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Abstract: The use of magnetism in medicine has changed dramatically since its first application by the
ancient Greeks in 624 BC. Now, by leveraging magnetic nanoparticles, investigators have developed
a range of modern applications that use external magnetic fields to manipulate biological systems.
Drug delivery systems that incorporate these particles can target therapeutics to specific tissues
without the need for biological or chemical cues. Once precisely located within an organism, magnetic
nanoparticles can be heated by oscillating magnetic fields, which results in localized inductive heating
that can be used for thermal ablation or more subtle cellular manipulation. Biological imaging can
also be improved using magnetic nanoparticles as contrast agents; several types of iron oxide
nanoparticles are US Food and Drug Administration (FDA)-approved for use in magnetic resonance
imaging (MRI) as contrast agents that can improve image resolution and information content. New
imaging modalities, such as magnetic particle imaging (MPI), directly detect magnetic nanoparticles
within organisms, allowing for background-free imaging of magnetic particle transport and collection.
“Lab-on-a-chip” technology benefits from the increased control that magnetic nanoparticles provide
over separation, leading to improved cellular separation. Magnetic separation is also becoming
important in next-generation immunoassays, in which particles are used to both increase sensitivity
and enable multiple analyte detection. More recently, the ability to manipulate material motion
with external fields has been applied in magnetically actuated soft robotics that are designed for
biomedical interventions. In this review article, the origins of these various areas are introduced,
followed by a discussion of current clinical applications, as well as emerging trends in the study and
application of these materials.

Keywords: magnetic nanoparticles; iron oxide; magnetic resonance imaging; magnetothermal heat-
ing; magnetic separation; superparamagnetic; drug delivery; gene delivery; magnetic particle imag-
ing; microfluidics

1. Introduction

Magnetism has been linked to medicine for thousands of years. It is thought that the
Greek scientist and astronomer, Thales of Miletus, was the first person to apply magnetic
materials to organisms as early as 624–547 BC. His work led to a cultural belief in the
healing powers of lodestones that persisted for centuries [1]. In the 14th century, the Swiss
doctor and alchemist, Paracelsus, wrote the Volumen Medicinae Paramirum which detailed
how to manipulate the health of a body using magnets. After seeing the way that magnets
could attract iron, he hypothesized that magnets could be used to attract diseases from
the body in the same way [1]. Several hundred years later, in 1892, the first definitive
study of magnets on organisms was completed. Five humans and one dog were exposed
to magnetic fields of roughly several thousand gauss or several thousand times the earth’s
magnetic field, but no measurable effect was observed [2]. The first modern discussion of
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the prospects for magnetism in medicine was published in 1962 by Freeman et al., who
predicted that magnetism would emerge as a powerful tool for biochemical analysis and
medical diagnosis [3].

By the 1970s, the significance of magnetism in medicine was a reality in diagnostic
imaging, but broader applications remained elusive until the development of nanotechnol-
ogy. Magnetic resonance imaging (MRI) transitioned from the laboratory into the clinic
in the early 1970s, and it was soon widely applied for detecting cancerous tumors [4].
Because of MRI scanners, doctors, for the first time, had access to instruments capable
of applying large magnetic fields (Bo > 2 T) and this inspired many to explore how mag-
netism could be used for more than just imaging. Unfortunately, this avenue of research
resulted in little new applications and conventional MRI imaging remained the dominant
use of magnetism in medicine. However, with the advent of nanotechnology in the 1980s,
native tissue could be transformed into magnetically responsive material using magnetic
nanoparticles. This opened the door to a much wider set of potential medical applications.
With appropriate surface functionality, magnetic nanoparticles, being typically less than
a few hundred nanometers in dimension, could be used to label cells and biomolecules,
thereby endowing tissues and other biological molecules with useful magnetic properties.
The early applications of this new capability included the magnetic guidance of catheters
for the treatment of bradycardic arrhythmia, movement of unerupted teeth in dentistry,
and even magnetic intrauterine devices (IUD) for contraception [1].

Since the 1990s, there has been an explosion of research seeking to develop diverse
medical applications for magnetic nanoparticles. In all cases, external magnetic fields
interact with ferrimagnetic nanoparticles that can associate or interact with tissue, cells,
or biomolecules allowing for applications from molecular imaging to magnetothermal
heating (Figure 1). Superparamagnetic iron oxide nanocrystals (SPIONs) are central to
these technologies; these materials (Figure 1) are made from iron oxide, but, because
of their small dimensions, they do not exhibit any magnetization unless they are in an
external magnetic field [5]. This is especially desirable for biological applications due
to the decreased potential for aggregation in the absence of applied fields [6]. Figure 1
presents a loose classification of this large set of scientific literature based on the underlying
goals of the technology: treatment, imaging, directed movement, and diagnostics. MRI
imaging is a mature area of clinical practice, and the US Food and Drug Administration
(FDA) has approved magnetic nanoparticles for use as MRI contrast agents, but most
have been discontinued commercially [7]. Also notable is the widespread use of magnetic
nanoparticles, typically referred to as “beads” by the analytical community, to facilitate
immunoassays and other medical diagnostics. Emerging applications include cancer
therapies, drug delivery, and magnetothermal schemes for disease therapy, as well as the
controlled movement and direction of magnetic particles within organisms. While some of
these examples have reached Phase 1 clinical trials, widespread clinical application has not
yet been achieved [8–10].
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Figure 1. The applications of magnetic particles can be classified into four categories depending on 
the aim of the technology. Imaging and in vitro diagnostics are mature areas that have clinical 
relevance, while research into magnetic particles to treat disease or affect controlled motion of 
larger organelles, cells and biomaterials is at the pre-clinical stage. Abbreviations: Magnetic Reso-
nance Imaging (MRI), Magnetic Nanoparticle (NP) Imaging Inset picture provided by Zhen Xiao, 
iron oxide (magnetite) nanocrystals d = 23 ± 2 nm. 

Here, four broad applications of magnetic nanoparticles in biology and medicine are 
surveyed: treatment, imaging, movement, and diagnostics (Figure 1). For treatment, mag-
netic nanoparticles are used to efficiently deliver various therapeutics, whether it is drugs, 
genes, or the particles themselves for magnetothermal heat treatment or as therapeutic 
catalysts. In clinical and preclinical imaging, magnetic nanoparticles are used as image-
enhancing agents in MRI and magnetic particle imaging (MPI). Biomedically-relevant 
movement via the external field actuation of magnetic particles make the clinical transla-
tion of cell separation techniques and soft robotics more feasible. Finally, magnetic nano-
particles can be used to boost the diagnostic performance and throughput efficiencies of 
various immunoassays. Across these four broad fields, particular focus is given to iron 
oxide-based magnetic nanomaterials, because of their biocompatibility, versatility, and 
wide range of use. In each section, novel trends of magnetic nanoparticles are examined 
in light of their history and common uses within that field. 

