regions. Even though larger effect

sizes are found when testing for group differences in z-scores than are found with

raw values (p < .001), predictions based on summary z-score measures achieved

low predictive power (AUC < 0.63). Instead, we find that combining information

from the different white matter tracts, while using multiple imaging measures simul-

taneously, improves prediction performance (the best predictor achieved

AUC = 0.726). Our findings suggest that extreme deviations from a normative

model are not optimal features for prediction. However, including the complete dis-

tribution of deviations across multiple imaging measures improves prediction, and

could aid in subject-level classification.

K E YWORD S

diffusion magnetic resonance imaging, machine learning, precision medicine, schizophrenia,
white matter

1 | INTRODUCTION

Aligned with postmortem findings of anomalies in white matter (Coyle,

Balu, Puhl, & Konopaske, 2016; Friston, 1998), diffusion MRI (dMRI)

studies consistently demonstrate a disturbed white matter structural

organization in schizophrenia (Cetin-Karayumak et al., 2020; Ellison-

Wright & Bullmore, 2009; Kelly et al., 2018; Kubicki et al., 2007;

Skudlarski et al., 2013). For example, the largest, multisite case–control

analysis of dMRI measures in schizophrenia to date, Kelly et al. (2018),

observed significantly lower fractional anisotropy (FA) (Basser,

Mattiello, & LeBihan, 1994), in the schizophrenia group, in 20 of

25 white matter regions examined.

The vast majority of dMRI studies in schizophrenia apply case–

control comparisons between individuals diagnosed with schizophre-

nia and healthy controls to identify significant group-level differences

in specified white matter locations. However, group differences that

are found in a case–control comparison do not imply abnormalities in

a given individual subject (see e.g. Arbabshirani, Plis, Sui, &

Calhoun, 2017). For example, the hallmark finding of widespread FA

reductions in the schizophrenia group (Kelly et al., 2018), does not

necessarily imply that widespread FA reductions are present in every

individual diagnosed with schizophrenia, although an implicated loca-

tion may be present in a subset of individuals. This highlights the need

for alternative analysis paradigms that can better account for individ-

ual variation in pathological loci.

There are two leading analysis methods that provide subject spe-

cific inferences: The first is prediction modeling, which aims to classify

each subject into one of several groups, thereby making it more suit-

able for clinical diagnosis. The second is normative modeling, which

aims to characterize individual variations in reference to a normative

range. Unlike the case–control approach that searches for group dif-

ferences in the mean value of some feature in a specific brain location

(e.g., mean FA in one specific white matter tract), prediction

approaches search for features that maximize the separation between

the groups. Separation is usually measured by the area under the

receiver operator curve (AUC) of a particular prediction classifier. Previ-

ous studies (see e.g. Ardekani et al., 2011; Lee et al., 2018; Mikolas

et al., 2018; Rathi et al., 2010 and the references therein) have already

demonstrated that dMRI measures can serve as discriminative fea-

tures in the discrimination of individuals diagnosed with schizophrenia
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from healthy controls, but suffered from relatively small sample sizes,

which questions the generalizability of their results.

Normative modeling is an alternative paradigm, based on the

notion that different individuals could be affected by different pat-

terns of abnormality. In normative modeling, the range of variation

within the control group is modeled first, and then individual devia-

tions from this range are calculated, providing information about

potential abnormalities in each particular individual. This is different

from the case–control approach, which assumes a consistent pattern

of abnormality across individuals that belong to the same group. Devi-

ations are typically quantified using a z-score, relative to the control

group, and abnormalities are identified as those values that are out-

liers relative to the distribution of the control group, that is, having z-

scores with an absolute value larger than a threshold (Bouix

et al., 2013; Marquand et al., 2019; Marquand, Rezek, Buitelaar, &

Beckmann, 2016). The ability of the normative modeling approach to

shed light on individualized abnormality profiles was leveraged by

studies applying normative modeling on various neuroimaging

datasets, often to investigate heterogeneity of abnormalities across

subjects. Studies applying normative modeling on diffusion MRI are

available, for example, in traumatic brain injuries (Bouix et al., 2013;

Pasternak et al., 2014; Taylor, da Silva, Blamire, Wang, &

Forsyth, 2020), autism and brain development (Chamberland

et al., 2020; Dean III et al., 2017; Dimitrova et al., 2020). A few studies

have also applied normative modeling on data from subjects diag-

nosed with schizophrenia, using diffusion MRI (Lv et al., 2020; White,

Schmidt, & Karatekin, 2009) and T1-weighted MRI (Alexander-Bloch

et al., 2014; Wolfers et al., 2018, 2021). References to more studies

applying normative modeling on different datasets can be found in

Marquand et al. (2019).

