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Endometrial stem/progenitor cells 
and their roles in immunity, clinical application, 
and endometriosis
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Abstract 

Endometrial stem/progenitor cells have been proved to exist in periodically regenerated female endometrium and 
can be divided into three categories: endometrial epithelial stem/progenitor cells, CD140b+CD146+ or SUSD2+ endo-
metrial mesenchymal stem cells (eMSCs), and side population cells (SPs). Endometrial stem/progenitor cells in the 
menstruation blood are defined as menstrual stem cells (MenSCs). Due to their abundant sources, excellent prolifera-
tion, and autotransplantation capabilities, MenSCs are ideal candidates for cell-based therapy in regenerative medi-
cine, inflammation, and immune-related diseases. Endometrial stem/progenitor cells also participate in the occur-
rence and development of endometriosis by entering the pelvic cavity from retrograde menstruation and becoming 
overreactive under certain conditions to form new glands and stroma through clonal expansion. Additionally, the 
limited bone marrow mesenchymal stem cells (BMDSCs) in blood circulation can be recruited and infiltrated into the 
lesion sites, leading to the establishment of deep invasive endometriosis. On the other hand, cell derived from endo-
metriosis may also enter the blood circulation to form circulating endometrial cells (CECs) with stem cell-like prop-
erties, and to migrate and implant into distant tissues. In this manuscript, by reviewing the available literature, we 
outlined the characteristics of endometrial stem/progenitor cells and summarized their roles in immunoregulation, 
regenerative medicine, and endometriosis, through which to provide some novel therapeutic strategies for reproduc-
tive and cancerous diseases.
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Introduction
Endometrium can be divided into shallow and deep lay-
ers based on the structure. The shallow layer is called 
functional layer that experiences periodic changes of 
proliferation, secretion, and shedding under the regula-
tion of hormones. The deep layer is named as basal layer. 

The basal layer owns strong proliferation and repair 
abilities without falling off during the menstrual period 
but generates new functional layers. The periodic endo-
metrial regeneration implies the presence of stem/
progenitor cells in the endometrium. Gargett et  al. first 
revealed the existence of adult stem/progenitor cells in 
endometrium by identification of  rare clonogenic cells 
or colony-forming units (CFUs) from purified single-cell 
suspensions of hysterectomy tissues in 2004 [1]. Since 
then, the study of endometrial stem/progenitor cells has 
been highly developed. At present, based on cell types 
and identification techniques, endometrial stem/pro-
genitor cell population is defined as CD140b+CD146+ 
or SUSD2+ endometrium-derived mesenchymal stem 
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cells (eMSCs), endometrial epithelial stem/progenitor 
cells, and side population cells (SPs) [2–4], whereas those 
derived from menstrual blood are called menstrual stem 
cells (MenSCs).

Endometriosis is defined as the growth and infiltra-
tion of endometrial tissue (glands and stroma) outside 
the uterine cavity with  the typical symptom of periodic 
bleeding, which causes infertility, pain, nodules, and 
masses [5]. A most widely accepted hypothesis for the 
pathogenesis of endometriosis first proposed by Sampson 
et al. in 1927 is that the endometrial glandular epithelium 
and stromal cells flow within the menstrual blood and 
enter the pelvic cavity through the fallopian tubes. These 
cells may invade, grow and spread in the ovary and the 
adjacent pelvic peritoneum tissues, to eventually form 
the  pelvic endometriosis [6]. This theory is called ret-
rograde menstruation (RM), but it still cannot explain 
why only 6–10% of the reproductive age women with 
RM develop into endometriosis [7]. The concept of stem 
cells may well explain the low incidence of endometriosis 
in patients with RM because the abnormal endometrial 
stem/progenitor cells  from just a few patients enter the 
pelvic cavity to cause endometriotic lesions [2, 8–11].

In this review, we collected the recent advances in 
the identification and characterization of adult stem/

progenitor cells in female endometrium and   summa-
rized the cell-based therapy and immunoregulation of 
endometrial stem/progenitor cells. We also outlined the 
signaling pathways and molecular mechanisms involved 
in endometrial stem/progenitor cell populations. The 
physiological/pathological roles of bone marrow-derived 
and endogenous stem/progenitor cells in endometriosis 
are also analyzed. Finally, we proposed that MenSCs are 
the most promising candidates for the  stem cell-based 
therapy. The investigation of the molecular mechanisms 
of stem/progenitor cells in the development of endome-
triosis may provide  some novel strategies for molecular 
therapy of reproductive and cancerous diseases.

Multiple populations of stem/progenitor cells 
in endometrium
CD140b+CD146+ eMSCs
The CD146+CD140b+ population is located 
at the perivascular region in both functional and basal lay-
ers and can differentiate into osteogenic, myogenic, adi-
pogenic, and chondrogenic lineages, as well as fibroblasts 
and smooth muscle cells [12–14] (Fig. 1). Mesenchymal 
stem cell (MSC) markers CD29, CD44, CD73, CD90, 
CD105, but not endothelial or hemopoietic markers 
CD31, CD34, and CD45, are expressed in this population 