2. Treatment 
2.1. Iron Oxide Catalyzed Cancer Therapies 

Cancer treatment is one of the largest fields of biomedical research. Doxorubicin, 
gold, silver, and ferrite nanoparticles have all been studied for their cancer killing abilities, 
and they have been clinically applied to varying degrees. These therapies work through 
the increased generation and tuning of reactive oxygen species (ROS) in tumor regions 
that can induce apoptosis and cellular death [15]. Ferrite nanoparticles, specifically iron 
oxide nanoparticles, can be used for this purpose, due to their intrinsic peroxidase-like 
activity. By catalyzing the fenton reaction of H2O2, highly toxic hydroxyl groups, a type of 
ROS, are overproduced and cell death occurs. This was first discovered by Yan et al. in 
2007 and, when combined with the magnetic targeting properties of these particles, it cre-
ated considerable promise for the field [16]. Six years later, Zhang et al. took this 
knowledge and demonstrated the use of magnetic nanoparticles in tumor treatment [17]. 
Research has continued in this field focusing on the tunability of this characteristic 
through both manipulation of the particle itself and the external field acting upon it. While 
it is well studied that the catalytic activity can be tuned through particle size, composition, 
and morphology, recent trends in this field are focused on combining the biological and 
chemical properties through surface coatings and targeting molecules. For example, 
Thoidingjam et al. was able to synthesize phyllanthus emblica-coated iron oxide nanopar-
ticles, which allowed for the stabilization of very small iron oxide nanoparticles (~6 nm), 
which are ideal for the overproduction of ROS in lung cancer cells [18]. Likewise, Pandey 

Figure 1. The applications of magnetic particles can be classified into four categories depending
on the aim of the technology. Imaging and in vitro diagnostics are mature areas that have clinical
relevance, while research into magnetic particles to treat disease or affect controlled motion of larger
organelles, cells and biomaterials is at the pre-clinical stage. Abbreviations: Magnetic Resonance
Imaging (MRI), Magnetic Nanoparticle (NP) Imaging Inset picture provided by Zhen Xiao, iron oxide
(magnetite) nanocrystals d = 23 ± 2 nm.

To take full clinical advantage of these applications, it is vital to have practical systems
for applying magnetic fields as well as highly responsive magnetic particles. Generating
magnetic fields inside organisms that are large enough to affect particle movement is a
challenge; particles move along the spatial gradient of a magnetic field and, often, field
strengths are reduced to zero just a few millimeters away from a permanent magnet [11,12].
New designs for magnetic field application may make it possible to create larger field
gradients that allow for the movement of materials far deeper in the body [13,14]. Addi-
tionally, clinical applications will demand models that can effectively predict magnetic
particle movement in complex in vivo settings as such data are a necessary requisite for
any clinical application. Finally, the clinical success of these new systems and models will
require minimally toxic magnetic particles that are highly sensitive to even small external
magnetic fields.

Here, four broad applications of magnetic nanoparticles in biology and medicine
are surveyed: treatment, imaging, movement, and diagnostics (Figure 1). For treatment,
magnetic nanoparticles are used to efficiently deliver various therapeutics, whether it
is drugs, genes, or the particles themselves for magnetothermal heat treatment or as
therapeutic catalysts. In clinical and preclinical imaging, magnetic nanoparticles are used
as image-enhancing agents in MRI and magnetic particle imaging (MPI). Biomedically-
relevant movement via the external field actuation of magnetic particles make the clinical
translation of cell separation techniques and soft robotics more feasible. Finally, magnetic
nanoparticles can be used to boost the diagnostic performance and throughput efficiencies
of various immunoassays. Across these four broad fields, particular focus is given to iron
oxide-based magnetic nanomaterials, because of their biocompatibility, versatility, and
wide range of use. In each section, novel trends of magnetic nanoparticles are examined in
light of their history and common uses within that field.

2. Treatment
2.1. Iron Oxide Catalyzed Cancer Therapies

Cancer treatment is one of the largest fields of biomedical research. Doxorubicin, gold,
silver, and ferrite nanoparticles have all been studied for their cancer killing abilities, and
they have been clinically applied to varying degrees. These therapies work through the
increased generation and tuning of reactive oxygen species (ROS) in tumor regions that
can induce apoptosis and cellular death [15]. Ferrite nanoparticles, specifically iron oxide
nanoparticles, can be used for this purpose, due to their intrinsic peroxidase-like activity.
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By catalyzing the fenton reaction of H2O2, highly toxic hydroxyl groups, a type of ROS,
are overproduced and cell death occurs. This was first discovered by Yan et al. in 2007
and, when combined with the magnetic targeting properties of these particles, it created
considerable promise for the field [16]. Six years later, Zhang et al. took this knowledge
and demonstrated the use of magnetic nanoparticles in tumor treatment [17]. Research
has continued in this field focusing on the tunability of this characteristic through both
manipulation of the particle itself and the external field acting upon it. While it is well
studied that the catalytic activity can be tuned through particle size, composition, and
morphology, recent trends in this field are focused on combining the biological and chemical
properties through surface coatings and targeting molecules. For example, Thoidingjam
et al. was able to synthesize phyllanthus emblica-coated iron oxide nanoparticles, which
allowed for the stabilization of very small iron oxide nanoparticles (~6 nm), which are ideal
for the overproduction of ROS in lung cancer cells [18]. Likewise, Pandey et al. synthesized
poly-l-lysine-coated Fe3O4@FePt particles for the targeting of mitochondria through its pH
responsiveness offering a targeted multimodal therapy for glioblastoma [19]. The next step
for these treatments lies in optimizing their catalytic efficiency to increase the potential
adoption into the clinical.

External electromagnetic fields, when absorbed by the ferrite material, can be used
to boost the catalytic activity, thus increasing ROS production and decreasing the amount
of ferrite material needed. Electromagnetic fields that are commonly studied for this
purpose are alternating magnetic fields (AMFs) and X-ray [16]. AMFs were utilized by
Wu et al., as they developed a magnetic hydrogel that is activated by a non-invasive
external AMF to increase the production of ROS [20]. Similarly, Liu et al. synthesized novel
graphene oxide- grafted iron oxide nanorings that have high magnetothermal properties.
A significant increase in the ROS generation was observed when an AMF was applied [21].
The use of X-rays was studied when Klein et al. fabricated high stability, functionalized
Coferrite and superparamagnetic magnetite particles that, when exposed to X-ray radiation,
released either Fe2+ or Co2+ ions, leading to ROS production and cancer cell apoptosis [22].
As research continues in the area of tuning particle physical properties, external field
manipulation advancements are a compounding asset in the fight against cancer.

2.2. Drug and Gene Delivery

Magnetic nanoparticles can be used to direct the delivery of drug and gene therapies
in the body. A major challenge in pharmacology is the specific delivery of an agent to the
disease site; most widely prescribed drugs that are taken orally or via intravenous injection
are not targeted [23]. Consequently, it is estimated that less than 10% of the dose makes it
to the organ of interest and even less to cellular targets [24]. The most common solution is
to increase the delivered dose to assure sufficient drug concentration at the target site [3,25].
This inefficiency leads to off-target effects and toxicity, which can limit the clinical use
of promising treatments. Additionally, non-selective delivery can also lead to negative
immune responses at the site of administration.