The few published normative modeling studies applied on subjects

diagnosed with schizophrenia, using diffusion MRI (Lv et al., 2020;

White et al., 2009), or T1-weighted MRI (Wolfers et al., 2018, 2021),

found high interindividual differences in the locations of the implicated

brain abnormalities. In a recent study, applying normative modeling on

diffusion MRI data (Lv et al., 2020), it was further shown that the

majority of individuals with schizophrenia had at least one abnormal

location implicated, when considering FA as the modality of choice. At

the same time, however, a large number of healthy controls also

showed at least one abnormal location.

While normative modeling aims to provide useful insights at the

subject-level, previous studies did not utilize the framework to go

beyond group-level differences between the schizophrenia and con-

trol groups. In this article, we use a large sample of harmonized dMRI

data (Cetin-Karayumak et al., 2020), comprised of 512 healthy con-

trols and 601 individuals diagnosed with schizophrenia, to evaluate

the predictive power of features derived from a normative modeling

approach and compare it with the predictive power of raw dMRI

values serving as features. Here, our motivation is to improve the

characterization of the schizophrenia group as a whole by assuming

that common abnormalities (e.g., decreased FA/FAt, increased FW)

may occur in spatially distinct regions across subjects. By using the

features obtained from the normative model in a classification

scheme, we test whether these profiles provide an improved charac-

terization of the group, compared to the raw values.

We emphasize that as the diagnosis of schizophrenia relies upon

identifying several different combinations of clinical symptoms and

behavioral signs through an interview with a medical specialist, we do

not expect that combining the normative modeling approach with

classification would yield a performance that is comparable to clinical

diagnosis. Rather, our aim is to provide new information about white

matter abnormalities in schizophrenia using the combination of the

two approaches, which may be proven useful in the future design of

classification schemes for the diagnosis of schizophrenia.

Previous studies utilizing this dataset have already demonstrated

significant group-differences in FA across the life span between

healthy controls and individuals diagnosed with schizophrenia, as well

as age effects (Cetin-Karayumak et al., 2020), and sex effects in

healthy controls (Seitz et al., 2020). Here, we take a step towards

subject-level inferences by investigating the application of the norma-

tive modeling approach on this dataset. We first generate a normative

model by estimating age- and sex-adjusted z-scores from standard

(FA) and advanced (Free-water) dMRI measures in 18 white matter

regions of interest (ROIs). Then, for every subject, the predictive per-

formance of the following features is calculated and compared with

the predictive performance of the raw dMRI values: (1) z-scores

obtained by applying the normative modeling approach on FA values;

(2) summary measures for the z-score distributions (Pasternak

et al., 2014); (3) z-scores and summary measures obtained by applying

the normative modeling approach on free-water imaging derived mea-

sures (Pasternak, Sochen, Gur, Intrator, & Assaf, 2009) rather

than on FA.

2 | MATERIALS AND METHODS

2.1 | Participants, imaging acquisition, image
preprocessing and harmonization procedures

The dataset used in this study coincides with the dataset utilized in

the published work by (Cetin-Karayumak et al., 2020), which includes

601 individuals diagnosed with schizophrenia-spectrum disorder

across multiple illness stages (mean [SD] age, 31.46 [12.31] years;

380 [63.23%] male), and 512 healthy controls (mean [SD] age, 30.15

[14.26] years; 279 [54.49%] male). dMRI data were collated from

13 different sites across a number of separate studies. The single shell

dMRI data followed a standardized preprocessing protocol and were

harmonized across sites to remove site-related differences using ret-

rospective harmonization (Karayumak et al., 2019; Ning et al., 2020).

In particular, Cetin-Karayumak et al. (2020) evaluated the perfor-

mance of the harmonization procedure by using unpaired t tests to

assess between-site differences and showed that statistical differ-

ences between matched controls across sites were removed after har-

monization (see Figure S2 in Cetin-Karayumak et al., 2020). We note

that following the harmonization, site differences between subjects

diagnosed with schizophrenia are likely to occur, because of different
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distributions across sites of parameters such as age, sex, and type of

clinical populations. These differences are important to be preserved,

as they reflect true variability related to the disorder, while scanner

related differences are removed. A complete account of demo-

graphics, inclusion and exclusion criteria, acquisition protocols across

the 13 sites, preprocessing and harmonization procedures can be

found in Cetin-Karayumak et al. (2020). Following harmonization, all

data had isotropic resolution of 1.5 mm � 1.5 mm � 1.5 mm, with a

b-value of 1,000 s/mm2.

2.2 | White matter processing

The harmonized data were fitted using FSL's DTIFIT (Behrens

et al., 2003) to the DTI model, from which FA was derived. The data

were also fitted to the two-compartments Free-water imaging model

(including a free-water compartment and a tissue compartment) using

a regularized nonlinear fit (Pasternak et al., 2009). In this process, the

fractional volume of the free-water compartment (FW) as well as

the FA of the tissue compartment (FAt) were estimated, as previous

work suggests that these may increase sensitivity to underlying

pathologies (Lyall et al., 2018; Pasternak et al., 2012; Pasternak,

Westin, Dahlben, Bouix, & Kubicki, 2015).