Fig. 1  Schematic diagram illustrates the localization of endometrial stem/progenitor cells and the hypothesis that stem cells in RM, BMDSCs and 
CECs may be involved in the development of endometriosis. CD140b+CD146+ eMSCs are located perivascularly in both the functionalis and basalis. 
SUSD2+ eMSCs are also perivascular cells. Epithelial progenitor cells are a subset of SSEA-1+ cells located at the bottom of basalis, and may form 
individual colonies. Endometrial SPs are composed of heterogeneous populations, including endothelial cells and CD140b+CD146+ eMSCs. 
Endometrial stem/progenitor cells in RM may be the cellular source of primary endometriotic lesions. Abnormal endometrial stem/progenitor cells 
in RM enter the pelvic cavity and invade the mesothelium. On one hand, endometriotic cells secrete cytokines (such as CXCL12) to attract limited 
BMDSCs in blood circulation and implant them in the ectopic lesions. On the other hand, endometriotic cells enter the blood circulation to cause 
distant infiltration
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[15] (Table  1). The percentage and clonal capacity of 
CD140b+CD146+ cells are constant at different stages of 
the menstrual cycle (menstrual, proliferative, and secre-
tory  phases). However, compared with the secretory 
stage, CD140b+CD146+ cells from the menstrual endo-
metrium experience more rounds of  the self-renewal, 
suggesting that CD140b+CD146+ cells may be activated 
during menstruation to promote the periodic regenera-
tion of the endometrium. More CD140b+CD146+ cells 
can be detected in the deeper portion of the endome-
trium than in the superficial layer, but their clonogenic 
and self-renewal activities remain similarly [16]. Gene 
expression profiling revealed that 1518 and 762 genes are 
differentially and significantly expressed between 
CD140b+CD146+ cells and endothelial cells, or between 
CD140b+CD146+ cells and stromal fibroblasts, respec-
tively [13]. In addition,  CD140b+CD146+ cells highly 
express genes involved in angiogenesis, steroid hormone/
hypoxia responses, immunomodulation, inflammation, 
cell communication, and proteolysis/inhibition, and 
display  the increased expression of Notch, IGF, TGF-
β, Hedgehog, and G protein-coupled receptor signal-
ing  molecules compared with CD140b+CD146− cells 
[13]. Co-culture of endometrial cells (epithelial or stro-
mal) derived from menstruation with CD140b+CD146+ 
eMSCs enhances the cloning and self-renewal activi-
ties of CD140b+CD146+ eMSCs. Co-culture of 
CD140b+CD146+ cells with the  endometrial niche cell 

conditioned media containing the high levels of interleu-
kin 6, C-X-C motif ligand 1 (CXCL1) and CXCL5 may 
increase the proliferation and self-renewal abilities of 
CD140b+CD146+ eMSCs [17].

CD146+ cells derived from human endometrium can 
form colony-forming units [18] and differentiate into 
adipocytes, osteoblasts, neural progenitors, and glial-
like cells [19, 20] (Table  1). With the help of the col-
lagen–matrigel scaffold on the top of the myometrial 
smooth muscle cells, human endometrial CD146+ cells 
may generate endometrial gland-like structures in  vitro 
[21] and express all recognized markers of MSCs, includ-
ing CD10, CD13, CD44, CD73, CD90, and CD105 
[20] (Table  1). Cysteine-rich angiogenesis inducer 61 
(CYR61), also called CCN family member 1, is highly 
expressed in endothelial cells and smooth muscle cells 
[22] and may play an important role in angiogenesis and 
tissue repair [23, 24]. Compared with CD146+CYR61−, 
CD146+CYR61+ cells can stimulate angiogenesis. The 
rat  endometrium transplanted with CD146+CYR61+ 
cells  appear with higher blood vessel density than that 
transplanted with CD146+ or CD146+CYR61−  cells. 
In addition, endometrial injury rats transplanted with 
CD146+CYR61+ cells appear with higher pregnancy rate 
than control group [20].

Table 1  Surface marker phenotype and in vitro/in vivo differentiation of human endometrial stem cells

MenSCs menstrual stem cells, SPs side population cells, eMSCs endometrial mesenchymal stem cells

Cell type Positive marker Negative marker In vitro and in vivo 
differentiation

References

MenSCs CD73, CD90, CD105, CD13, 
CD44, CD29, CD9, CD44, 
CD41a, CD59

CD19, CD34, CD45, CD117, 
CD130, HLA-DR

Adipocytes, osteocytes, 
cardiomyocytes, neurocytes, 
respiratory epithelial cells, 
endothelial cells, myocytes, 
hepatic cells, pancreatic cells, 
and germ-like cell

[42, 43]

Endometrial SPs of epithelial 
origin

CD9, CD90, CD105, CD73, CD45, 
CD34, CD31, CD133, stro-1

CD9, CD13 Adipocytes, osteocytes [96, 97]

Endometrial SPs from the stro-
mal compartment

Vimentin, CD90, CD73, CD45, 
CD34, CD31, CD133, stro-1

CD9, CD13, CD105, ERα, PR Adipocytes, osteocytes [97]

SUSD2+ eMSCs CD29, CD44, CD73, CD90, 
CD105, CD117, CD140b, 
CD146, and STRO-1, NTP-
Dase2

CD31, CD45 Adipocytes, osteocytes, 
chondrocytes, myocytes, 
endothelial cells

[12]

CD140b+CD146+ eMSCs CD29, CD44, CD73, CD90, 
CD105, CD140b, CD146

CD31, CD34, CD45 Osteocytes, myocytes, adipo-
cytes, chondrocytes, fibro-
blasts and smooth muscle cell

[12, 14, 15]

CD146+ cells CD10, CD13, CD44, CD73, CD90, 
and CD105

CD31, CD34, CD45, CD56, 
CD144, CD9

Adipocytes, osteoblasts, and 
neuron-like cells, glial-like cells

[19, 21]

Epithelial stem/progenitor cells N-cadherin, SSEA-1, Axin 2 Entire complement of glandular 
lineages, endometrial orga-
noids