Introducing selectivity into drug delivery is a general goal for all of pharmacology
because of its broad relevance. One approach to increasing drug selectivity is by using
nanoscale delivery systems, such as liposomes and polymeric nanoparticles, which pos-
sess cell-specific surface ligands. Several recent reviews have highlighted the common
challenges that are faced by these non-magnetic biological and chemical targeting strate-
gies [26–36]. Of these challenges, the most intractable is the body’s own physiological
response to these foreign nanoscale systems, which quickly removes, metabolizes, and/or
excretes them. Even with stealthy surface coatings that have only minimal protein in-
teractions, nanoscale particles are still recognized and eliminated by the innate immune
system [37]. As such, even with the most efficient targeted nanoscale delivery systems,
only 2% of the drug payload is released at the target site [24].

This modest targeting performance could be vastly exceeded with magnetic drug de-
livery systems. Early investigators envisioned applied magnetic fields that were positioned
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around an organism capturing magnetic nanoparticles within tissue (Figure 2) [14,38].
As an example, an intravenous injection of a magnetic nanoparticles yields bloodborne
particles that could be captured or collected in a solid tumor that was subjected to large
magnetic field gradients. Such gradients could be generated by a magnetic system external
to the animal or by permanent magnets inserted into the target tissue. The reliance on the
physical separation of magnetic materials within a biological system for targeting deliv-
ery is a fundamentally different approach to targeting than the chemical and biological
strategies that were introduced earlier. If successful, this approach could increase the
efficacy of delivery, limit off-target effects, and reduce the overall amount and time course
of treatments [39].
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through a release system that is initiated in acidic environments via the reactivity of im-
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Figure 2. Schematic of magnetic drug delivery. (A) After a tail vein injection of magnetic nanoparticles, the materials collect
at a site with a large external field gradient. Particles (shown in orange) extravasate into extracellular space where they
are collected in regions of high magnetic field gradient. Reproduced with permission from Al-Jamal K.T., Nano Letters;
published by American Chemical Society, 2016 (B) Applied single magnets only pull in one direction towards the magnet
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set-up from Liu et al. using two oppositely polarized magnets to enhance magnetic drug targeting in deep tis-sues. Current
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magnetic gradient of a single magnet falls off very quickly as distance increases compared to the pro-posed dual magnet
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Magnetic nanoparticles that have been explored for targeted drug delivery have had
to meet many stringent demands. Their dimensions and surface treatments must balance
particle circulation time, drug distribution, drug release, accumulation, and, if needed,
cellular uptake [25]. For most exposure routes (e.g., intravenous, oral, etc.), investigators
aim for hydrodynamic diameters between 10 and 200 nm [37]. The application of polyethy-
lene glycol (PEG) as a surface coating can prolong the circulation of intravenously injected
materials, even with some degree of targeting functionality [40]. Iron oxide-based magnetic
nanomaterials are of particular interest, because various SPION formulations have been ap-
proved by the US Food and Drug Administration (FDA) for various applications, including
as MRI contrast agents [41]. While these materials are not widely adopted by radiologists
due to the difficulty in interpreting T2 contrast signals, they have found success off-label as
treatments for iron deficiency [42]. Other challenges for the clinical translation of magnetic
drug delivery systems include the reproducibility and scale of particle production, the
economic feasibility of the application, and the practicality and safety of effective external
magnetic field application. Magnetic drug delivery is also limited by the fact that particles
are not retained at a target site once the external field is removed, which precludes many
longer and chronic drug delivery applications [43].

In addition to tackling these clinical obstacles, investigators are also broadening the
appeal and reach of magnetic drug delivery [9,44,45]. One avenue of exploration is to
increase the benefits of magnetic drug delivery through the integration of multiple delivery
and imaging modalities. For example, Hervault et al. developed magnetic nanocomposites
(MNCs) that included both a hyperthermic agent as well as a drug carrier for applications

http://smart.servier.com/
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of multimodal cancer therapy [44]. By combining pH and thermo-responsive behavior,
they could spatially and temporally control the release of Doxorubicin, which is a common
chemotherapeutic agent. Chen et al. demonstrate that multifunctional envelope-type
mesoporous silica nanoparticles (MEMSN) can increase the specificity of drug delivery and
enhance the contrast of magnetic resonance imaging (MRI) [45]. This is achieved through
a release system that is initiated in acidic environments via the reactivity of immobilized
surface acetals. This acid-catalyzed surface coating results in burst release of the target
drug, Doxorubicin, in the slightly acidic tumor microenvironment allowing for efficient and
targeted delivery of an otherwise highly toxic anticancer therapeutic. When addressing the
treatment of glioblastoma, specifically with Doxorubicin, passage through the blood brain
barrier has to be considered. Norouzi et al. developed a Doxorubicin loaded magnetic
combination therapy that displayed a dramatic increase in passage through the blood
brain barrier. This 2.8 fold increase is due to the use of cadherin binding peptides, which
transiently open the tight junctions of the blood brain barrier, combined with the use of
an external magnetic field to draw the particles to the target region [46]. This work, like
many others in the field, shows the promising impactful change that magnetic combination
therapies can have.

Dual drug delivery and imaging nanoscale delivery systems, which are often termed
theranostics, can be useful for both therapeutic and diagnostic purposes. Luque-Michel
et al. developed theranostic polymeric nanoparticles loaded with SPIONs and doxorubicin
to treat glioma-bearing mice [47]. They found significant particle accumulation when the
animal is under static magnetic field and the accumulation was easily imaged using MRI.
Theranostics are the logical next step for magnetic nanoparticle applications, since the same
material can be used in multiple ways. Currently, researchers are forming hybrid magnetic
nanoparticles to optimize the optical or chemical properties. This can be the addition of
gold, manganese, sulfides of copper, or tungsten, which increases the particles’ magnetism
and relaxivity whrn compared with non-doped SPIONS [48]. By combining different
material characteristics, more effective and less toxic theranostics can be developed.

Magnetic gene delivery is also of ongoing interest to researchers because of its broad
significance. Often referred to as magnetofection, this type of magnetic drug delivery
attaches magnetic carriers to a viral vector carrying a therapeutic gene [11]; in some cases,
more rarely, the nucleic acid is directly linked to a magnetic nanoparticle via ionic inter-
actions. In 2002, Scherer et al. presented the first example of magnetofection in vitro and
demonstrated that transfection efficiency could be increased by the application of a local-
ized external magnetic field [49]. Nearly two decades later, research into magnetofection
is focused on reducing the time for magnetic transfection, minimizing the vector dose,
and expanding gene delivery to in vivo transfection in lung epithelium and blood vessel
endothelial cells [50–52]. The current challenges facing application of this delivery system
in vivo are the potential for magnetic nanoparticle agglomeration and poor transfection
efficiency if the viral carrier is removed [51]. Indeed, magnetofection has high transfection
efficiency when compared to other methods, and it is a commonly used technique for
in vitro applications.