To define white matter regions of interest (ROIs) we used the IIT

Human Brain probabilistic white matter fiber tract ROIs atlas v. 4.1

(Varentsova, Zhang, & Arfanakis, 2014) with a threshold of 0.25,

resulting in a total of 17 white matter fiber tract ROIs. The FA image

of each subject was registered to the FA IIT template using ANTs reg-

istration (Avants et al., 2011), and this transformation was applied to

the other diffusion measures (FAt, FW). For each tract, mean FA, FAt

and FW were computed across all voxels traversing the fiber bundle.

Since the IIT atlas v.4.1 that we used does not cover all of the white-

matter, we complemented the analysis by computing the white matter

skeleton averaged FA, FAt and FW across voxels comprising the IIT

white matter skeleton template (IIT_WM_atlas_skeletonized.nii.gz)

(Varentsova et al., 2014).

2.3 | Construction of a normative model

The normative model represents the distribution of the normative

range within each ROI in the healthy controls using the sample mean

and standard deviation. To control for confounding factors resulting

from age and sex differences, we represented the normative range in

each ROI by an age specific weighted mean, cmh, and standard devia-

tion, bσ2h , for each sex separately. To do so, we used the Nadaraya-

Watson (NW) estimator (Nadaraya, 1964; Watson, 1964) with a

Gaussian kernel,

cmh xð Þ¼

Pn
i¼1

yiK
x�xi
h

� �

Pn
i¼1

K x�xi
h

� � , ð1aÞ

bσ2h xð Þ¼

Pn
i¼1

yi�cmh xð Þ� �2
K x�xi

h

� �

Pn
i¼1

K x�xi
h

� � , ð1bÞ

where x is the patient age and n is the size of the sex-matched control

group. For the ith individual in the sex-matched control group, yi is

the dMRI value (e.g., the mean FA value over the ROI), and xi is the

age. K uð Þ¼ 1ffiffiffiffi
2π
p e�

1
2u

2
is a Gaussian kernel, and h>0 is a bandwidth

parameter. To set h for every ROI, and every dMRI modality (FA, FAt,

or FW), we minimized the cross-validation function,

CV hð Þ¼1
n

Xn
j¼1

yj� dmh,�j xj
� �� �2

, ð2Þ

where dmh,�j is the leave-one-out-estimator,

dmh,�j xð Þ¼

P
i≠ j

yiK
x�xi
h

� �
P

i≠ jK
x�xi
h

� � :

The procedure therefore guarantees that we select the bandwidth for

which the weighted mean cmh best reflects the normative range. The

chosen bandwidths are reported in Table S1.

2.4 | Calculation of deviation from the
normative model

The deviation of every individual diagnosed with schizophrenia from

the normative atlas, in each ROI, was captured by a z-score, calculated

using the NW estimators cmh, bσh2 (see Equations (1a) and (1b)),

z xð Þ¼ y�cmh xð Þ
bσh xð Þ ,

where x is the subject's age and y is the subject's dMRI value (e.g., the

mean FA value over the ROI). The z-scores were truncated to the

range �10,10½ �. The same procedure was also used to evaluate devia-

tion of each healthy control subject, but with a leave-one-out approach,

that is, we compared a given healthy control subject with a normative

model composed of all healthy control subjects, excluding the one being

evaluated. As a result, for each subject, and for each dMRI value (FA,

FAt, or FW), we obtained a vector with 18 z-scores (for 17 tracts +

white matter skeleton) representing deviation from the normative model.

Our approach is summarized in Figure 1, as well as in Algorithm 1.

2.5 | Group-level differences in ROI-wise values

Group comparisons of raw dMRI values (i.e., the FA, FAt and FW

values before the construction of the normative model) and z-score

values (for FA, FAt and FW) of all subjects in each ROI were
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performed using 1-tailed Welch's t tests (Welch, 1951) searching for

lower FA and FAt values and higher FW values in the schizophrenia

group. Welch's t test inherently accounts for possible unequal vari-

ance or sample size in the two compared groups, and is equivalent to

the Student's t test whenever sample size and variance in the two

compared groups are equal (Delacre, Lakens, & Leys, 2017). We also

report Cohen's d effect size (Cohen, 2013) for every hypothesis test.

To allow comparisons with subsequent tests, we also used 1-tailed

two-sample Wilcoxon ranks sum tests.

2.6 | z-score derived summary measures

To define abnormal z-scores we used the threshold of jzj > 2.999,

corresponding to p < .05 Bonferroni corrected for 18 tests (for

18 ROIs). ROIs with z-scores above 2.999 were defined as supra-nor-

mal, ROIs with z-scores below �2.999 were defined as infra-normal.