[104, 107, 150]
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SUSD2+ eMSCs
SUSD2, a novel marker of eMSCs, is proved particu-
larly effective in the  selection of eMSCs [12]. SUSD2+ 
cells reside predominantly in a perivascular location in 
both basal and functional layers of endometrium (Fig. 1). 
SUSD2+ cells can differentiate into adipocytes, osteo-
cytes, chondrocytes, myocytes, endothelial cells in vitro 
and produce endometrial stromal-like tissues in  vivo 
(Table  1). Freshly isolated SUSD2+ cells express MSC 
markers including CD29, CD44, CD73, CD90, CD105, 
CD117, CD140b, CD146, and STRO-1 (Table 1). SUSD2+ 
cells also express nucleoside triphosphate diphosphohy-
drolase 2 (NTPDase2), a membrane-expressed enzyme 
existing in mesenchymal-derived cells, such as pericytes 
in different tissues and stem cells in adult neurogenic 
regions [25, 26]. The expression level and localization of 
NTPDase2 remain unchanged throughout the menstrual 
cycle, indicating that the enzyme can be used as a cell 
marker to improve the separation of eMSCs for regenera-
tive medicine treatment [27].

SUSD2+ eMSC seems to be affected by pregnancy 
and obesity, but not by aging. In the undifferenti-
ated state, SUSD2+-derived cells produce lower levels 
of various chemokines and inflammatory regulators 
than SUSD2− cells. However, this is switched after 

decidualization  because these SUSD2+ cells are turned 
into the main source  to produce chemokines and 
cytokines including chemokine (C–C motif ) ligand 7, 
and the  leukemia inhibitory factor [28]. SUSD2+ cells 
originated from myometrium and uterine fibroids are 
featured as MSCs and can also be induced into decidua 
[29]. Perivascular SUSD2+ cells isolated from postmen-
opausal endometrium also display the characteristics of 
MSCs, regardless whether the patients receive estrogen 
pretreatment for the regeneration of endometrium [30]. 
However, adipocytes may adversely affect endometrial 
stem cells. Compared with that in  women with nor-
mal body mass index (BMI), the proportion and cloning 
efficiency of SUSD2+ cells in the endometrium of obese 
women are significantly reduced [31].

Signaling pathways involved in SUSD2+ eMSCs
In recent years, scientists have gradually paid the atten-
tion to the clinical application of endometrial stem cells. 
The  in vitro expansion and stemness maintenance  of 
eMSCs  are a major challenge for the current clinical 
treatment. Studies have found that A83-01, a TGF-β 
receptor inhibitor, can maintain  SUSD2+ eMSCs pro-
liferation, clonogenicity, and function   through the 

Fig. 2  GnRH, TGF-β, and SHH affect the multiple functions of eMSCs, such as proliferation, differentiation, aging, and migration. GnRH inhibits 
the multiple beneficial functions of eMSCs, such as proliferation, differentiation, and migration, through the PI3K/AKT signaling. The activation 
of Akt signaling attenuates the GnRH-induced adverse effects on multiple stem cell functions. TGF-β inhibits the proliferation, differentiation, 
and colony-forming efficiency of SUSD2+ eMSCs. A83-01, TGF-β receptor inhibitor, can maintain the clonogenicity of SUSD2+ eMSCs, promote 
proliferation, prevent cell apoptosis, and maintain eMSC function. Exogenous SHH therapy could significantly alleviate various aging-related 
declines in multiple eMSC functions through the inhibition of SERPINB2 expression
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inhibition of TGF-βR signaling [32, 33] (Fig.  2). The 
expression of genes associated with anti-inflammatory 
response, angiogenesis, cell migration and proliferation 
can be promoted by A83-01 in SUSD2+ eMSCs [34].

Long-term GnRH exposure of eMSCs may be respon-
sible for the relatively low rate of in  vitro fertilization 
(IVF) positive pregnancy outcomes. Unlike terminally 
differentiated fibroblasts, SUSD2+ eMSCs express 
abundant GnRH receptors. GnRH inhibits the multiple 
beneficial functions of eMSCs, such as proliferation, 
differentiation and migration, through the  PI3K/Akt 
signaling pathway [35] (Fig. 2).

The Sonic hedgehog (SHH) signaling typically func-
tions in morphogenesis during  the embryonic devel-
opment [36]. In addition, the decreased SHH signal 
integrity of local eMSCs may be a potential factor for 
the decreased regeneration of ageing endometrium. 
The activity of SHH is decreased significantly with age-
ing, but the exogenous SHH therapy may significantly 
alleviate the  various ageing-associated declines. SER-
PINB2 is a major regulator for the SHH signal trans-
duction during senescence, whereas  the senescence of 

stem cells may enhance the expression of SERPINB2, 
which in turn mediates the role of SHH to attenuate the 
senescence-induced dysfunction of eMSCs [37] (Fig. 2).

SUSD2+ eMSCs in immunity and tissue engineering
Mesenchymal stem cells (MSCs) from other tissues, such 
as bone marrow, umbilical cord, and adipose tissues, 
inhibit the proliferation of T cells, B cells, natural killer 
cells (NK), and dendritic cells (DCs) to induce cell cycle 
arrest through the  mechanisms associated with IL-10, 
prostaglandin E2, TGF-β1, and regulatory T cells (Tregs) 
[38]. Although SUSD2+ eMSCs inhibit the  mitogen-
induced lymphocyte proliferation in a dose-dependent 
manner, blocking  of the mouse IL-10 receptors or  the 
prostaglandin production dose not inhibit lymphocyte 
proliferation. Despite the reduction of Tregs, endome-
trial SUSD2+ cells continue to inhibit lymphocyte prolif-
eration in the presence of TGF-β receptor inhibitors [39]. 
Therefore, the inhibition of  the mitogen-induced lym-
phocyte proliferation by SUSD2+ cells occurs through 
an  uncertain mechanism different from that of MSCs 
from other tissues (Fig.  3A). Moreover, the  systemic 