Finally, any use of external magnetic fields to manipulate particles in vivo requires
efficient systems for applying them. Until recently, single electromagnetic coils or per-
manent magnets were used for this purpose. Clinical applications would require much
larger magnetics, increasing power demands, the need for efficient cooling systems, and
cost. Originally, large magnetic field gradients generated inside of electromagnetic coils
directed magnetic particle movement, but only towards the magnet instead of holding
them at the region of interest. Nacev et al. used multiple focusing magnets to address
this issue and to extend the reach of external fields to areas that are deeper within the
body [53]. They used fast magnetic pulses to trap ferromagnetic rods at specific locations,
resulting in inward-pointing magnetic forces. These forces were, in effect, focused, and
lead to a larger field gradient and more specific and localized targeting. Although they did
not apply their methodology to drug delivery, this more specific and targeted approach
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has the potential to overcome some of the largest barriers to entry for clinical applications.
In another example, Liu et al. positioned permanent magnets in an opposing square (a
simplified model is shown in Figure 2C) to improve the accumulation and penetration
of magnetic nanocarriers into solid tumors [54]. They demonstrated a five-fold increase
of penetration and a three-fold increase in the accumulation of magnetic nanoparticles
when compared to passive accumulation alone. Moreover, the system could reach deeper
into tissue than approaches that rely on a single permanent magnet that can only collect
materials at superficial depths, typically only a few millimeters for a rare earth permanent
magnet. This two-magnet configuration is just one example of emerging magnet designs
that improve the efficacy, accumulation, and movement control of magnetic nanoparticles,
bringing magnetically driven drug targeting closer to the clinic.

2.3. Magnetothermal Heating

The magnetothermal heating of magnetic particles was first observed in 1954, where
it was used to selectively destroy cancer metastases in lymph nodes that might have
been previously missed in surgery [55]. Briefly, magnetothermal heating occurs when
magnetic particles are subjected to alternating magnetic fields (AMFs). Through magnetic
induction, nanoparticles in AFMs are selectively heated, providing for localized increases
in temperature. The effect can be used in drug delivery schemes that apply thermally
sensitive coatings to nanoparticles, which result in the release of chemotherapeutic agents
in addition to the thermal ablation of the cancer cells [56,57]. Magnetothermal treatments
have been approved in the European Union (EU), and they were also approved by the US
Food and Drug Administration (FDA) in 2006 for phase I clinical trials in the treatment of
prostate cancer. Ongoing clinical applications have been limited by the need for precise
placement of large AMFs within the human body [8]. Conventionally, the organism is
placed within an electromagnetic coil, but this can be difficult with larger animals. The
duration of heat treatment and the strength of the AMFs are also important parameters to
control with existing methods.

Magnetothermal heating can be very heterogeneous, leading to insufficient and un-
predictable heating, because of tumor vasculature and extracellular matrix structure. Silva
et al. combined magnetic nanoparticles with green fluorescent protein to form “nanoth-
ermometers” that use feedback to minimize heterogenous heating [58]. While the early
days of magnetothermal heating were concerned with heating tissue to high temperatures
(>45 ◦C) to kill cells, recent interest has centered on using mild heating to influence bio-
logical processes with great precision. Christiansen et al. used the localized heating of
magnetic nanoparticles to actuate neuronal ion channels from a distance using magnetic
nanoparticles [56]. Other researchers have also used AMF heating to open and close an
ion channel without affecting the health of cells [12]. Radio-frequency magnetic fields
can also remotely activate cation channels in cells deep within tissue, thereby offering
an alternative to the limited depth penetration of photothermal therapies. However, a
more recent trend attempts to pair photothermal and magnetothermal together to give a
secondary “activation” force to carry out the necessary heating even deeper within the body
for applications from arterial inflammation to cancer therapies [34,59]. This combination
therapy is ten times more effective at heating the target region than the individual use of
these therapies [60]. This combination of photothermal and magnetothermal therapies
can be used to apply hyperthermia treatment and release drug to the region of interest.
This is demonstrated by Lu et al. and their work with modified iron oxide composite
nanoparticles loaded with cetuximab. Combination thermal heating was used for both
applying hyperthermia treatment and to thermally release drug [61].

However, more stable and sensitive magnetic particles are needed to make the clin-
ical translation of magnetothermal therapy more feasible. Some investigators have also
reported challenges with superparamagnetic iron oxide nanocrystals (SPION) aggregation.
Therefore, without proper surface engineering, the use of SPION in magnetothermal ap-
plications like tumor treatment could be limited [62]. More recently, these challenges are
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being met in a variety of ways, and several recent review papers cover these advances with
respect to magnetothermal heating [28,32,34,36]. The responsiveness of magnetic particles
to smaller AMFs can be optimized by altering their composition and shape to increase
their magnetic susceptibility [28]. Doped ferrites are a promising approach for increasing
susceptibility, and therefore sensitivity, without complicating their surface engineering [63].
Different nanoparticle shapes, such as the magnetic nanoplates proposed by Alhasan et al.,
allow for more efficient heating with lower AMFs [62].

3. Imaging
3.1. Magnetic Resonance Imaging (MRI) Contrast Agents

A common medical application for magnetic nanoparticles is their use as contrast
agents for magnetic resonance imaging (MRI). MRI is a non-invasive and high-resolution
imaging modality that has become the clinical standard for visualizing anatomical struc-
tures. In spite of its wide clinical use, MRI has low signal intensity and sensitivity, which
makes rapid and accurate diagnoses difficult [64]. Consequently, approximately 40–50% of
MRI procedures require contrast agents for image enhancement [65]. Gadolinium chelates
(GCs) are the current clinical standard for MRI because of their low toxicity, short circula-
tion half-life, and positive contrast enhancement [7,66,67]. However, concerns have been
raised regarding potential toxicity, non-specific biodistribution, poor cellular uptake and
retention, and the sub-optimal contrast enhancement of GCs [7,68,69]. As a result, many
improvements and alternatives to GCs have been developed [7,70–77].

Being developed as gadolinium-free alternatives to GCs, iron oxide particles (IOP)
garnered clinical interest as MRI contrast agents because of their useful magnetic properties,
unique biodistribution and pharmacokinetic profiles, targeting potential, and biocompat-
ibility [78]. Early successes with superparamagnetic iron oxide nanocrystals (SPIONs,
DH > 50 nm) and ultrasmall SPIONs (USPIONs, DH < 50 nm) led to the development of
IOP with more robust synthetic approaches and a range of physiochemical, magnetic,
biodistribution, and pharmacokinetic properties (Table 1). These materials have demon-
strated preclinical and clinical potential, but many have been commercially discontinued
for MRI and are only used in non-MRI clinical applications (Table 1).