To identify if a particular ROI is implicated, for each ROI we counted

how many times it is found abnormal across the entire schizophrenia

group. To account for a possible heterogeneity in the abnormality

location in different subjects, we derived for each subject z-score

summary measures that are indifferent to the spatial location of the

abnormality. The summary measures included: fraction of abnormal

ROIs (also called “load” [Bouix et al., 2013]), z-score with the largest

absolute value (also called “severity” [Bouix et al., 2013]), average z-

score, standard-deviation of z-scores and fraction of ROIs having z-

scores in the significant range (see below for a definition of the signifi-

cant range). Since the distribution of the “load” measure is skewed

and strongly deviate from the normal distribution in both groups, we

used 1-tailed two-sample Wilcoxon rank sum tests to perform group

comparisons of all summary measures. We also report Cliff's delta

effect size (Cliff, 1993) for every hypothesis test. Cliff's delta effect

size estimates the difference between two probability scores: (1) the

probability that a value selected from one of the groups is greater

than a value selected from the other group, and (2) the probability of

the reverse case. This test is nonparametric and based on the ordinal

structure of the data, which is appropriate for data distributions that

deviate from normal.

2.7 | z-distribution

To better focus on the range of z-scores that best discriminates indi-

viduals diagnosed with schizophrenia from healthy controls, the distri-

bution of z-scores was estimated for each subject by collecting the z-

scores in all ROIs and computing the probability density function

(PDF), regularized by a normal distribution kernel, in 50 equally spaced

bins that cover the range (�10,10). We then compared the PDFs

between the healthy controls and the schizophrenia groups by com-

paring the density in each bin, using a 1-tailed Welch's t test searching

for higher values in the schizophrenia group. This comparison pro-

vided a range of z-scores (referred to as the significant range) which

appear significantly more frequently in the schizophrenia group than

in the healthy controls group.

2.8 | Prediction models

We examined the diagnostic potential of the normative modeling

approach by using the z-score maps, as well as the z-score derived

measures, as inputs to a binary classifier, with the aim of classifying

individual subjects as either healthy controls or as diagnosed with

F IGURE 1 A flowchart summarizing the analysis scheme. The details are provided in the text
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schizophrenia. In comparison, we also built binary classifiers with raw

dMRI values as the input. We chose logistic regression with ridge reg-

ularization (McIlhagga, 2016) as the binary classifier of choice, thus

enforcing sparse and stable classification solutions. Explicitly, we

examined the following measures as inputs to the classifier:

(1) FA/FAt/FW raw values in each ROI separately, (2) FA/FAt/FW z-

score values in each ROI separately, (3) FA/FAt/FW z-scores in all

ROIs simultaneously (concatenated into one vector of length 18 for

each dMRI measure), (4) FAt and FW z-scores in all ROIs simulta-

neously (concatenated into one vector of length 36 for each subject),

and (5) combination of summary measures and the aforementioned

inputs.

Prediction performance of the estimated models was validated

using a 10-fold cross-validation procedure. The data were par-

titioned into 10 subsets—seven subsets comprised of 51 subjects

from the control group and 60 subjects from the schizophrenia

group, two subsets comprised of 52 subjects from the control group

and 60 subjects from the schizophrenia group, and one subset com-

prised of 51 subjects from the control group and 61 subjects from

the schizophrenia group. In each cross-validation round, one of the

10 subsets served as the test set, while the other 9 subsets served

as the training set for the binary classifier. The average of the area

under the receiver operator curve (AUC), across the 10 test sets,

was the evaluation metric. We note that in each cross-validation, the

normative range, as well as the choice of a bandwidth, were esti-

mated using only the healthy control subjects that belonged to the

corresponding training set. This guaranteed that the classification

performance on the test sets was not biased by the estimated nor-

mative model.

In order to examine whether sex differences exist, we have

repeated the same process (including the choice of a bandwidth) for

males and females separately.

Algorithm 1

Calculation of FA z-scores for every subject

// Calculate bandwidth and weight function for each ROI

for each ROI R do:

h[R] minimizer of cross-validation function (Equation (2)) calculated using FA values of control group in ROI R

// Calculate z scores for subjects diagnosed with schizophrenia

for each “subject diagnosed with schizophrenia” s do:
age_s age of subject s

sex_s sex of subject s

for each ROI R do:

FA[1,…,n] FA values in ROI R of all controls of sex_s

age[1,…,n] ages of all controls of sex sex_s

// Calculate mean and standard deviation in controls centered at age_s

FA_s FA value in ROI R of subject s

Mean weighted_mean(FA,FA_s,age,age_s,h[R]) using Equation (1a)

Std weighted_std(FA,FA_s,age,age_s,h[R]) using Equation (1b)

// Calculate z-score for subject s

Z_scz[s] FA_s�Mean
Std

// Calculate z scores for control subjects

for each control subject c do:

age_c age of subject c

sex_c sex of subject c

for each ROI R do:

FA[1,…,m] FA values in ROI R of all controls of sex sex_c excluding control c

age[1,…,m] ages of controls of sex sex_c excluding control c

FA_c FA value in ROI R of control c

Mean weighted_mean(FA,FA_s,age,age_s,h[R]) using Equation (1a)

