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Abstract

Background: Heat stress (HS) is a major stress event in the life of an animal, with detrimental upshots in
production and health. Long-non-coding RNAs (lncRNAs) play an important role in many biological processes by
transcriptional regulation. However, no research has been reported on the characterization and functionality of
lncRNAs in heat-stressed rats.

Results: We studied expression levels of lncRNAs in rats during HS, using strand-specific RNA sequencing. Six rats,
three in each of Control (22 ± 1 °C) and H120 (42 °C for 120 min) experimental groups, were used to screen for
lncRNAs in their liver and adrenal glands. Totally, 4498 and 7627 putative lncRNAs were identified in liver and
adrenal glands of the Control and H120 groups, respectively. The majority of lncRNAs were relatively shorter and
contained fewer exons than protein-coding transcripts. In total, 482 (174 up-regulated and 308 down-regulated)
and 271 (126 up-regulated and 145 down-regulated) differentially-expressed lncRNAs (DElncRNAs, P < 0.05) were
identified in the liver and adrenal glands of the Control and H120 groups, respectively. Furthermore, 1274, 121, and
73 target differentially-expressed genes (DEGs) in the liver were predicted to interact with DElncRNAs based on
trans−/cis- and sequence similarity regulatory modes. Functional annotation analyses indicated that these DEGs
were mostly significantly enriched in insulin signalling, myeloid leukaemia, and glucagon signalling pathways.
Similarly, 437, 73 and 41 target DEGs in the adrenal glands were mostly significantly enriched in the cell cycle
(trans-prediction) and lysosome pathways (cis-prediction). The DElncRNAs interacting with DEGs that encode heat
shock proteins (HSPs) may play an important role in HS response, which include Hsf4, Dnaja1, Dnajb4, Hsph1 and
Hspb1 in the liver, and Dnajb13 and Hspb8 in the adrenal glands. The strand-specific RNA sequencing findings were
also further verified through RT-qPCR.

Conclusions: This study is the first to provide a detailed characterization and functional analysis of expression levels
of lncRNAs in liver and adrenal glands of heat-stressed rats, which provides basis for further studies on the
biological functions of lncRNAs under heat stress in rats and other mammalian species.
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Background
Heat stress (HS) is one of the main abiotic stressors that
influence human and animal survival, welfare, and devel-
opment [1–3]. Escalating global warming, combined
with the global increase in the number of production
animals and the intensification of agriculture [4, 5], has
resulted in HS becoming a difficult challenge for live-
stock and poultry production. Heat stress leads to
enormous economic losses to the livestock production
industry [6], stemming from reduced production of
meat, egg, and milk, decreased fertility, and increased
morbidity and mortality [4, 7, 8]. The current trends in
the increase of global temperature [9, 10] indicate that it
is necessary and urgent to comprehensively investigate
the genetic and biological mechanisms of HS, as well as
develop long-lasting, cumulative, and significant
strategies for preventing HS.
Over the past decades, HS research has been carried

out in many species, such as humans [11], cattle [12],
pigs [13, 14], corals [15], and rats [16, 17]. However, the
regulatory mechanisms of HS are still unclear. Tran-
scriptome sequencing technology for animals [18, 19]
and cells [20] is becoming a suitable method for explor-
ing HS-related genes and biological pathways. Studies
have reported thousands of differentially-expressed
genes (DEGs) under certain HS conditions [21–24].
There are many processes that affect the expression of
genes, such as the regulation of long non-coding RNA
(lncRNA) [25]. LncRNA is a non-coding RNA longer
than 200 nucleotides in length and with more than two
exons. LncRNA can regulate gene expression at the tran-
scription and post-transcription levels [26]. Previous
studies have reported several lncRNAs playing crucial
role in HS response through interaction with transcrip-
tion factors [27] or feedback regulation of key stress re-
sponse proteins [28, 29]. Heat shock response is a major
and crucial defence mechanism during HS, which con-
tributes to cell recovery from heat shock damages, e.g.,
protein misfolding and aggregation [30, 31]. Further-
more, several lncRNAs have been identified in animals
under HS conditions [32–34]. However, the understand-
ing of the contributions of lncRNAs to the cellular HS
response is still unclear.
The liver and adrenal glands play a key role in main-

taining animal homeostasis during HS [19, 35, 36], but
the role of lncRNA during this process still requires in-
depth investigation. Therefore, the main aim of this
study was to perform a transcriptomic analysis of rat
liver and adrenal glands, following exposure to HS, to
identify related DEGs, differentially-expressed lncRNAs
(DElncRNAs), and key biological pathways related to HS
response in rats. Our findings will contribute to a better
understanding of the regulatory mechanisms of HS
response in rats and other mammals.