The notable failure of iron oxide particles (IOP) to become standard tools in clinical
MRI is generally ascribed to two distinct challenges. First is the reluctance of healthcare
providers to use IOP in their regular practice. This is due, in part, to toxicity concerns that
are amplified by black box warnings issued by the US Food and Drug Administration (FDA)
after studies showed small, but measurable, risks of serious adverse events (0–1%) and
anaphylaxis (0.02–0.2%) after ferumoxytol administration [66,85]. Additionally, radiologists
are not as experienced in interpreting the dark contrast provided by IOP in transverse
water relaxation time (T2)-enhanced MR images [85,86]. Dark contrast enhancement and
susceptibility artifacts from IOP can result in misdiagnosis and an overestimation of lesion
margins [70,85–87]. A second issue has been the reluctance of pharmaceutical companies
to produce IOP contrast agents. The demand for IOP is low because of healthcare provider
hesitancy, niche application (e.g., liver-, spleen-, and lymph node-related imaging and
patients with renal deficiency), and ongoing concerns regarding their diagnostic utility
when compared to conventional contrast agents [88–90].

In response to these issues, researchers have continued to develop IOP to reduce
toxicity concerns, optimize magnetic properties and contrast performance, and apply them
in novel and significant ways [65,66,72–75,86,88]. Here, we focus on the latter, and examine
the current trends in IOP-based MRI.
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Table 1. Commercial iron oxide particles for clinical magnetic resonance imaging.

IOP Name IOP Type Core Size/DH
(nm)

r1/r2
(mM−1s−1) B0 (T) t1/2 (h) MRI

Applications
Commercial

Status
Clinical

Approval References

Ferristene (Abdoscan) MIOP -/~3500 - - oral GI discontinued
(2000) - [7,71,79]

Ferumoxsil (AMI-121,
GastroMARK, Lumirem) MIOP -/300 3.4, 2/3.8, 47 1, 1.5 oral GI discontinued

(2012)
1996 US/EU (GI

MRI) [7,71,72,79]

Ferumoxides (AMI-25,
Feridex, Endorem) SPION 4.5–5.6/50–100 40,

~10/~120–160 0.47, 1.5 2 L, S, BM, CTL,
BT

discontinued
(2008)

1996 US (L and
S MRI)

[7,66,70–72,79–
82]

Ferrixan (SHU 555A,
Resovist, Cliavist) SPION ~10/60–80 25.4,

9.7/~150–190 1.5 2.4–3.6 L, S, MRA, CTL
available in

limited
countries

2001 EU/JP/AU
(L MRI)

[7,66,70–
72,79,80,82]

Ferumoxtran-10
(AMI-227, Combidex,

Sinerem)
USPION 4–6/20–50 23, ~10–20/53,

~65–88 0.47, 1.5 24–36 L, LN, S, MRA,
M, CTL, BT

discontinued
(2007) - [7,66,70–

72,79,82]

Ferumoxytol (AMI-7228,
Feraheme, Rienso) USPION 6.7/20–30 38, 15 0.47, 1.5 10–14 L, LN, MRA, M,

I, CTL, BT, BL, S available

2009 US, 2013
EU (iron

deficiency
treatment)

[7,66,70–
72,79,81,83,84]

Ferucarbotran C (SHU
555C, Supravist) USPION 3–5/20–25 24, 10.7/60, 38 0.47, 1.5 6–8 MRA, CTL, M discontinued - [66,70–72,79]

Feruglose (NC100150,
PEG-feron, Clariscan) USPION 5–7/11–15 20 0.5 2–6 L, LN, P, MRA discontinued

(early 2000s) - [7,66,70–
72,79,82]

VSOP-C184 USPION 4–5 20.1, 14 0.94, 1.5 0.6–1.3 L, MRA, CTL, M stopped
development - [7,70–72,79]

Abbreviations: iron oxide particle (IOP), micron-sized iron oxide particle (MIOP), superparamagnetic iron oxide nanocrystal (SPION), ultrasmall superparamagnetic iron oxide nanocrystal (USPION),
hydrodynamic diameter (DH), longitudinal water relaxivity (r1), transverse water relaxivity (r2), external magnetic field strength (B0), circulation half-life (t1/2), magnetic resonance imaging (MRI), United States
(US), European Union (EU), Japan (JP), Australia (AU), gastrointestinal (GI), liver (L), spleen (S), magnetic resonance angiography (MRA), bone marrow (BM), lymph node (LN), macrophage (M), cell tracking
and labeling (CTL), perfusion (P), brain tumor (BT), inflammation (I), sarcoma (S), and brain lesions (BL).
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IOP have been mostly relegated to mononuclear phagocyte system (MPS)-related
imaging (e.g., liver, spleen, and lymph nodes) and cellular tracking applications [70]. To
overcome radiologists’ concerns about the dark contrast resulting from T2 manipulation,
IOPs are being developed as longitudinal water relaxation time (T1) contrast agents [86,88].
This provides the desirable white contrast in images, and T1 enhanced magnetic nanopar-
ticles are typically smaller, and they yield greater signal-to-noise (tissue T1 > T2) and
better spatial resolution than those developed for T2 applications. This makes the ma-
terials relevant for a wider variety of applications. For instance, Wei et al. developed
a zwitterion-coated exceedingly small SPION (ZES-SPION, DH = 4.7 nm) for magnetic
resonance angiography (MRA) in small animals (Figure 3A–C) [87]. These ZES-SPIONs
are biocompatible, renally cleared (unlike commercial USPION), and possess T1 contrast
and blood circulation times that are comparable to commercial GCs [67,87]. Lu et al. used
slightly larger polyethylene glycol (PEG)-coated USPIONs (PEG-IONC, DH = ~12 nm)
to study the toxicity and potential of IOP as T1 MRI contrast agents in larger animal
models (Figure 3D–G) [89]. PEG-IONCs demonstrated no significant toxicity and they
were successfully used for full-body MRA; notably they were able to identify ischemia in
cerebral angiograms. More recently, Kang et al. used similar USPION in rats to monitor
the remodeling of cerebral vasculature after ischemic stroke [91].
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PEG-IONC injection. Dynamic susceptibility contrast perfusion-weighted images of left cerebral
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permission from Wei et al., Proceedings of the National Academy of Sciences of the United States
of America; published by National Academy of Science, 2017. (D–G) Reproduced with permission
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Cellular tracking and labeling are another common trend in preclinical and clinical
IOP-based MRI [80,91]. Because T1 imaging can be significantly impacted by compart-
mentalization of nanoparticles in cells, applications usually use T2-weighted MRI [66].
Guldris et al. developed glucosamine-modified polyacrylic acid-coated USPIONs (USPIO-
PAA-GlcN, DH = 40 nm) for enhanced cellular uptake and biocompatibility, and use
in long-term MRI tracking of intra-arterially injected stems cells in healthy rat brains
(Figure 4C) [92]. When compared to PAA-coated SPIONs and USPIONs, USPIO-PAA-
GlcN demonstrate greater promise for potential in vivo applications in tracking the stem
cell treatment of cerebral ischemia. However, there are concerns that IOP can adversely
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impact the functions of labeled cells [85,93]. Wierzbinski et al. labeled human skeletal
myoblasts with carboxylic acid-coated USPION (DMSA-SPION, core size = ~10 nm) to
track integration after implantation into the left heart ventricle of mice (Figure 4A,B) [94].
DMSA-SPIONs had no significant functional or cytotoxic effect on myoblasts. Moreover,
the work demonstrated the potential for clinically tracking the integration and progress
of skeletal myoblast transplants into postinfarction scars. Ultimately, the adverse effects
on labeled cells can be reduced with more biocompatible and responsive IOP to enable a
lower effective nanoparticle dose.
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(A,B) Reproduced with permission from Wierzbinski, K. R. et al., Scientific Reports; published by Na-
ture Research, 2018. (C) Reproduced with from Guldris, N. et al., Bioconjugate Chemistry; published
by American Chemical Society, 2017.