Fig. 3  Roles of SUSD2+ eMSCs and MenSCs in immunity. A TGF-β promotes the differentiation of Tregs that inhibit T-lymphocyte proliferation. 
A83-01 increases the T-lymphocyte proliferation through the inhibition of the TGF-β signaling-dependent Treg differentiation, but SUSD2+ eMSCs 
continue to inhibit the lymphocyte proliferation via an uncertain mechanism independent of the TGF-β signaling from that of MSC from other 
tissues. B MenSCs inhibit the phenotypic differentiation of human peripheral blood monocytes into immature and mature DCs. MenSCs can also 
affect the proliferation of monocytes in a dose-dependent manner. In vivo studies, after the intravenous injection of MenSCs, the proportion 
of CD4+ and CD8+ T cells in spleen was significantly down-regulated and the percentage of CD4+CD25+Foxp3+ regulatory T cells (Treg) and 
Breg (CD19+IL‐10+) in spleen was significantly up-regulated. The serum levels of IL-1β, IL-6, and TNF-α in mice receiving MenSCs transplantation 
are lower, but the expression level of IL-10 is higher. CXCL12 secreted by MenSCs also increases the percentage of Treg, Breg, and M2 cells. 
MenSC-derived exosomes can resolve inflammation through the induction of the M1-M2 macrophages polarization. MenSCs treatment may inhibit 
the proliferation of B cells to reduce  the production of IgM and IgG antibodies
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administration of endometrial SUSD2+ cells dose not 
inhibit  the swelling of the T cell-mediated skin inflam-
mation. Although endometrial SUSD2+ cells can alter 
the immune response, their immunoregulatory pool may 
not be sufficient to suppress the certain T cell-mediated 
inflammatory events [39].

Animal studies demonstrate that SUSD2+ eMSCs can 
also modify immune responses to the  implanted mesh 
[39]. Seeding of eMCSs in  scaffolds can promote the 
formation and reconstruction of neo-tissues [40, 41]. 
The eMSCs alter the growth of collagen and organiza-
tion around the mesh filaments of the scaffold  to affect 
the physiologically relevant tensile properties of the 
scaffold-tissue complex. The stiffness of scaffolds seeded 
with eMSCs on initial stretching can be significantly 
alleviated. In addition,  the scaffold is an appropriate 
platform for eMSCs delivery, proliferation, and differen-
tiation, with  the better biocompatibility and the capac-
ity to regenerate neo-tissues, which may be a promising 
application in the clinical mesh repair of pelvic organ 
prolapse (POP) to reduce the excessive scar tissue forma-
tion induced by foreign body reactions and to relieve the 
in vivo poor mechanical compliance.

Menstrual stem cells
Menstrual stem cells (MenSCs) were first identified 
from menstrual blood in 2007, which can effectively 
propagate for over 68 population doublings with normal 

karyotype [42]. MenSCs express markers CD29, CD9, 
CD13, CD44, CD41a, CD73, CD59, CD90, and CD105 
but not CD19, CD34, CD45, CD117, CD130, or HLA-DR 
[42, 43] (Table  1). MenSCs partially (over 50%) express 
the pluripotency marker SSEA-4, but not Oct-4. Men-
SCs can differentiate into adipocytic [44], osteogenic 
[45], cardiomyocytic [46], and  neurocytic  lineages [47], 
as well as  respiratory epithelial, endothelial, myocytic, 
hepatic [48], germ-like [49, 50], and pancreatic cells [42, 
51] (Table  1). Replacement of  fetal bovine serum with 
human platelet derivatives can promote the differen-
tiation of MenSCs into osteoblasts [52]. The mitotically 
inactivated MenSCs are ideal feeder cells for the human 
embryonic stem cell lines C612 and C910 [43].

MenSCs in regenerative medicine and tissue engineering
MenSCs population is one of the clinically accessible 
sources of stem cells with great potential in regenera-
tive medicine. MenSCs are abundant in sources with 
excellent proliferation and autotransplantation capa-
bilities and can be collected regularly and noninvasively. 
In addition, MenSCs have a higher proliferation ability 
than that of BMSCs [53]. Most importantly, any signifi-
cant side effects including acute, subchronic, or chronic 
poisoning, infection, tumorigenesis, or endometrio-
sis has not been reported either in preclinical studies or 
in clinical studies during the treatments of various dis-
eases with MenSCs over the past yeas [54–56] (Table 2). 

Table 2  Some of the disorders could be (or already are) treated by MenSCs

MenSCs menstrual stem cells, IUA intrauterine adhesion, ARDS acute respiratory distress syndrome

Disorder Subjects References

IUA Human [57]

Rat model [151]

Endometrial injury Mice model [152]

Premature ovarian failure Rat model [58]

Mice model [59, 78]

Liver failure Mice model [60–62]

Pig model [153]

Liver fibrosis Mice model [154]

Experimental stroke In vitro stroke model of oxygen glucose deprivation [63]

Pulmonary fibrosis Mice model [64, 65]

ARDS Patients with H7N9-induced ARDS [71]

Myocardial infarction Rat model [46, 68]

Cardiac allograft Mice model [67, 90]

Alzheimer’s disease Mice model [69]

Acute lung injury Mice model [70]

Renal ischemia reperfusion injury Mice model [72]

Type 1 diabetes Mice model [75]

Chronic nonhealing wounds Diabetic mice model [74]

Sciatic nerve injury Rat model [73]
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Existing studies have found that MenSCs therapy may be 
an attractive alternative approach for intrauterine adhe-
sion (IUA) [57], premature ovarian failure (POF) [58, 59], 
liver failure [60–62], experimental stroke [63], pulmo-
nary fibrosis [64, 65], cardiac diseases [66, 67], myocar-
dial infarction [46, 68], Alzheimer’s disease [69], acute 
lung injury [70], acute respiratory distress syndrome 
[71], renal ischemia reperfusion injury [72], sciatic nerve 
injury [73], chronic nonhealing wounds [74], and type 1 
diabetes [75] (Table 2).