Std weighted_std(FA,FA_s,age,age_s,h[R]) using Equation (1b)

Z_HC[c] FA_c�Mean
Std

return (Z_scz,Z_HC)
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3 | RESULTS

3.1 | Group-level differences in ROI-wise values

Group comparisons of the raw FA values of the 18 ROIs between the

healthy controls group and the schizophrenia group identified signifi-

cantly lower FA values in the schizophrenia group in 12/18 ROIs

(Figure 2 and Table S2), which is consistent with previous case–control

studies in schizophrenia (Kelly et al., 2018; Lv et al., 2020; Wolfers

et al., 2018 and the references therein) and studies using the same

dataset as ours (Cetin-Karayumak et al., 2020). Group comparisons

between the z-scores of the FA values identified significant differences

in 14/18 ROIs. Of note, the effect sizes for group-differences were

higher (p < .001 using a one-sided paired t test; Cohen's d = 0.294)

when testing for differences in z-scores, compared with testing for dif-

ferences in the raw FA values (Figure 2 and Figure S1).

3.2 | Subject specific z-score derived summary
measures

The ROI with the highest occurrence of infra-normal z-values

(z < �2.9913) was the Forceps major (Fmajor), found in only 19/601

(3.16%) individuals diagnosed with schizophrenia (Table S3). In addi-

tion, 62/601 (10.3%) of the individuals diagnosed with schizophrenia

had at least one infra-normal ROI, compared to 37/512 (7.2%) of the

healthy controls.

All z-score derived distribution summary measures showed a sig-

nificant group-difference with varying effect sizes (Figure 3). These

measures included load (p = .039; Cliff's delta = �0.03), severity
(p = .015; Cliff's delta = �0.075), average z-score across all ROIs

(p < .001; Cliff's delta = 0.213), and standard deviation of z-score

values (p = .002; Cliff's delta = �0.098).
Testing what range of FA z-scores best discriminates the schizo-

phrenia group from the control group identified the range of

�3.36 < z < �0.6, corresponding to lower FA values in the schizo-

phrenia group. This range only partially overlaps with the infra-normal

range of z < �2.99. In addition, the majority of the values within this

range are well within what is considered the “normal” range

(jzj < 2.99). Identifying the fraction of fiber tracts with values in the

significant range had higher effect size than using any of the other

summary measures (fraction in significant range, p << .001; Cliff's

delta = �0.2369). However, we note that effect sizes for the sum-

mary measures were smaller than those for the group differences of

the average z-score in individual tracts (e.g., Fmajor p < .001; Cliff's

delta =0.25), see Figure 3.

F IGURE 3 Summary measures. The
plots present effect sizes (in absolute
values) for group differences in each of
the summary measures. For comparison,
the effect size obtained when using only
the value for the Forceps major is
included. sign = significant,
std = standard deviation,
Fmajor = Forceps Major. Error bars
represent 95% confidence interval for
Cliff's-delta effect size (Feng &

Cliff, 2009). Group difference p-values: ★
.01 < p < .05, ★★ .001 < p < .01,
★★★ p < .001

F IGURE 2 Group differences in raw
and z-score FA values. The plots display
effect sizes obtained when testing for
lower raw FA values in the schizophrenia
group (orange bars) or lower FA z-scores
(blue bars). Most ROIs showed significant
group differences in both raw and z-score
values, although the effect sizes for the z-
scores were higher than for the raw

values. The full ROI names are detailed in
supplementary material. Error bars
represent 95% confidence interval for
Cohen's-d effect size. Group difference p-
values:★ .01 < p < .05, ★★
.001 < p < .01, ★★★ p < .001
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3.3 | Prediction models

The use of the raw FA value or the z-score value for each ROI individ-

ually as input for a prediction classifier, resulted in relatively low pre-

dictive performance (Figure 4). In the majority of tracts (15/18), the

mean AUC (averaged across the cross validations) obtained for the z-

score values as input to the classifier was higher than the mean AUC

for the raw values as input. Of these, the best predictors were the z-

scores of the WM skeleton average (AUC = 0.64), followed by the

Forceps Major (Fmajor, AUC = 0.627), Fornix (AUC = 0.627), and

the Forceps Minor (Fminor, AUC = 0.621) ROIs. Importantly, using

the z-scores of all ROIs simultaneously as input to the binary classifier

resulted in a higher predictive power than any individual ROI

(Figure 4), yielding an AUC of 0.67. Inclusion of the subject specific

summary measures to the z-scores in all the other ROIs did not

improve the AUC.