IOP are also being used in a wide variety of passive and active targeting-based
molecular MRI applications [64]. Sherwood et al. developed bovine serum albumin
(BSA)-USPION clusters (core sizes <4 nm, cluster size = ~200 nm) for MR image-guided
drug delivery to subcutaneous tumor-bearing mice [95]. This is possible because tumors
often exhibit molecular features that can cause porous vasculature and poor lymphatic
drainage, which results in the passive accumulation of nanoscale materials—often called
the enhanced permeability and retention (EPR) effect [96,97]. Others have developed
pH responsive USPION clusters to take advantage of, and target, the slightly lower pH
(pH 5.6–6.8) of the tumor microenvironment [98,99]. In the presence of the slightly acidic
tumor microenvironment, pH-sensitive cluster crosslinkers disassociate, causing the release
of smaller USPION, which allows for greater accumulation, signal-to-noise, and T1 contrast
enhancement (Figure 5B). IOP contrast agents can also be used for the molecular imaging of
the inflammation that is associated with pain because of the greater presence of MPS cells—
which preferentially uptake foreign nanoscale objects [67]. A few recent clinical studies
highlight the advantages of molecular imaging by comparing USPION- and GC-enhanced
MRI for assessing a variety of disease states that are associated with inflammation as well
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as tumors [86,87,100,101]. In all cases, T1- and or T2-weighted USPION-enhanced MRI
provided equal or greater diagnostic utility when used alone or in conjunction with T1-
weighted GC-enhanced MRI. Notably, Barajas et al. demonstrated that dual ferumoxytol-
and GC-enhanced MRI could reliably differentiate between true progression (recurrence)
and pseudoprogression (therapy-associated tissue damage and inflammation) by observing
biodistribution-associated mismatch in their imaging enhancement (Figure 5C) [102].
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(B) T1-weighted MR images of orthotopic hepatocellular carcinoma mouse models before and 2 h after injection with
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MR images of a patient with glioblastoma and an overlay of the two demonstrating the mismatch used to distinguish
between pseudoprogression and true progression. (A) Reproduced with permission from Lu, Z. et al., Advanced Functional
Materials; published by John Wiley and Sons; 2017. (B) Reproduced with permission from Lu, J. et al., Journal of the
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In response to critiques of EPR-based passive accumulation, actively targeted IOP
are being used to further increase the specificity and sensitivity of molecular MRI [96,103].
Because transferrin receptors (TfR) are overexpressed in glioma, Lu et al. attached a TfR-
specific peptide (B6) to a SPION-based drug delivery system (CARD-B6) for targeted T2
imaging of glioma [104]. When compared to non-targeted CARD, CARD-B6 demonstrated
much greater accumulation inside the tumor margins (Figure 5A). Husain et al. targeted
excess matrix metalloproteinase (MMP-12) that was associated with inflammation to image
molecular features associated with neuropathic pain in rats [100]. Even with these IOP-
based molecular MRI techniques, sensitivity is a concern, because accumulation can often
be too low to achieve meaningful contrast enhancement [85]. Current efforts focus on
enhancing the magnetic properties of IOP to decrease the effective dose, reducing the
associated toxicity and imaging artifacts [5,73,101].
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3.2. Magnetic Particle Imaging (MPI) Tracers

Magnetic particle imaging (MPI) is a novel imaging technique that was first pro-
posed in 2001 [105]. MPI detects signals from superparamagnetic nanomaterials, also
referred to as MPI tracers, which are generated by a fast-moving magnetic field-free region
(FFR) [105,106]. In 2005, Gleich et al. demonstrated that this signal can be processed to
reflect tracer spatial location and concentration, thereby offering an opportunity for quanti-
tative imaging with high spatial resolution (~1 mm) and sensitivity (~100 µmol Fe/L) [107].
Additionally, since superparamagnetic tracers are not naturally present in the body, MPI
has nearly zero background, as compared to the clinical contrast-enhanced MRI. Following
the development of early preclinical prototypes in the late 2000s, Weizenecker et al. per-
formed the first in vivo three-dimensional MPI experiment examining the beating heart of
a mouse in real-time [105,108]. Despite this success, the clinical translation of MPI depends
on the development of much larger scanners and highly responsive tracers to further
enhance spatial resolution and sensitivity [109–112]. MPI tracer performance is dependent
on its ability to reverse its magnetic moment in the FFR; the larger the change in magnetic
moment, the larger the MPI signal. As with any nanomedicine, the colloidal stability,
pharmacokinetics, biodistribution, and biocompatibility of the magnetic nanoparticles for
MPI are also important considerations.

As tracer technology continues to develop, MPI can be applied in a wide range of
biomedical applications [109]. Zhou et al. performed the first in vivo MPI of lung perfusion
in rats (Figure 6A,B) [110]. Here, micron-sized bovine serum albumin (BSA)-conjugated
SPION aggregates (MAA-SPION, ~25 µm) were used to target the narrow capillary bed
of the lungs (6 µm) after their first pass through the heart. When compared to standard
diagnostic techniques for assessing pulmonary embolism, this preliminary study on healthy
rats demonstrates the potential of MAA-SPION-based MPI as a convenient and ionizing
radiation-free alternative to other diagnostic options. The first-pass pulmonary trapping of
micron-sized objects, while useful for lung imaging, presents a problem for the intravenous
therapeutic delivery of mesenchymal stem cells (MSC). To better understand the biological
fate of cellular therapies, Zheng et al. used quantitative MPI to assess the biodistribution
and pharmacokinetics of tracer-tagged MSCs (Figure 6C,D) [113]. MPI can also be used to
visualize and assess disease states. For instance, Yu et al. used subtraction MPI to quantify
the extent of gastrointestinal (GI) bleeding in a mouse model that was predisposed to
developing GI polyps (Figure 6E,F) [114]. MPI offers a non-invasive, non-ionizing, and
rapidly administered alternative when compared to traditional approaches for assessing GI
bleeds (e.g., colonoscopy and radionuclide scintigraphy). As with magnetic nanoparticle
magnetic resonance imaging (MRI) contrast agents, MPI tracers can also take advantage of
the enhanced permeability and retention (EPR) effect and passive accumulation to image
tumors when possible [111].