Studies reported that MenSCs may be used for patients 
with severe IUA. MenSCs co-cultured with endome-
trial stromal cells (ESCs) promote the proliferation and 
wound repair of ESCs, down-regulate the expression of 
αSMA and collagen I in ESCs, and reverse  the fibrotic 
gene expression in ESCs induced by TGF-β through the 
Hippo/TAZ signaling pathway [76]. Intrauterine trans-
plantation of MenSCs in the IUA rat model  demonstrate  
that the endometrial pathology and uterine fertility of 
the rat are significantly improved [77]. Human autolo-
gous MenSCs transplantation may significantly promote 
the endometrial morphology regeneration and functional 
recovery in patients with severe IUA, which thereby helps 
some patients achieve a positive pregnancy [57].

MenSCs with  properties  of high  survival rate  in vivo 
and easy access make them very useful for stem cell trans-
plantation in POF therapy. By two-dimensional culture 
and 3D scaffold culture system, MenSCs can differentiate 
into germ-like cells in vitro [49, 50]. MenSCs transplan-
tation increases the body weight of POF mice, improves 
the estrus cycle, and restores the fertility of POF mice 
[78]. The transplanted MenSCs can be detected in the 
ovarian stroma and survive in the ovaries of POF mice 
for at least 14 days [59,78], and can be differentiated into 
granulosa cells and traced to two months in the ovaries of 
POF rats [58]. The ovaries receiving MenSCs transplan-
tation express the higher levels of ovarian reserve mark-
ers (AMH, inhibin α/β, and follicle-stimulating hormone 
receptor) and increase the ovarian weight, the plasma E2 
level, and the normal follicle counts [59].

The application of MenSCs in tissue engineering is 
also promising. A wide variety of 3D scaffolds has been 
applied to induce differentiation and co-culture of Men-
SCs. On the nanofiber scaffolds with the specific growth 
and differentiation factors, MenSCs may be differentiated 
into chondrocytes to anchor firmly on the highly porous 
scaffold, and to penetrate and spread on the scaffold. The 
scaffold contains an extensive cartilage-like extracellular 
matrix whose glycosaminoglycan content is about 50% 
higher than that of the 2D culture system through which 
MenSCs  differentiated [79]. On the 3D wet-electrospun 
poly (lactic acid)/multi-wall carbon nanotube scaffold, 
MenSCs can  be differentiated into germ-like cells [50]. 

Based on the bilayer amniotic membrane/nano-fibrous 
fibroin scaffold, MenSCs can be  differentiated into 
keratinocyte like cells in the presence of keratinocytes 
derived from human foreskin [80]. In the 3D co-culture 
system of mouse preantral follicles and human MenSCs, 
the  follicular growth indices are significantly increased, 
including survival rate, diameter and antrum formation 
as well as the rate of in vitro maturation rate [81].

Interaction of MenSCs with immune cells
MenSCs interact with a variety of immune cells and 
participate in the regulation of cellular immunity and 
humoral immunity (Fig.  3B). Menstrual blood can be 
used not only as a source of MenSCs, but also as a source 
of DCs. Monocytes in menstrual blood can be induced 
into DCs by a two-step protocol [82]. DCs, the profes-
sional antigen-presenting cells, may form an indispen-
sable interface between the innate sensing of pathogens 
and the activation of adaptive immunity, which  thereby 
enables DCs to be used as a novel and promising immu-
netherapeutic approach for cancer, persistent infection 
and autoimmune diseases treatment [83–85]. Similar to 
SUSD2+ eMSCs, MenSCs inhibit the optimal phenotypic 
differentiation of human peripheral blood monocytes 
(PBMCs) into immature and mature DCs, in which IL-6 
and IL-10 may play an important role [86]. Moreover, 
MenSCs may also affect the proliferation of monocytes 
in a dose-dependent manner [87]. The immunosuppres-
sive effects of MenSCs on PBMCs, CD4+IFN-γ+, and 
CD8+IFN-γ+ cells are weaker than those of BMDSCs, but 
MenSCs appear with a higher capacity to migrate into 
the intestine and liver [88].