Results
Comprehensive identification of lncRNAs in liver and
adrenal glands
A total of ~ 29.9 and 28.3 million raw reads in the
liver and adrenal glands were obtained (Add-
itional file 2: Table S2), in which 29.8 and 28.1
million clean reads were aligned to the reference gen-
ome (Ensemble release version Rnor 6.0.91). The
average mapping rate of clean reads in the liver and
adrenal glands was 95.71 and 92.99%, respectively.
Subsequently, 484,530 and 613,791 unique transcripts,
both in liver and adrenal glands, were assembled from
H120 and Control rats, respectively.
Five filtering steps were performed for identifying can-

didate lncRNA (Fig. 1). Firstly, the assembled transcripts
were filtered with rat coding gene sequences. Almost
72.72% (352,401) and 72.79% (446,801) of transcripts in
liver and adrenal glands are coding genes, and the
remaining 27.27% (132,129) and 27.21% (166,990) of
transcripts are considered to be non-coding. Secondly,
the transcripts that might encode conserved protein do-
mains were further filtered out by comparing them to
two protein databases including (National Center for
Biotechnology Information) NCBI non-redundant (NR)
protein database and Universal Protein Resource (Uni-
Prot) database and, as a result, 12,840 and 20,850 tran-
scripts in the liver and adrenal glands were retained.
LncRNAs are usually defined as non-coding RNAs lon-
ger than 200 nucleotides and having more than two
exons. Based on these features, a third filter was applied,
and 4840 (37.52%) transcripts in the liver and 8258
(39.61%) transcripts in the adrenal glands were removed.
Finally, the coding-non-coding index (CNCI), the coding
potential assessment tool (CPAT), and the predictor of
lncRNAs and mRNAs based on the k-mer scheme
(PLEK) were used to evaluate the protein-coding poten-
tial, and 4498 and 7627 transcripts in the liver and
adrenal gland tissues were retained (Fig. 2). After
employing the four above mentioned stringent filters,
transcripts expressed only in one sample were also re-
moved. Finally, 4498 and 7627 transcripts in the liver
and adrenal gland tissues were considered as putative
lncRNAs (Fig. 2).

Classification and characterization of lncRNAs in liver and
adrenal glands
According to the location relative to the nearest protein-
coding gene (PCG), lncRNAs in the liver and adrenal
glands were further classified into four types, including
intergenic, intronic, sense, and antisense (Fig. 3a). About
45.75% of lncRNAs in the liver (Fig. 3a_left panel) and
57.31% of lncRNAs in the adrenal glands (Fig. 3a_right
panel) were located in intergenic regions, whereas 23.08
and 30.35% lncRNAs were transcripts most from
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introns. In addition, 19.45% of lncRNAs in the liver were
antisense of PCGs, which were more frequent than those
lncRNAs that overlapped with genes (11.72%). The same
feature was also found in adrenal glands, i.e. the number
of antisense lncRNAs was 2.44 times greater than that of
sense lncRNAs (Fig. 3a_right panel).
Figure 3b and c show the transcript length and num-

ber of exons of lncRNAs compared to protein-coding
transcripts. Figure 3b shows that almost 70.8% of
lncRNAs in the liver ranged in size from 200 to 1000
nucleotides, with only 29.20% > 1000 nucleotides. In
contrast, about 86.15% of protein-coding transcripts
were > 1000 nucleotides (Fig. 3b_left panel). In the ad-
renal glands, similar characteristics of lncRNAs and
protein-coding transcripts were observed with 55.79% of
lncRNAs having > 1000 nucleotides and 90.09% of
protein-coding transcripts having> 1000 nucleotides

(Fig. 3b_right panel). Interestingly, most of the
lncRNAs of the liver and adrenal glands (86.11 and
86.89%, respectively) contained two to three exons,
while the number of exons of protein-coding tran-
scripts ranged from two to over ten (Fig. 3c). These
statistics indicated that the majority of lncRNAs were
relatively shorter and contained fewer exons than
protein-coding transcripts.

Identification of temperature-dependent differentially-
expressed lncRNAs (DElncRNAs)
A total of 482 and 271 DElncRNAs (P < 0.05) in the liver
and adrenal glands were obtained and further divided
into six categories according to fold change (FC) values
(Table 1 and Additional file 3: Table S3). The top 20
DElncRNAs in the liver (12 up-regulated and 8 down-
regulated) and adrenal glands (11 up-regulated and 9

Fig. 1 The detailed schematic pipeline of long-non-coding RNA (lncRNA) transcripts identification. Control was kept at room temperature (22 ±
1 °C, relative humidity [RH] (%): 50%); H120 were subjected to 42 °C and RH 50% for 120 min. NR: (National Center for Biotechnology Information)
NCBI non-redundant (NR) protein database; UniProt: Universal Protein Resource; CNCI: coding-non-coding index; CPAT: the coding potential
assessment tool; PLEK: predictor of lncRNAs and mRNAs based on the k-mer scheme
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down-regulated) were used for clustering analyses, which
indicated clearly-clustered results (Fig. 4a). Three
samples (rats) for each treatment group were clustered
together. Additionally, 13 DElncRNAs were shared be-
tween the liver and adrenal glands (Fig. 4b), 469 and 258
DElncRNAs were identified in the liver and adrenal
glands, respectively, as having tissue-specific expression.
Among which, most lncRNAs (63.54%) were down-
regulated in the liver, and over half (54.6%) of lncRNAs
were down regulated in the adrenal glands. The log-
transformed relative expression FC of ten lncRNAs in
H120 and Control groups generated from real-time
quantitative PCR (RT-qPCR) were in line with the re-
sults of RNA-seq data (Fig. 4c). The Pearson correlation
coefficient (PCC) between RT-qPCR and RNA-seq was
as high as 0.88, which confirmed the reliability of the
RNA-seq analysis.