3.4 | Multiple imaging features

Upon repeating the analyses for the FAt and FW measures derived

from free-water imaging (Table S2), we found that the number of indi-

viduals diagnosed with schizophrenia who had infra-normal FAt or

supra-normal FW values was higher than the number of individuals

diagnosed with schizophrenia who had infra-normal FA. At the same

time, the number of healthy controls with abnormal FAt or FW did

not increase compared to our FA analyses (Table S3). Specifically,

87/601 (14.47%) of the individuals diagnosed with schizophrenia had

at least one ROI with an infra-normal FAt value, compared to 38/512

(7.42%) of the healthy controls. Similarly, 84/601 (13.97%) of the indi-

viduals diagnosed with schizophrenia had at least one ROI with a

supra-normal FW value, compared to 35/512 (6.8%) of the healthy

controls. Similar to FA, regions in the z-distributions which exhibited

F IGURE 4 Prediction power for
individual ROIs and ROIs combined.
Prediction power is reported as area
under the receiver–operator curve (AUC),
averaged over the cross-validations in
each ROI. AUC is reported for z-scores
(blue bars) and for raw values (orange
bars). The full ROI names are detailed in
supplementary material

F IGURE 5 Strongest
predictors per dMRI modality.
Each ROI is colored according to
the dMRI modality (FA in green,
FAt in red, and FW in blue) that
had the highest AUC for
classification

F IGURE 6 Prediction power for dMRI modalities. Area under the
receiver–operator curves (AUC), averaged over the cross-validations,
obtained when inputting the values in all ROIs simultaneously into the
classifier, for FA (green bars), FAt (red bars), FW (blue bars) and FAt
+FW (orange bars)
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group differences extended within what is considered the “normal”
range, exhibiting lower FAt values (�4.3 < z < �0.6) and higher FW

values (0.97 < z < 3.08) in the schizophrenia group compared to the

healthy control group.

Compared with the FA analyses, the individual ROI analyses had

higher AUC scores in either FAt or FW: FAt had the highest AUC in

8/18 ROIs, FW in 5/18 ROIs and FA in 5/18 ROIs (Figure 5). Addi-

tionally, when inputting the z-scores of all the fiber tracts simulta-

neously into the binary classifier, both FAt and FW had higher AUC

than FA, reaching an AUC of 0.68 and 0.7, respectively (Figure 6 and

Figure S2). The highest score (AUC = 0.726) was achieved when

inputting together all the z-scores of all ROIs for both the FAt and the

FW measures into the classifier (Figure 6). We note that the largest

regression coefficients (averaged across cross-validations) were

assigned to FW across the WM skeleton, FAt across the WM skeleton

and FW in Fmajor (see also Figure S3).

When repeating the analysis for males and females separately, we

observe that in males, the complete distribution of z-scores in FAt

achieved higher score (AUC = 0.6958) than the complete distribution

of z-scores in FW (AUC = 0.6641), whereas the opposite was

observed in females (AUC = 0.6611 in FAt, AUC = 0.771 in FW), see

Figure S4. We also observe that in males, prediction using the z-scores

in all ROIs for both FAt and FW as input resulted in better perfor-

mance (AUC = 0.71) than predictions using the individual dMRI mea-

sures (AUC when using FAt = 0.69, AUC when using FW = 0.66),

whereas in females, prediction using both FAt and FW resulted in

comparable performance (AUC = 0.77) to the performance obtained

when only using FW (AUC = 0.77), but higher than the performance

obtained when using FAt (AUC = 0.66), see Figure S4. We also note

that while the largest regression coefficients in males were assigned

to FW across the WM skeleton ROI and FAt across the WM skeleton

ROI, the largest regression coefficients in females were assigned to

FW in Fmajor, FW in Fminor and FW across the WM skeleton ROI.

4 | DISCUSSION

In this article, we demonstrate the predictive potential of the norma-

tive modeling approach. Our key finding is that the use of the com-

plete distribution of deviations from the normative range of each

individual as an input to a binary classifier improves the predictive

performance for all tested measures (FA, FAt, FW). Even though we

only reached a performance level indicative of an “acceptable discrim-

ination” (c.f., p. 162 in Hosmer Jr, Lemeshow, & Sturdivant, 2013), our

findings can serve as an early step in the development of a classifica-

tion scheme that involves schizophrenia and therefore aid in subject-

level classification.

We also find that extreme deviations from the normative model

are not found in a sufficient number of individuals diagnosed with

schizophrenia, and, accordingly, summary measures based on extreme

deviations are less efficient diagnostic measures. Indeed, the z-

distribution analysis identified that the range of z-scores that best dis-

criminates the individuals diagnosed with schizophrenia from controls

is bounded and does not include the most extreme range of z-scores.

This strongly suggests that extreme z-scores may not be indicative of

schizophrenia related pathologies, but rather of other effects such as

noise, imaging artifacts, or medication effects (Meng et al., 2019).