In vivo studies showed that MenSCs may protect mice 
liver from acute injury through the  anti-inflammatory 
and immunomodulatory effects. In the mice model with 
acute injury  liver, the proportion of CD4+ and CD8+ T 
cells in spleen was significantly down-regulated after 
intravenous injection of MenSCs, while the percentage 
of CD4+CD25+Foxp3+Tregs in spleen was significantly 
up-regulated. Additionally, the  splenic DCs in MenSCs-
treated mice displayed a significant decrease of the MHC-
II expression. The serum and liver levels of IL-1β, IL-6, 
and TNF-α in mice receiving MenSCs transplantation 
are lower, but the expression level of IL-10 is higher 
[60]. In the colitis mice model, the treatment with Men-
SCs mainly regulated the response of B-lymphocytes, 
whereas the intravenous injection of MenSCs decreased 
the percentage of immature plasma cells in spleen and 
IgG deposition in colon but increased the secretion of 
IL-10 and the production of Bregs (CD19+IL-10+) [89]. 
On wound-healing process, MenSCs-derived exosomes 
can attenuate inflammation through the induction of the 
M1-M2 macrophage polarization [74].
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The therapeutic function of MenSCs used to alleviate 
the antibody-mediated allograft rejection can be partly 
attributed to the cellular immunity regulation [67] and 
the  humoral immunity suppression [90]. The  MenSC-
mediated therapy can prolong the survival of the  mice 
receiving cardiac allotransplantation due to the decrease 
of IgM and IgG deposition and the circulation of the anti-
donor antibodies secreted by CD19+ B cells. In addition, 
by ex vivo stimulation, because the proliferation of B cells 
from the MenSC-treated heart transplant recipients is 
impaired, and the production of IgM and IgG antibod-
ies is reduced [90]. Stromal-cell-derived factor‐1 (SDF‐1), 
also known as CXCL12, can be secreted in a substantial 
amount by MenSCs. The  MenSC-mediated therapy can 
induce immunosuppression and donor-specific allograft 
tolerance in which the SDF-1 secreted by MenSCs plays 
important roles. Based on MenSCs therapy, SDF-1 can 
reduce the  antibody-mediated rejection and acute cel-
lular rejection  to increase the percentages of Tol-DC 
(CD11c+MHC class II+), Treg (CD4+CD25+Foxp3+), 
Breg (CD19+IL‐10+), and M2 (CD68+CD206+) cells, and 
to  reduce the percentage of total macrophages [67]. As 
easily accessible and expandable stem cells, MenSCs are 
worthy of the  researchers’ attention for their functions 
in the regulation of the immune system-related cells and 
humoral immunity.

Side population cells
Side population cells (SPs) are considered a universal 
marker for adult stem cells in mammalian species. This 
phenotype results from the high expression of plasma 
membrane transporters (such as ABCG2), which trans-
ports the DNA-binding dye Hoechst 33,342 out of the cell 
[91]. SPs were first isolated from normal human endome-
trial cells by Kato et al. in 2007 and can be differentiated 
into gland- and stromal-like cells [92]. Human endome-
trium contains approximately 1–7% SPs in freshly iso-
lated human endometrial at various stages, including 
proliferative phase [93], secretory phase and decidual of 
early pregnancy [94, 95]. Most SPs in the endometrium 
are resting cells in  vivo, but during the proliferative 
phase, a small number of SPs become active to be differ-
entiated into endometrial cells [93, 94]. SPs are located 
at the vascular endothelium cells lining blood vessels in 
both the functionalis and the basalis of the endometrium 
[94] (Fig. 1).

Specific markers have been identified for SPs (Table 1). 
Endometrial SPs are composed of heterogeneous popu-
lations, with endothelial cell markers (CD31), hemat-
opoietic cell markers (CD34 and CD45), the epithelial 
cell marker EMA and mesenchymal stem cell markers 
(CD90, CD105, and CD146) [94, 96, 97]. The enrichment 
of endothelial and CD146+CD140b+ eMSCs suggests 

that the endometrial SPs play a role in angiogenesis dur-
ing  the endometrial regeneration [98]. However, SPs in 
human decidua of early pregnancy are negative for CD13, 
CD34, and CD45, but about 95% of SP cells in human 
decidua are CD31−CD146− [99] (Table  1). No differ-
ence in the percentage of SUSD2+ cells exist between the 
endometrial SP and non-SP components,  but CD140b+ 
CD146+ cells are much more abundant in endometrial 
SPs than in non-SP components [100]. With the greater 
colony-forming efficiency than non-side population cells 
[94], SPs can be differentiated into various types of endo-
metrial cells, such as stroma, glandular epithelium, and 
endothelium cells [93], adipocytes and osteoblasts [96, 
101]. SPs also rebuild the  well-organized endometrial 
tissues and glandular structures in vivo [93, 96, 97, 100, 
102].

Although the endometrial SPs are featured with the 
excellent self-renewal and differentiation abilities, the 
dynamic labeling is technically difficult to be performed, 
the co-labeling with other markers is unreliable, the 
Hoechst dye is toxic to cells, and flow cytometry sorting 
damages cells [14, 103]. Therefore, the heterogeneity of 
the SPs and their isolation method hinder their clinical 
applications.

Endometrial epithelial stem/progenitor cells
Endometrial epithelial progenitor cells were first isolated 
by Gargett et  al. [15]. Individual colonies in  the differ-
entiation induction medium are  characterized as adult 
stem cells by analysis of the  self-renewal, differentia-
tion, and high proliferative potential of single epithelial. 
The  stage-specific embryonic antigen-1 (SSEA-1), as a 
marker of human endometrial basal glandular epithe-
lial cells, is used to distinguish the epithelium of basalis 
from functionalis [104, 105] (Fig.  1). SSEA-1+ endome-
trial epithelial cells displaying some characteristics of the 
basalis epithelium and the higher telomerase activity may 
produce a higher number of endometrial gland-like sphe-
roids than SSEA-1− endometrial epithelial cells in 3D 
culture system.