Functional prediction of DElncRNAs
Construction of co-expression network between DElncRNAs
and target DEGs
A total of 3909 and 4953 DEGs (q < 0.05) were identified
in rat liver and adrenal glands in a previous study [22].
The co-expression network between DElncRNAs and
DEGs in the liver and adrenal gland tissues was created
(Fig. 5). 1,935,712 connections between DElncRNAs and
DEGs in the liver were identified, in which 44.46% were
positive connections, and 55.54% were negative connec-
tions (Fig. 5a_left panel). Furthermore, among all
relationships, the PCCs of 14.79% were between − 0.8
and − 0.6 and followed by 13.16% connections between

0.8 and 1.0. In the adrenal glands, 1,492,397 links were
identified between DElncRNAs and DEGs; the positive
and negative associations were 47.00 and 53.00%, re-
spectively. Moreover, most PCCs between DElncRNAs
and DEGs in the adrenal glands (15.41%) ranged from −
0.8 to − 0.6, followed by 12.14% PCCs between − 0.6 and
− 0.4 (Fig. 5a_right panel). In order to better indicate the
relationship between the DElncRNAs and DEGs, the
connections with high correlation |PCC| > 0.99 were se-
lected for further analyses (Fig. 5b). Three thousand
seven hundred twenty-five connections including 317
DElncRNAs and 1274 DEGs, and 1969 connections in-
cluding 139 DElncRNAs and 437 DEGs in the liver and
adrenal glands were retained (Additional file 4: Table
S4). All connections between DElncRNAs and DEGs
were then divided into 6 or 7 categories in the liver and
adrenal glands, respectively (Fig. 5b). The largest number
of connections between DElncRNAs and DEGs in the
liver was identified in the cluster of one DElncRNAs
interacting with 11 ~ 20 DEGs, which includes 81 unique
DElncRNAs and 648 DEGs. Only one DElncRNA
(TCONS_00000716) was found to interact with 57 DEGs
when HS occurred. Four hundred eighty-two connec-
tions in the adrenal glands were clustered in the classifi-
cation of one DElncRNA interacting with 21 ~ 30 DEGs,
which includes 20 unique DElncRNAs and 207 unique
DEGs. Therefore, Fig. 5 shows that multiple lncRNAs
might regulate one DEG and, on the contrary, multiple
DEGs may be regulated by a single lncRNA.
The functions of 1274 and 437 DEGs interacting with

317 and 139 DElncRNAs in the liver and adrenal glands

Liver Adrenal gland

Fig. 2 The Venn diagram for prediction of coding potential of non-coding transcripts in liver and adrenal glands. The > 2 SAMPLES means that
only transcripts identified in at least two samples were retained for further analyses
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were annotated (Additional file 5: Table S5 and Add-
itional file 6: Figure S1A). In the liver, 1274 DEGs were
significantly enriched (P < 0.05) in 124 biological process
(BP) terms, such as response to heat (GO: 0009408),

response to hypoxia (GO: 0001666), response to un-
folded protein (GO: 0006986), and biosynthesis and me-
tabolism of glucose and fat acid (e.g., GO: 0042593, GO:
0006633 and GO: 0071397). The Kyoto Encyclopedia of

Fig. 3 The classification and characterization of lncRNAs identified in liver and adrenal glands. a Number of lncRNAs in different categories. b
Transcript lengths of protein-coding transcripts and lncRNAs. c Number of exons per transcript for protein-coding transcripts and lncRNAs. Left
panel depicts results for liver and right panel for adrenal glands
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Genes and Genomes (KEGG) analysis showed 20 signifi-
cantly enriched pathways (P < 0.05) in liver (Additional
file 6: Figure S1A_left panel), some of which were associ-
ated with glucose and fat acid metabolism (e.g., adipocy-
tokine signaling pathway), hormone regulation (e.g.,
estrogen signaling pathway), and cancer pathways (e.g.,
PPAR signaling pathway), suggesting that HS response
may be a complex process comprising of neurohormonal
regulation, energy metabolism, and immune response.
Twenty-six BPs were significantly enriched (P < 0.05) by
437 DEGs in the adrenal glands (Additional file 5: Table
S5), with three of them shared with liver, i.e. glycosami-
noglycan biosynthetic process (GO: 0006024), protein
phosphorylation (GO: 0006468) and cellular response to
amino acid starvation (GO: 0034198). Furthermore, five
significant pathways (P < 0.05) were detected (Additional
file 6: Figure S1A_right panel), but none of them were
shared in the liver.