Apart from simple tumor imaging, MPI can be used for therapeutic purposes. For
example, Zhu et al. used quantitative MPI to monitor in vivo drug release in tumor-
bearing mice [112]. Their unique MPI tracer is a pH-sensitive SPION-drug cluster that,
when introduced to the acidic tumor microenvironment, releases SPION and doxorubicin.
Increased SPION Brownian motion after release enhances the MPI signal, and it provides an
indirect, but accurate, measure of drug release. Likewise, Tay et al. used SPION tracers for
MPI-guided magnetic hyperthermia therapy on a tumor bearing mouse (Figure 6G–J) [115].
MPI is used to map the distribution of SPION, the FFR is moved to the region of interest
(tumor), and a second alternating magnetic field is then applied for magnetic hyperthermia
in that region only. The ability to precisely monitor the location and magnitude of therapy
applied (e.g., drug release or magnetic hyperthermia) would allow for more accurate
dosing and tracking of therapeutic efficacy, thus optimizing treatments.
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4. Movement
4.1. Cell Separation

The magnetic separation of biological material using particles was first applied in
the 1970s to sorting cells [116] and, since then, “magnetophoresis”, as it has been termed,
is widely used to separate specific cells from a biofluid or trim down cell populations
(Figure 7) [117]. The speed and ability to batch process biological samples make magnetic-
activated cell sorting (MACS) an especially appealing option for cell sorting in flow cytom-
etry instruments [117]. The current limitations of magnetic separation for this application
include high sample processing cost, limited sample throughput, low processing speeds,
and loss of cellular function or viability [117]. However, magnetophoresis in the scaled-
down environment of microfluidic systems faces fewer of these issues and remains an
expanding area of research.
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One area of focus for research in this area has been single cell capture as it relates
to cancer diagnostics. The internal capture of circulating tumor cells, for example, is
possible using an intravascular magnetic wire implanted into a patient, and magnetic
particles offer less invasive, but similar, opportunities [118]. External use of microfluidics,
often termed “lab on a chip”, can be applied to the analysis of small drops of bioflu-
ids in which magnetic nanoparticles can be used to separate cells using antibodies or
proteins as markers [119–124]. Alternatively, Robert et al. was able to sort monocytes
and macrophages by exploiting the different internalization rates of iron oxide nanopar-
ticles [125]. The macrophages were sorted into five different groups, depending on the
nanoparticle load using on-chip free-flow magnetophoresis. Monocytes had a much lower
capacity to internalize particles and, as a result, were far less magnetic, thereby providing
an excellent on-chip example of negative selection. Zhang Q. et al. demonstrated an
immuno-magnetic sorting procedure using four types of immuno-magnetic nanoparticles
for the separation of different T cells [126]. They found that selectivity could be preserved,
even at processing volumes as high as four liters of processed blood sample, but noted
that increased throughput did degrade the selectivity of the separation process. While
many examples of magnetic cell-sorting have been developed for the research laboratory,
there is some promise that the technology could be relevant to consumers. Tran et al.
demonstrated a supraparticle assembly of magnetic nanoparticles for selective cell sepa-
ration and counting using a smartphone-based imaging platform [127]. The integration
of magnetic particles with “lab on a chip” technology has been advantageous in many
biomedical applications.

4.2. Soft Robotics

Soft robotics is one of the most novel applications of magnetic nanoparticles in the
field of directed motion. Soft robotics refers to systems that are built with flexible and
stretchable materials to mimic living, moving tissue [128]. Being inspired by natural
systems, nanoparticles can be incorporated into soft robotics to facilitate actuation of
movement on a macro-scale and, if biocompatible, demonstrate promise for biomedical
applications. Soft robots have been introduced into surgery, diagnosis, drug delivery,
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wearable and assistive devices, prostheses, and even artificial organs [129]. Most soft
robots are quite large—on the order of millimeters—and their movement mechanisms are
often electrically actuated. Magnetically actuated microrobots, while being more difficult
to design, are of great interest, as they can be controlled at a distance without the need for
a connection to a power source [130]. Magnetic microrobots that are subjected to applied
magnetic fields can exhibit a wide range of deformations allowing for multiple types of
movement, including rolling, walking, crawling, and jumping [131]. Magneto-elastic soft
millimeter-scale robots offer greater movement due to their higher degrees of mobility, and
they have been even shown to be able to transit between different liquid and solid terrains
as well as switching between different locomotive modes. Although not at the nanoscale,
Gu et al. developed magneto-elastic microrobots that mimic natural cilia—the hair-like
structures that are found on microorganisms. The programmable robots can generate
metachronal waves, making them able to crawl and roll, depending on the strength of the
magnetic field, as seen in Figure 8 [132].
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Figure 8. (a) Work from Gu H. et al. displays different modes of locomotion possible using magnetically actuated cillia
including crawling and rolling. (b) Metachronal waves of the cilia structures leads to a crawling motion (c) When the
magnetic field is larger than 60 mT the strong magnetic torque leads the soft robot to roll. Reprinted without changes with
permission through the Creative Commons License 4.0 International License from Gu H. et al., Nature Communication;
published by Springer Nature Limited, 2020.

The limitations of current magnetically-actuated soft robots include their difficulty
navigating unknown obstacles, poor response to environmental change, and large millime-
ter sizes that limit clinical application [132]. Iron oxide nanoparticles can be incorporated
into elastomeric matrices that can be shaped into sub-micron objects to reduce the size of
these soft robots. Bayaniahangar et al. 3D printed helical coils using a ferrofluid-siloxane
mixture that could be actuated via external magnetic field [133]. Gouda et al. and Breger
et al. created “micro-grippers” by embedding superparamagnetic iron oxide nanocrystals
(SPIONs) into biodegradable matrices, so that the programmable 3D structures could be
non-invasively triggered via external field. These magnetic structures were biodegradable,
thereby eliminating the need for a second surgery for removal [134,135]. Hwang et al.
demonstrated that multifunctional soft robots responsive to external magnetic fields can
efficiently, and precisely, destroy biofilms. They built catalytic antimicrobial robots (CARs)
that generate bactericidal free radicals that break down biofilms, and then remove the frag-
mented biofilm via magnetically directed processes. Such concepts may find applications
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in areas that range from wound care to dentistry [136]. Current trends focus on increasing
the magnetic sensitivity of the embedded particles as well as exploring the wide space of
combined chemical and mechanical activity [116,137,138].