Recently, through in  vivo lineage tracking, research-
ers found that  the endometrial epithelium maintains 
the  continuous self-renew during the  development, 
normal growth, and regeneration of the whole life, and 
demonstrated that a multipotent endometrial epithe-
lial stem cells with naturally occurring somatic mito-
chondrial DNA mutations (CCO gene) can regenerate 
the entire complement of glandular lineages [106, 107]. 
Axin2, a key negative regulator of the  Wnt signaling 
pathway is expressed in the stem cells of various organs 
[108], and is also identified as a marker of long-lived 
bipotent epithelial progenitors that reside in endome-
trial glands [107]. Cytoplasmic Axin2 is also  expressed 
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in the functionalis of proliferative and secretory endo-
metrial glandular epithelia from premenopausal women. 
In contrast, the nuclear Axin2 expression is observed in 
the proliferative and secretory basalis of premenopausal 
and postmenopausal endometrial epithelia [105]. Axin2-
expressing glandular cells express  the known stem cell 
markers, such as Lgr5, Trop2 and Sox9 to fuel endome-
trial epithelial growth and regeneration in vivo. In addi-
tion, Axin2+ cells can form fully functional endometrial 
organoids in vitro [107]. The above findings seem to pro-
vide evidence for the involvement of the  mesenchymal-
to-epithelial transition (MET) in the maintenance and 
regeneration of the uterine epithelium [109]. However, 
a recent cell fate tracing study found that the  conclu-
sive evidence for the conversion of mesenchymal cells 
to epithelial cells in adult uterine is lacking. The study of 
the embryonal cell lineage tracing with reporters driven 
by mesenchymal cell marker genes of the female repro-
ductive tract (AMHR2, CSPG4, and PDGFRβ) showed 
that these reporters are also expressed in some oviductal 
and uterine epithelial cells at birth [110].

The endometrial epithelial stem cell population of 
mouse residing in the intersection zone between luminal 
and glandular epithelial compartments is also identified 
by in  vivo lineage tracking  in which the tissue distribu-
tion allow the bipotent endometrial epithelial stem cells 
to  be differentiated bidirectionally into luminal epithe-
lial cells and glandular epithelial cells and  to maintain 
the  homeostasis and regeneration of the  mouse endo-
metrial epithelium under physiological conditions [111]. 
However, no labeled epithelial cells were found in any 
fallopian tubes or uterine epithelium after the mesenchy-
mal cell labeling is induced in adult mice, indicating that 
no definitive evidence of MET  happens in the fallopian 
tubes and uterine epithelium in murine [110]. Very small 
embryonic-like stem cells (VSELs) are recently identified 
in mouse uterine [112], but they  are still controversial 
[113] because without the sufficient functional analysis to 
prove their pluripotency until now [4].

Participation of endometrial stem/progenitor cells 
in the origin and development of endometriosis
Endometriosis is characterized by the development of 
endometrial tissues outside the uterus to cause pain and 
infertility. Due to the lack of effective biomarkers, endo-
metriosis is usually not diagnosed until the first onset of 
the disease a few years later. So far, most of the existing 
treatments are non-therapeutic [8]. Until the beginning 
of the twenty-first century, some scholars suspected that 
endometriosis may be a stem cell-related disease, because 
less differentiated endometrial cells in RM may be the 
cellular source of primary endometriotic lesions [8, 114, 
115]. Endometrial stem/progenitor cells with the altered 

molecular properties reflux into the pelvic cavity via 
RM, where they adhere and form ectopic lesions. The 
prevalence of shed basalis fragments in the  menstrual 
blood of women with endometriosis is significantly 
higher than that in the healthy control menstrual blood 
[8]. The endometrium of endometriotic lesions displays 
a cyclical pattern similar to the basalis and presents the 
same cyclical pattern of ER and PR expression as the 
deep basalis. The expression of adult stem cell markers 
Musashi-1 [116], OCT4, SOX15, SOX2 [117, 118], C-kit 
[119], Notch and Numb [120], and the corneal epithelial 
progenitor cell marker importin13 [121] is significantly 
higher in endometriotic lesions than in normal endome-
trium. The  peripheral lymphocytes from endometriosis 
patients are detected with longer telomeres than those 
from healthy controls [122]. Moreover, the expression 
of SSEA-1 in ectopic epithelial cells is similar to that in 
eutopic basalis epithelium [104, 123]. These data support 
the concept of a stem cell origin of endometriosis that 
the presence of the  abnormally detached basalis endo-
metrium fragments in the RM is considered as the main 
cause of endometriosis (Fig. 1).

Peritoneal microenvironment interacts 
with ectopic cells in patients with endometriosis
Endometriosis alters the peritoneal microenvironment of 
women, in which the immune response, angiogenesis, cell 
proliferation, cell adhesion, and apoptosis are uniquely reg-
ulated in peritoneal fluid (PF). A specific protein expression 
pattern is present in PF with deep infiltrating endometriosis 
(DIE) compared in PF with non-DIE [124]. The detached 
endometrial fragments flow into the pelvic cavity, where 
they directly interact with cytokines in PF [125] to secrete 
chemokines [126] and  to form a feedforward loop [127], 
which eventually induces the infiltration of immune cells 
and BMDSCs [128]. Seventy-four cytokines are increased 
and 4 cytokines are decreased in PF from endometriosis 
patients compared with those in  healthy control group 
[125]. Among these cytokines, activin A is significantly 
increased in PF from endometriosis group, whereas ALK4 
(activin A-specific receptor) is increased in ectopic endo-
metrial-derived SUSD2+ eMSCs [129]. In addition, the 
levels of Activin A secreted by glandular cells and stromal 
cells are significantly higher in the eutopic endometrium of 
endometriosis patients than in the eutopic endometrium 
of healthy controls [130]. The expression of the  connec-
tive tissue growth factor (CTGF) in SUSD2+ eMSCs may 
be promoted by Activin A through the binding of Smad2/3 
to the CTGF promoter to induce the myofibroblast differ-
entiation of SUSD2+ eMSCs. Endometriotic lesions may 
be enhanced by Activin A through the increased IL-6, IL-8, 
and TNF-α in the ascites of endometriosis mice models 
[131, 132]. Inhibition of the activin A pathway prevents 



Page 10 of 16Kong et al. Stem Cell Res Ther          (2021) 12:474 

the myofibroblast differentiation of SUSD2+ eMSCs and 
improves fibrosis in endometriosis mice [129]. Endometri-
otic cells interact with the abnormal peritoneal microenvi-
ronment of patients with endometriosis. The ectopic cells 
secrete inflammatory factors that may remodel the perito-
neal microenvironment, and in turn, various cytokines in 
PF exert their function on the endometriotic cells.