Cis-prediction of DElncRNAs
A total of 512 and 545 genes were predicted in the liver
and adrenal glands, with 121 and 191 DEGs (Additional
file 7: Table S6). Functional annotation of all the pre-
dicted genes (Additional file 8: Table S7) and only the

DEGs (Additional file 9: Table S8 and Additional file 6:
Figure S1B) were performed. In the liver, 121 DEGs
were significantly enriched (P < 0.05) in 13 BPs, includ-
ing the radial glial cell differentiation (GO: 0060019)
with the highest fold enrichment score of 67.44,
followed by CDP-choline pathway (GO: 0006657) and
JAK-STAT cascade involved in growth hormone signal-
ing pathway (GO: 0060397). All DEGs in the liver were
enriched in five pathways, and only one pathway, acute
myeloid leukemia (rno05221), was significantly
enriched (P < 0.05) under the H120 treatment. In the
adrenal glands, 33 BPs (Additional file 9: Table S8), as
well as four pathways [e.g., lysosome (rno04142),
peroxisome (rno04146), gap junction (rno04540) and
NF-kappa B signaling pathway (rno04064)], were sig-
nificantly enriched (P < 0.05). Furthermore, the NF-
kappa B signaling pathway has been shown to play a
crucial and major role during heat stress response
through activating autophagy [37].

Identification of DElncRNAs & DEGs interaction based on
similarity search method
In order to perform the functional prediction for the
DElncRNAs more comprehensively, the potential

Table 1 Statistical summary of number of lncRNAs (DElncRNAs) identified in liver and adrenal gland tissues in H120 vs. Control
groups

Criteria Expression
models

Liver Adrenal glands

DElncRNAs (P < 0.05) DElncRNAs (P < 0.05)

No filtering of FC Total 482 271

Up 174 126

Down 308 145

|FC| > 2 Total 122 173

Up 61 85

Down 61 88

|FC| > 4 Total 34 78

Up 20 42

Down 14 36

|FC| > 5 Total 17 57

Up 10 32

Down 7 25

|FC| > 8 Total 7 42

Up 2 20

Down 5 22

|FC| > 10 Total 5 34

Up 1 15

Down 4 19

Total means the total number of differentially expressed lncRNAs (DElncRNAs, P < 0.05). Up means the up-regulated DElncRNAs in liver and adrenal glands when
comparing H120 vs. Control groups. Down means the down-regulated DElncRNAs in liver and adrenal glands when comparing H120 vs. Control groups
FC fold change
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lncRNA-mRNA interactions based on the similarity-
search method was investigated. Overall, 17,251 poten-
tial RNA-mRNA interactions in the liver were detected
between 1180 DElncRNAs and 364 genes, and 9917
potential RNA-mRNA interactions between 1985
DElncRNAs and 171 genes were identified in the adrenal
glands (Additional file 10: Table S9). In the liver,
functional enrichment analysis of the 364 genes revealed

28 significantly enriched BPs (P < 0.05), which were
mainly engaged in cell proliferation, positive regulation
of GTPase activity and vesicle-mediated transport
(Additional file 11: Table S10). For the KEGG analysis,
eight pathways were detected, two of which are related
to cellular growth and development (P < 0.05; Additional
file 6: Figure S1C_left panel). Furthermore, 26 BPs were
identified in the adrenal glands (P < 0.05), with some

Fig. 4 Hierarchical clustering and validation analysis of the specific differentially-expressed lncRNAs (DElncRNAs). a The Pheatmap of the top20
DElncRNAs in liver and adrenal glands. b The Pheatmap of commonly identified DElncRNAs in liver and adrenal glands. c The comparative
analysis of the expression level of randomly selected lncRNAs in liver and adrenal glands using RNA-seq and RT-qPCR. The log (10 + 1)-transformed
FPKM values of DElncRNAs (rows) are clustered using hierarchical clustering, and the samples are grouped according to the similarity of
expression profiles of DElncRNAs
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pathways positively regulating the transcription from the
RNA polymerase II promoter, positively regulating tran-
scription, DNA-template, and stimulating cell and
neuron development (Additional file 11: Table S10).
Twenty significantly regulated pathways were detected
in the adrenal glands (Additional file 6: Figure S1C_right
panel), 15 of them are directly engaged in different types
of cancer, suggesting that innate immunity and
inflammation-related pathways in the adrenal glands
could be mobilized to respond to HS. In addition, path-
ways such as the MAPK signaling pathway [38] and the
GnRH signaling pathway [39] have been reported in pre-
vious HS studies.
By combining the DEGs identified in the current

study, 73 (48 up-regulated and 25 down-regulated) and
41 (12 up-regulated and 29 down-regulated) target genes

in the liver and adrenal glands were differentially
expressed. Functional annotation of these DEGs is
shown in Additional file 12: Table S11. Seventy-three
DEGs in the liver were significantly enriched (P < 0.05)
in the process of muscle development, such as striated
muscle contraction (GO: 0006941), myosin filament as-
sembly (GO: 0031034), muscle contraction (GO:
0006936), and forebrain development (GO: 0030900).
Whilst, these DEGs were also significantly involved (P <
0.05) in the pathways of glucagon signaling and tight
junction. Functional annotation for the 41 DEGs ob-
tained in the adrenal glands revealed that the positive
regulation of axon regeneration (GO: 0048680), which
showed the highest fold enrichment score of 106.27, was
significantly enriched (P < 0.05) and the DEGs Ndel1 and
Braf were both up-regulated. Furthermore, the other