Instead of focusing on summary measures of extreme z-scores,

we find that the complete distribution of deviations, and their com-

bined effect on a number of imaging measures provides a more solid

basis for prediction algorithms, also suggesting that underlying pathol-

ogies in schizophrenia are likely subtle and diverse. We emphasize

that since our evaluation metric (AUC) is computed on the different

test sets, rather than on the training sets, it is not a priori expected

that the inclusion of more features will necessarily result in an

improved prediction (Guyon & Elisseeff, 2003). In particular, adding

features that are irrelevant (e.g., random noise) or redundant

(e.g., correlated with one of the already present features) is not

expected to improve the predictive performance and may worsen the

model generalizability by increased overfit (Guyon & Elisseeff, 2003;

Veronese, Castellani, Peruzzo, Bellani, & Brambilla, 2013; Ying, 2019).

The finding of an improved predictive performance when using the

complete deviation distribution across multiple white matter ROIs

therefore highlights the non-localized nature of white matter abnor-

malities in schizophrenia.

Similar to our findings, three previous studies that applied norma-

tive modeling on schizophrenia datasets (Lv et al., 2020; Wolfers

et al., 2018, 2021) also found that considering each ROI separately

identifies only a small fraction of subjects as abnormal. These results

suggest biological heterogeneity in the location of abnormalities

across different subjects. Our results, however, further suggest that

location heterogeneity is not the only factor underlying abnormalities

across the schizophrenia group, but rather that the interplay between

individual deviations across different brain location is also involved.

This finding coincides with previous studies that highlight the impor-

tance of the relationship between different fiber tracts involved with

schizophrenia (Gheiratmand et al., 2017; Klauser et al., 2017). More-

over, compared with the previous normative modeling studies, we

find a smaller fraction of subjects with at least one “abnormal” ROI.

This can be attributed to differences in the dataset sizes, normative

range models, confounders control schemes, and abnormality thresh-

old, affecting the quality of prediction. We note, however, that the

previous studies did not investigate the potential use of the individual

deviation measures in the context of subject-level predictions. These

studies also did not compare the performance of individual deviation

maps with raw values in the context of group-differences and did not

consider inclusion of multiple dMRI measures into their analysis.

It is further instructive to examine our manuscript in light of three

criteria suggested in Marquand et al. (2019) for the categorization of

different normative modeling approaches. The first criterion is the

choice of covariates and response variables. In our approach, age is

the only covariate, while the response variable is one of several diffu-

sion MRI measures in each white matter ROI. Even though sex is not

treated as an additional covariate, it is explicitly accounted for by esti-

mating sex-specific normative models. The second criterion is based

on the chosen way to separate different sources of variation, and in
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particular to differentiate between variation across participants from

variation due to parameter and model uncertainty. In light of this cri-

terion, our normative model is effectively nonlinear and nonparamet-

ric, and controls for the degree of uncertainty by the choice of a

bandwidth that minimizes the leave-one-out cross-validation error.

This is comparable with previous nonparametric approaches for age-

adjustment. The third criterion suggested in Marquand et al. (2019) is

the degree of individual prediction provided by the normative model.

This criterion deals with the ability of the normative model to perform

single-subject inferences. In contrast to normative modeling

approaches that only provide numerical deviations from the normative

model (Cole & Franke, 2017; Marquand et al., 2019). Our model also

accounts for the variance within the healthy control group, when pro-

viding individual inferences, and therefore allows to estimate the sta-

tistical significance of each individual deviation from the normative

range. We also compute several participant-level summary statistics

to estimate overall deviation from the normative pattern.

By applying the free-water model, we demonstrated that the

dMRI signal holds more information regarding schizophrenia patholo-

gies than the FA measure. Both the FAt and FW measures had overall

better predictive power than the FA measure alone, suggesting that

the increased specificity provided by the more elaborated free-water

model is able to identify features that are more directly contributing

to the separation between individuals diagnosed with schizophrenia

and healthy controls. Additionally, including both FAt and FW

together had the best predictive power. The improvement in predic-

tive power compared to each measure on its own, suggests that

accounting for the co-occurrence of two or more pathologies is also

important for the characterization of schizophrenia. This is in line with

previous free-water studies that identified variable rates of FAt and

FW abnormalities along the different stages of schizophrenia (Lyall

et al., 2018; Oestreich et al., 2017; Pasternak et al., 2015; Pasternak,

Westin, et al., 2012; Tang et al., 2019), further supporting the hypoth-

esis that each measure accounts for a different pathology. Finally, the

application of the free-water model resulted in differences between

males and females with respect to the best predictors. This is aligned

with previous studies which observed sexually-dimorphic free water

increase, which was suggested to be the result of an increased acute

response in the female subjects diagnosed with schizophrenia relative

to male subjects (Lyall et al., 2018). We note, however, that even

though these findings may suggest different abnormality patterns

between the sexes, they might as well be the result of differences in

the number of subjects of each sex (659 males, 454 females) in our

data, or due to the different proportions of subjects belonging to the

control group versus subjects belonging to the schizophrenia group

(279:380 in males, 233:221 in females), and therefore requires further

research.