5. Diagnostics
Immunoassays

The attraction of magnetic nanoparticles towards externally applied fields is the
basis of their use for diverse biological detection problems. Research in this area dates
back to 1976, when a Norwegian scientist, John Ugelstad, exploring the synthesis of
uniform polymer spheres for chromatography, first precipitated iron oxide nanoparticles
into the porous colloids [139]. This yielded polymer particles, typically 20–30 w/w% iron
oxide, which could be readily captured via rare earth, handheld magnets. Later research
revealed that the materials were nanoscale maghemite, superparamagnetic, and well
dispersed throughout the micron-sized polymer beads (Figure 9) [140]. Among their
first applications was the treatment of pediatric neuroblastomas in which the magnetic
beads were used to separate tumor cells from patient’s bone marrow prior to autologous
transplantation [141,142]. By decorating the surface of the particles with an antibody to
known tumor cell antigens, investigators found that they could reduce the population of
tumor cells in aspirates by three orders of magnitude. Through appropriate surface design,
researchers throughout the early 1990s extended this flexible platform beyond cell-based
separations to include the isolation and detection of proteins, nucleic acids, viruses, and
bacteria [143–145].
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Figure 9. (A) Polystyrene beads of average diameter 2.8 microns containing 12 w/w% iron in their pores. (B) SEM of a M-280
bead from DynabeadsTM. The nanoparticles in the bead are visualized as bright points and were determined to be ~8 nm
in diameter. (B) Reproduced with permission from Ugelstad et al., Progress in Polymer Science; published by Elsevier,
1992. Reproduced with permission from Fonnumm et al., Journal of Magnetism and Magnetic Materials; published by
Elsevier, 2005.

Commercial entities quickly capitalized on these magnetic beads for applications in
biomedical research enabling the development of clinical applications. Such effort required
reliable and reproducible materials and companies, such DynabeadsTM, were able to meet
the need for high quality nanoparticles. By 1996, there was a robust commercial business
that provided researchers with magnetic beads, in both small (1 µm) and large (2.5 µm)
diameter formats, with an array of different surface coatings. Biomedical researchers
used benchtop magnetic separators and these beads as alternatives to tedious, multi-step
purification protocols for various biomolecules, while clinical researchers began to explore
bead-based analysis for disease detection, as described in Section 4.1. In one example,
investigators correlated the success of kidney transplantation to the number of circulating
epithelial cells that were recovered via immunomagnetic capture [146]. Magnetic beads
were also used to analyze the DNA retrieved from patients with meningitis, so as to confirm
its bacterial origins [147].
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The past five years have seen continued growth in magnetic bead technology for
diagnostics, as their application has expanded substantially into the in vitro diagnostics
of both protein and nucleic acids. Bead technology, and specifically magnetic beads, are
now viewed as an increasingly attractive alternative to the enzyme-linked immunosorbent
assay (ELISA) platform. This interest is driven, in part, by the pressing need for automation
and simplified sample and liquid handling. Magnetic beads are well suited to such an
environment, as they can be held fixed in place while robotic systems introduce reagents
and eluent buffers. Several companies now sell commercial versions (MagPixTM) of systems
that utilize these advantages, and the immunoassays perform at least as well, or even better,
than the conventional ELISA systems [148,149]. The simplified handling of magnetic
particles is also of great value in the preparation of samples for quantitative polymerase
chain reaction (qPCR), as was demonstrated in the sensitive detection of Tuberculosis
pathogens using a magnetic bead to gather sample DNA (e.g., amplicons) [150].

Multianalyte detection is a major theme in modern clinical diagnostic research, and
magnetic beads are poised to play a central role. The rich abundance of proteomic and
genomic information now readily available has established a growing need for the simulta-
neous detection of multiple biomarkers, ideally without extra cost or time. Commercial
schemes leverage the capability to form libraries of beads, each being “barcoded” with
optically distinct molecular fluorophore signatures, and each tailored with a unique sur-
face targeting different biomolecules. Early versions of this technology used flow-based
optical read-out to interrogate non-magnetic beads one-by-one, like conventional flow
cytometry [151,152]. The latest systems use magnetic beads that can be draw down into
a monolayer; high resolution optical cameras can then image the bead barcodes as well
as level of analyte bound over a field. In one case, such multiplex bead-based technology
was as effective as sequential ELISA immunoassays for measuring up to ten biomarker
proteins for bladder cancer in urine [153]. Also important is the development of magnetic
bead-based assays for low resource settings. Paper-based immunoassays using functional-
ized magnetic beads to replace costly sample preparation steps are the subject of intense
study [154]. Such accessible technology is particularly important for the multiplex de-
tection of malaria antibodies for which magnetic bead technology is particularly well
suited [155–157].

Although commercial magnetic beads are largely unchanged from those applied forty
years ago, new magnetic nanoparticles and their composites offer improved performance
and new types of applications. Investigators have used ferrites, typically Co-Fe2O4, instead
of iron oxide as a magnetic material, beads are more responsive to applied fields, leading
to faster separations [158–160]. Control over the dimensions of the magnetic nanoparticles
also presents the opportunity to use different field strengths for multiplexed separations.
By incorporating gold nanoparticles onto magnetic beads, several investigators have
demonstrated more sensitive detection in immunoassays by leveraging particle-generated
chemiluminescence or gold particle dissolution [161,162]. Alternatively, immunomagnetic
separation events can be confirmed through the precipitation of gold nanoparticles at
bead surfaces [163]. Quantum dots can also be incorporated into magnetic nanoparticle
composites yielding spectrally encoded beads for multiplexed analysis and have recently
been used for malaria detection [164,165].

6. Conclusions

The use of magnetism in medicine has come a long way since the days of the ancient
Greeks. It is the miniature lodestones of today, magnetic nanoparticles (e.g., SPIONs),
which make their dream of healing the human body with magnetic fields a modern reality.
SPIONs are unique, in that they are therapeutic agents themselves, through their intrinsic
ability to catalyze fenton reactions, but they also have the capacity to deliver specific drugs,
gene fragments, or magnetothermal heating to specific areas of interest. Current trends
improve this prospective by offering multifunctional particles, more effective magnetic
field application systems, and even more magnetically sensitive particles. Researchers
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working to apply magnetic particles in MRI imaging have been successful in synthesizing
SPION contrast agents with no notable toxicity, a higher blood circulation time, and both
passive and active targeting capabilities. This new generation of magnetic nanoparticles
for both MRI and MPI may ultimately make their use in clinical imaging a reality. Finally,
the integration of magnetic particles into “lab on a chip” and other diagnostic settings is
both meeting the practical needs for faster and cheaper analysis, while also expanding the
possibilities for multiple analyte sensing. Even the emerging area of soft robotics stands
to benefit from advances in the magnetic nanomaterials that allow for more responsive
and functional systems. Progress in both the development of the magnetic nanoparticles,
as well as their expanding biomedical applications, has been swift since Ugelstad’s first
report of magnetic polymer particles in 1976. One can only imagine what their continued
study over the next four decades will have to offer to both science and medicine.
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