Fig. 5 Statistical analysis of co-expression and the classification of the correlation frequency between DElncRNAs and differentially-expressed
genes (DEGs). a Pearson correlation coefficient (PCC) analyses between DElncRNAs and DEGs in liver and adrenal glands. b Statistical analysis of
the number of DEGs related to the same DElncRNAs
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significantly-enriched BP term was phospholipid trans-
location (GO: 0045332) and the enriched genes ATP10a
and ATP8b5p were all down-regulated. A remarkable
finding was the significantly-enriched (P = 0.026) cellular
component (CC) term of extracellular exosome (GO:
0070062) with 11 genes in the adrenal glands being part
of the extracellular exosome, of which four genes were
up-regulated and seven genes were down-regulated
(Additional file 12: Table S11). No pathway was signifi-
cantly enriched in the adrenal glands.

The interaction between DElncRNAs and DEGs encoding
the heat shock proteins (HSPs)
Heat stress may induce misfolding and aggregation of
proteins, halt the whole proteins translation, and further
cause the apoptosis of cells [31]. The HSP/chaperone
network is a major component of multiple stress re-
sponses, which is recruited under HS and manage pro-
tein folding [30]. From a previous study, 30 and 33
genes of the HSP family genes in the liver and adrenal
glands were differentially expressed, with fold change
ranging from 0.19 to 28.03 and from 0.11 to 183.84 [22].
All of these 30 HSP encoding genes in the liver were sig-
nificantly enriched (P < 0.05) in 5 BP terms, such as
chaperone-mediated protein folding (GO: 0061077), re-
sponse to heat (GO: 0009408), ATPase regulator activity
(GO: 0060590), protein refolding (GO: 0042026), and
regulation of transcription from RNA polymerase II pro-
moter in response to stress (GO: 0043618) (Fig. 6a). The
33 genes in the adrenal glands were significantly
enriched (P < 0.05) in 6 BP terms, and 2 of them (GO:
0061077 and GO: 0009408) were shared with liver tissue
(Fig. 6b). The predictive analysis of target genes for the
lncRNAs also displayed 19 and 6 HSP encoding genes in
the liver and adrenal glands, respectively (Fig. 6a).
Among which, 15 and 5 DEGs in the liver and adrenal
gland tissues were regulated by DElncRNAs (Fig. 6c and
d). The interactions among different HSP encoding
DEGs and DElncRNAs indicate that lncRNAs play a cru-
cial role in post-transcriptional regulation of HS-related
genes.

Discussion
Over the past decades, with the discovery of few new
classes of regulatory non-coding RNAs, an increasing
amount of evidences reveals that lncRNAs are engaged
in many BPs, such as transcriptional [40, 41] and epigen-
etic regulation [42, 43], regulation of cell growth [44, 45]
and those contributing towards disease etiology [46].
The HS response process is no exception, as lncRNAs
are being identified as mediators of general transcription
repression of genes [47, 48]. However, a comprehensive
analysis of the profiles of lncRNAs showing differential
expression under low and mild HS conditions has not

yet been reported. In the present study, a well-
established HS-rat model was used to explore the ex-
pression profile and potential functions of lncRNAs in-
volved in the HS response process in rat liver and
adrenal glands by strand-specific RNA-seq. Notably, this
study investigated for the first time the expression pat-
tern of lncRNAs in adrenal glands under HS treatment.
A total of 4498 and 7627 transcripts were identified in
the liver and adrenal glands, which were considered as
putative lncRNAs (Figs. 1 and 2). The majority of
lncRNAs in the liver and adrenal glands is located in
intergenic regions, which is consistent with previous
studies performed in other mammalian [49, 50], plant
[51, 52] and fungal [53, 54] species. In addition, previous
research showed that animal lncRNAs are shorter and
have fewer exons than PCGs [55, 56], which is in line
with our findings (Fig. 3b and c).
LncRNAs have been reported to be involved in regula-

tion of the HS response in some species [19, 34, 57, 58].
In our analysis, 482 (174 up-regulated and 308 down-
regulated) and 271 (126 up-regulated and 145 down-
regulated) DElncRNAs in rat liver and adrenal glands
were identified under H120 condition, respectively
(Table 1). Out of them, 13 DElncRNAs were shared in
the liver and adrenal gland tissues (Fig. 4b), which might
be meaningful for exploring the regulatory mechanism
between the hypothalamic-pituitary-adrenal axis (HPA
axis) and liver under HS. It has been reported that
lncRNA modulate the transcription of genes by several
different actions, including trans-regulatory, in which
lncRNAs themselves co-regulate their distant genes; cis-
regulatory, in which lncRNAs control the expression of
their neighbouring genes; or they interact with the pre-
mRNA based on the sequence similarity [26, 50, 59].
Therefore, in order to further demonstrate the potential
function of lncRNAs in the HS process, the putative
tran- and cis-regulatory, as well as sequencing similarity
regulatory module, were analysed. Furthermore, all the
3909 and 4953 DEGs in the liver and adrenal glands
were used as targets for DElncRNAs and performed
functional annotation for the DEGs that met various
rules of function prediction (Additional file 6: Figure S1
and Additional file 5: Table S5, Additional file 8: Table
S7, Additional file 9: Table S8, Additional file 11: Table
S10, Additional file 12: Table S11). The findings are con-
sistent with results of our previous study [60] and other
literature reports [54]. Furthermore, the shared pathways
produced from target DEGs in the liver and adrenal
glands might contribute to the understanding the poten-
tial crosstalk mechanisms between two tissues under HS
treatment [61].
The importance of HSP family in regulating the