We note that previous studies showed that the type and extent

of FAt and FW abnormalities depend on age, and on the stage of the

disorder (e.g., prodromal, first-psychotic episode, early psychosis, and

chronic) (Pasternak, Kelly, Sydnor, & Shenton, 2018). Therefore, the

current data, that are heterogeneous in terms of disorder stage, may

not be optimal for the identification of predictive clinical features.

Nevertheless, the acceptable level of predictive power is expected to

increase when the same methods are applied to datasets that are clini-

cally more homogenous.

Our findings show that the combination of multiple imaging fea-

tures increases the predictive performance of the model. This sug-

gests that it would be beneficial to include additional measures of

interest, for example, more elaborate dMRI models, clinical pheno-

types, or volumetric/cortical thickness measures, and develop more

elaborate normative models that combine information from more than

one feature at a time, to further improve prediction performance. , In

this study we focused on the prediction of single-subject classification

(i.e., schizophrenia or control) where we used regularized ridge regres-

sion. The choice of this binary classifier, together with the relatively

large sample size, considerably reduced the risk of overfitting

(Arbabshirani et al., 2017). However, the use of more elaborate

machine-learning models (Ardekani et al., 2011; Chand et al., 2020;

Lee et al., 2018; Mikolas et al., 2018; Srinivasagopalan, Barry,

Gurupur, & Thankachan, 2019) could also be considered in order to

increase further the predictive performance. Availability of clinical

parameters may also generalize our approaches to the prediction of

other properties, such as clinical outcome, or treatment response. We

anticipate that using normative models will improve performance of

such prediction models as well.

An additional contribution of this article is our novel approach to

controlling for confounders, namely, age and sex. Our approach mainly

differs from recent studies using normative modeling (Bouix et al., 2013;

Chamberland et al., 2020; Dean III et al., 2017; Dimitrova et al., 2020; Lv

et al., 2020; Marquand et al., 2016; Pasternak et al., 2014; Taylor

et al., 2020; Wolfers et al., 2018) by our consideration of sex in an exact-

matching way, rather than as an additional covariate. Our approach for

controlling for age is similar to other studies using nonparametric

methods for the modeling of the normative range, see for example,

(Marquand et al., 2019) for a review. Most common methods for

adjusting for age and sex assume the dependency has a functional form,

for example, linear, which may be either an over-simplification or over-

fitting, depending on the complexity of the functional form. In turn, mis-

modeling the dependency of age and sex could result in bias or noise

that could cause false positive and false negative findings. Our method is

nonparametric, and, similar to Wolfers et al. (2018), is therefore not only

robust but it does not rely on any assumptions on the functional form.

The use of a leave-one-out approach for choosing the bandwidth also

allows for better control of the confounding variables, and makes it pos-

sible to identify ROIs that do not necessarily need to be adjusted. While

in the ideal situation of infinitely many healthy controls, the best way to

control for age and sex would be to model the normative range for every

subject by only considering healthy controls that exactly match the

subject's covariates—Our method builds on the idea of exact matching

but is also suitable for finite sample sizes, where an infinite size of

healthy control population is not available. We note that the fact that

the individual deviations provided better effect sizes and predictive

power than the raw values could also be attributed to the inherently

more accurate control for age/sex that was applied in the calculation of

the deviations.
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This study nonetheless has several limitations. First, since the

dMRI data from this study were retrospectively harmonized, they

were not acquired with state-of-the-art acquisition protocols. A more

current protocol with multiple b-value shells and better image resolu-

tion would improve the accuracy of the bi-tensor model fit (Pasternak,

Shenton, & Westin, 2012). Second, the analysis we performed did not

account for the data heterogeneity in the context of different treat-

ment protocols and different comorbid substance use/abuse, which

may serve as possible confounders of our results. In addition, as previ-

ous studies (Hill et al., 2013; Reininghaus et al., 2019; Skudlarski

et al., 2013; Tamminga et al., 2013) show that the abnormality pattern

observed in schizophrenia overlaps with the abnormality pattern

observed in other psychotic disorders, it is a matter of future research

to test the specificity of our findings to schizophrenia. Lastly, investigat-

ing the relationship between clinical symptoms and the brain abnormali-

ties found is beyond the scope of the current article, but serves as an

important avenue for future studies.

In conclusion, our findings suggest several important insights to

subject-level classification methods and their utility in schizophrenia.

First, normative modeling approaches may improve subject-level pre-

dictions. Second, setting a “normal” threshold and using only those

deviations that exceed this threshold derives summary measures that

are limited in their ability to perform predictions. Rather, the interplay

between the individual deviations across different fiber tracts is pre-

ferred. Third, splitting FA values into FAt and FW contributions may

improve the group separation of healthy controls and schizophrenia.

Taken together these conclusions imply that schizophrenia is highly

likely to be characterized by subtle changes in white matter micro-

structure that are distributed across brain locations, rather than char-

acterized by severe focal lesions.
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