process of the HS response has been highlighted in very
early studies [62, 63]. The protection provided by HSPs
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gives ability for organisms to cope with HS at high tem-
peratures. Furthermore, previous studies have discovered
the crucial role of several lncRNAs in the regulation of

the HS response [64, 65]. For instance, the drosophila
hsr-omega (hsrω) non-coding RNA, which might be the
most extensively studied lncRNA, is induced by heat
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shock [66–68]. The heat shock RNA-1 (HSR1) is one of
the earliest reported lncRNAs participating in the HS re-
sponse by regulating the activation of HSF1 [69]. In
stress-free cells, HSF1 can bind to some chaperones,
such as HSPC1/HSP90. When HS occurs, HSF1 is
released and binds to heat shock elements in the HSP
encoding gene promoter, thereby inducing its transacti-
vation [64]. In summary, it is important to investigate
the impact of lncRNAs on HS response from the per-
spective of heat shock response. In the present study,
the DEGs that encode HSPs were functionally annotated
(Fig. 6a) and participated in interaction networks with
DElncRNAs by trans-, cis- and similarity regulatory ana-
lyses (Fig. 6b). Two HSF genes, Hsf4 and Hsf2, in the
liver were found to interact with one (TCONS_
00002046) and four (TCONS_00002592, TCONS_
00001714, TCONS_00003953 and TCONS_00003953)
DElncRNAs by cis- and trans-action, respectively. Fur-
thermore, the Hsf4 was down-regulated (q < 0.05) with a
FC greater than five after H120. It has been reported
that Hsf4 can interact with the canonical heat shock
element of the alphaB-crystallin gene (Hspb6 in rat),
whilst, Hsf2 is heat-inducible and functions in heat
shock-induced autophagic cell death [70, 71]. In
addition, among all the DEGs encoding HSPs with a fold
change greater than 5, the Dnaja1, Dnajb4, Hsph1,
Hspb1 genes in the liver, and Dnajb13 and Hspb8 genes
in the adrenal glands are all known to play diverse roles
in HS regulation [21, 72–75]. The DElncRNAs that
interacted with DEGs encoding HSPs are worth explor-
ing further to find out the specific role of lncRNAs in
mRNA transcription and post-transcriptional regulation
during HS.

Conclusions
Many lncRNAs involved in the HS response in rat liver
and adrenal gland tissues were discovered and character-
ized, and their potential cis-, trans-, and sequencing
similarity acting functions were predicted based on their
corresponding target DEGs. These findings provide a
catalogue of rat liver and adrenal glands lncRNAs and
will contribute to a better understanding of the regula-
tory mechanisms of HS responses in rats and other
mammalian species. Future studies are required to ex-
plore the physiological functions and the mechanisms by
which these lncRNAs respond to HS.

Methods
Animals and treatments
In a previous research [22], a total of 99 eight-week-old
pathogen-free female Sprague-Dawley rats (Beijing Vital
River Laboratory Animal Technology Co., Ltd., Beijing,
China), weighing 205 ± 7.16 g, were used to establish HS
model under various HS conditions. Eighteen of them

were assigned to the HS treatment (H120; 42 °C for 120
min). Ten rats, including 5 rats from Control group and
5 from the H120 group were used to perform the RNA-
seq. Based on the PCC of samples, 3 rats in each group
were selected for lncRNA-seq. Prior to the beginning of
the HS experiment, all experimental rats were housed (3
rats per cage) at 22 ± 1 °C and 50% room humidity with
the light/dark cycle (on 06:00 AM, off 18:00 PM) for 1
week. During the whole experiment, rats were given ac-
cess to feed and water ad libitum. Moreover, the experi-
ment was performed in the floor-standing artificial
climate incubator (BIO250, BOXUN Medicine Instru-
ment Co, Shanghai, China). Rats in the Control group
were never introduced to the incubator and were placed
at room temperature. The experiment was conducted
with healthy and conscious rats.

Tissue collection and RNA extraction
The experimental rats were anesthetized by intraperito-
neal injection of 1%, 1.2 mL sodium pentobarbital (40
mg/kg of body weight) [76]. After 2 min, all anesthetized
animals were immediately euthanized by cardiac blood
collection just after loss of consciousness. The protocols
of blood samples collection were reported previously
[77, 78]. Briefly, the hair on the abdomen of animals was
cut with sterile surgical scissors (Shinva Medical Instru-
ment Co.Ltd., Shandong, China) and the skin was disin-
fected with 75% alcohol. Then, rats were held with left
hand and kept in dorsal recumbency position at an ap-
proximately 30° angle (head lowermost). A #4 needle
was inserted into the rat’s heart by the right hand at the
3rd and 4th intercostal space. About 4 mL blood sample
was collected, the rat’s abdomen was quickly dissected
by sterile surgical scissors and forceps (Shinva Medical
Instrument Co.Ltd., Shandong, China). Then the liver
and adrenal glands were collected, washed in ice-cold
phosphate buffer solution (PBS) and snap-frozen imme-
diately in liquid nitrogen. Total RNA of the liver and ad-
renal glands was extracted using RNA regent (HUAY
UEYANG Biotechnology (Beijing) Co. Ltd) according to
the manufacture’s protocol. NanoDrop 2000 (Thermo
Fisher Scientific, Waltham, MA) was used to measure
the concentrations and purity of RNA. The RNA Nano
6000 Assay Kit of the Agilent Bioanalyzer 2100 system
(Agilent Technologies, CA, USA) was employed to as-
sess the integrity of RNA integrity.

Transcriptome library construction and paired-end strand-
specific transcriptome (rRNA-free) sequencing
The protocols of transcriptome library construction and
paired-end strand-specific transcriptome sequencing
were previously reported [79]. Briefly, 3 μg RNA per
sample was used for RNA-seq library construction.
Firstly, due to some lncRNAs lacking the poly (A) tail,

Dou et al. BMC Genomics          (2021) 22:122 Page 11 of 16



Epicentre Ribo-zero™ rRNA Removal Kit (Epicentre,
USA) was used to remove the ribosomal RNA from the
total RNA, and ethanol precipitation was used to clean
up the rRNA free residue. Subsequently, the rRNA-
depleted RNA by NEBNext® Ultra™ Directional RNA Li-
brary Prep Kit for Illumina® (NEB, USA) was used to
produce sequencing libraries according to the manufac-
turer’s recommendations. Then, the random hexamer
primer and M-MuLV Reverse Transcriptase (RNaseH-)
were employed to synthesize the first-strand cDNA, and
the DNA Polymerase I and RNase H was subsequently
used to synthesize the second-strand cDNA. The 3′ ends
of DNA fragments was adenylated and NEBNext
Adaptor with hairpin loop structure was ligated to pre-
pare for hybridization. With the purpose of selecting
cDNA fragments of favorably 250 ~ 300 bp in length, the
AMPure XP system (Beckman Coulter, Beverly, USA)
was selected to purify the library fragments. Before PCR
experiment, 3 μL USER Enzyme (NEB, USA) was used
with size-selected, adaptor-ligated cDNA at 37 °C for 15
min followed by 5 min at 95 °C. In the PCR experiment,
the Universal PCR primers, Index (X) Primer and Phu-
sion High-Fidelity DNA polymerase were added in the
reaction system. At last, AMPure XP system and the
Agilent Bioanalyzer 2100 system was used to purify the
products and evaluate the library quality, respectively. A
cBot Cluster Generation System using HiSeq 4000 PE
Cluster Kit (Illumina, NEB, USA) was used to cluster the
index-coded samples following the manufacturer’s in-
structions. Subsequently, an Illumina Hiseq 4000 plat-
form was used to sequence the library preparations and
produced 150 bp paired-end reads.

Transcriptome library construction and paired-end RNA-
sequencing
In a previous research [22], the mRNA profiles in the
liver (n = 5) and adrenal glands (n = 5), including the
same samples of liver and adrenal glands sequenced by
strand-specific transcriptome sequencing in the current
study, were analyzed using the RNA-seq technique.
Briefly, the library was sequenced in a paired-end reads
modus of 150 bp per read using Illumina® HiSeq 2000
platform. Furthermore, in this previous study, genome-
wise false discovery rate (FDR), termed as q-value was
calculated for differential expression analysis, and genes
with q < 0.05 were selected as DEGs [22].

Quality control for sequencing data and assembly of RNA
transcripts
All sequencing reads were quality checked and trimmed
to remove reads containing adapters, reads with more
than 10 Ns and low-quality reads (i.e., more than 50% of
the reads with a quality score of less than 10 or read
length < 30) from raw data. The quality of clean data was

assessed via the software of FastQC version 0.11.7 [80]. At
the same time, Q20, Q30, and GC content of the clean
data were calculated. All the downstream analyses were
based on clean data with high quality. The clean reads
were aligned with the rat reference genome (Ensemble re-
lease version Rnor 6.0.91, ftp://ftp.ensembl.org/pub/
release-95/genbank/rattus_norvegicus/) using Hisat2
version 2.1.0 [81]. Reads met with the minimum isoform
fraction 0.01 and minimum reads per bp coverage were
assembled and quantified using String Tie version 1.3.6
[82]. The fragments per kilobase of exon model per mil-
lion reads mapped (FPKM [controlling for fragment
length and sequencing depth]) values were used to esti-
mate the expression of genes and transcripts.

Bioinformatics analysis for identification of LncRNA
All transcripts were divided into PCGs and non-coding
transcripts after the reference genome annotation. A
non-coding transcript that overlapped with PCGs,
shorter than 200 nucleotides and containing single exon
were filtered out. Then filtered transcripts were aligned
against to the NCBI NR database (www.ncbi.nlm.nih.
gov/protein) and UniProt rat_10116 protein database
(www.uniprot.org) [83]; any transcripts which shown
sequence similarity with any of these proteins with a
cut-off E value of 10− 5 were removed. After these two
filtering steps, the software CNCI version 2 [84], PLEK
version 1.2 [85], CPAT version 2.0 [86] were used to
predict the coding potential of transcripts. The candidate
transcripts with no putative coding potential (CNCI
score < 0), PLEK score < 0, and coding probability cut-off
value of CPAT < 0.44 were considered as final lncRNAs.
Furthermore, the final lncRNAs only identified in at
least two samples were used for further analyses.

Classification and characteristic analysis of LncRNAs
The identified lncRNAs were further classified as inter-
genic, intronic, sense, and antisense lncRNAs based on
the spatial relationships of their transcripts loci with
PCGs using Cuffcompare tool [50]. The transcripts
length and exon number for protein-coding transcripts
and lncRNA transcripts were assessed [52]. The propor-
tion of different kinds of lncRNAs and protein-coding
transcripts was calculated.

DElncRNAs between H120 and control
The identification of DElncRNAs in the liver and adrenal
glands between H120 and Control was carried out using
Ballgown package of R version 3.5.3 (TUNA Team,
Tsinghua University, Beijing, China). The FC of
lncRNAs were calculated as log2 (FPKM H120/FPKM
Control) and lncRNAs with P < 0.05 were identified as
DElncRNAs.
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Validation of LncRNAs transcripts by real-time
quantitative PCR (RT-qPCR)
A total of 2 mL RNA of the liver were transcribed into
cDNA using the cDNA Synthesis SuperMix kit (Trans,
Beijing, China). Ten lncRNAs, including nine top 20
DElncRNAs and one non-significantly expressed
lncRNA, but with high expression levels, were randomly
selected to carry out the RT-qPCR. The glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as the
internal standard to normalize the expression level of
target genes. Primers for GAPDH and lncRNAs were de-
signed using Primer-BLAST (www.ncbi.nlm.nih.gov/tools/
primer-blast/index.cgi?LINK_LOC=BlastHome) [87] and
double-checked by Oligo v7 (Molecular Biology Insights,
Inc., Cascade, CO, USA). All the primers were synthesized
by Shanghai Sangon Biotech Co., Ltd. (Shanghai, China)
and were specified in Additional file 1: Table S1. Each re-
action was performed in 20mL mixtures, including 2mL
diluted cDNA sample as template, 10mL SYBR Premix
Ex Taq (2х) (TaKaRa, Kyoto, Japan), 1 mL forward and 1
mL reverse gene-specific primers and 6mL ddH2O. The
PCR reaction procedure comprised an initial degeneration
at 95 °C for 10min, 45 cycles of degeneration at 95 °C for
10 s, annealing at 58 °C for 15 s, and extension at 72 °C for
15 s, followed by a final extension at 72 °C for 30 s. The
comparative threshold cycle (Ct) value method was
adopted to analyze the relative gene expression. Triplicate
RT-qPCRs were accomplished on each cDNA. RNA ex-
pression levels relative to the GAPDH gene were calcu-
lated as 2-△△Ct according to previous research [88]. In
order to compare the results of the RNA-seq analysis and
RT-qPCR, fold change values were log2 transformed.

Investigation of trans/cis/binding nuclei-target genes’
regulation and functional annotation of the target genes
Three methods were used to predict the target genes of
the DElncRNAs based on the different action modes of
lncRNA. One was trans-prediction [89], in which the
principle of prediction was the co-expression relation-
ship between lncRNA and their target protein-coding
genes. Pearson correlation coefficient between expres-
sion patterns were calculated by R software, using the
expression values of DElncRNAs, target genes, and tar-
get DEGs identified in our previous research [22]. In
order to show a more accurate and intuitive relationship
between DElncRNAs and DEGs, only highly correlated
(|PCC| > 0.99) expressions were selected to construct the
interaction network. The other action mode analyzed
was cis-prediction [90], which was based on the adjacent
positional relationship between DElncRNAs and target
genes. The DElncRNA-mRNA pairs located on the same
chromosome within 100 kb were identified as potentially
cis-regulated. This analysis was completed using the

BioMart tool of Ensemble genome browser 98 online
(http://useast.ensembl.org/biomart/martview/8cae5041
d3bb22709301ea05f556fc84) [91]. The last prediction
was based on the similarity-search method. The detailed
analysis process was according to a previously published
paper [50]. All the predicted target genes of DElncRNAs
were annotated with publicly available databases, includ-
ing Gene Ontology terms (GO, http://geneontology.org/
docs/go-enrichment-analysis/) and KEGG (https://www.
genome.jp/kegg/pathway.html) databases. The functional
enrichment results of genes with P < 0.05 were consid-
ered as significant.

Construction of interaction network for heat shock
proteins (HSPs) encoding DEGs and DElncRNAs
All DEGs encoding HSPs were searched in the DEGs list
and annotated by the ClueGO software [92]. The inter-
action networks among DEGs encoding HSPs and their
interacting DElncRNAs were constructed and visualized
by the Cytoscape version 3.7.2 [93].
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