Abnormal expression profiles of endometrial stem 
cells from endometriosis patients
Ectopic eMSCs from endometriosis patients display 
stronger abilities of proliferation, migration, and angiogen-
esis than eutopic eMSCs from the same individual or from 
healthy controls [133]. The expression profiles of adeno-
myosis-derived mesenchymal stem cells (AMSCs) are dif-
ferent from those of eMSCs and BMSCs. Compared with 
eMSCs, the expression of cyclooxygenase-2 (COX-2) in 
AMSCs is significantly increased, and inhibition of COX-2 
blocks the migration and invasion of AMSCs and induces 
their apoptosis [134].

CD73+CD90+CD105+ endometrial stem cells (SCs+) 
from normal, ectopic and eutopic endometrium display a 
significantly higher level of SUSD2+ with cloning efficiency 
and sphere formation capacity than SCs−. Compared with 
in eutopic endometrium SC+ samples, the expression of 
PTEN, ARID1A, and TNFα from paired-ectopic samples 
is significantly down-regulated. Analysis of the  hierarchi-
cal and multivariate clustering from both SC+ and tissue 
cohorts revealed the abnormal expression of stemness-
related and cancer-related genes such as KIT, HIF2α, and 
E-Cadherin in 4 of 30 ectopic samples. C-kit is expressed 
higher in the endometrial glandular cells of  the women 
with endometriosis than in the endometrial glandular cells 
of the women without endometriosis [119]. Therefore, it is 
speculated that the changes in stemness-associated genes 
may be linked to the development of endometriosis [135].

MenSCs from women with and without endometriosis 
display different phenotypic and functional characteris-
tics [136]. MenSCs from  the endometriosis (E-MenSCs) 
women appear with the higher expression of CD9, CD10, 
and CD29 and the  higher proliferation and invasion 
potentials than MenSCs from  the non-endometriosis 
(NE-MenSCs) women. The expression of the  indoleam-
ine 2,3-dioxygenase-1 (IDO1) and COX-2 in E-MenSCs is 
higher than in NE-MenSCs. In addition, the supernatants 
of E-MenSCs contain the higher levels of IFN-γ, IL-10, and 
the monocyte chemoattractant protein 1 than those of NE-
MenSCs. These findings indicate that MenSCs may play 
an alternative role in the pathogenesis of endometriosis, 
which further supports the stem cell theory of endometrio-
sis with RM.

Stem/progenitor cells or stem‑like cells 
of extrauterine origin promote endometriosis
A study reported that a few of stromal cells and epithelial 
cells from doner mouse endometrial tissues were traced 
in the ectopic implant lesions of the recipient mice after 
10 weeks of transplantation, indicating that the cells from 
the extrauterine origin may also promote  the develop-
ment of ectopic endometrium [137].

BMDSCs participate in the pathogenesis of endome-
triosis to promote the development of the disease [138] 
(Fig.  1). BMDSCs implanted into ectopic endometrial 
and endometriotic lesions display the properties of stro-
mal and epithelial cells [137, 139], while the cytokines 
secreted by the implanted BMDSCs promote the pro-
liferation of ectopic endometrial cells [138]. In turn, 
the  endometriotic cells also stimulate the  BMDSCs dif-
ferentiation and increase the expression of PD-1 in T 
cells possibly through the paracrine signaling [140]. The 
ectopic endometrium competes with the eutopic endo-
metrium for the limited supply of BMDSCs in blood cir-
culation and the depletion of normal BMDSCs flux to the 
uterus. In addition, stem cells migrate from the endome-
triotic lesions to the uterus, to induce the dysfunction of 
the  eutopic endometrium [141]. 17β-Estradiol can pro-
mote the chemotaxis and migration of BMDSCs by up-
regulating the secretion of chemokine SDF-1α [142]. In 
a mouse endometriosis model, bazedoxifene [139], an 
estrogen receptor modulator, administered with the con-
jugated estrogens and letrozole [143] (aromatase inhibi-
tor) not only alleviated the lesions of endometriosis, but 
also dramatically reduced the recruitment of BMDSCs to 
the lesions and restore the stem cell engraftment of the 
uterine endometrium.

Endometrial stromal cells express the  chemokine 
CXCL12, while BMDSCs express CXCR4, the receptor of 
CXCL12 [144]. In human and mice models of endometri-
osis, higher levels of CXCL12 and CXCR4 were detected 
in ectopic lesions and serum than those in healthy con-
trols [145]. The fluctuation of CXCL12 concentration 
produces a chemical gradient that guides the migration of 
stem cells [146]. The chemoattraction of mouse BMDSCs 
to CXCL12 in the conditioned medium (CM) of endo-
metriotic  cells is higher than that  in the CM of eutopic 
endometrium [145]. Activation of the CXCL12/CXCR4 
signaling axis promotes  the ectopic lesions to outcom-
pete eutopic endometrium to recruit the limited supply 
of circulating BMDSCs. Targeting CXCR4 by using the 
small molecule receptor antagonist AMD3100 reduces 
the recruitment of BMDSCs into the endometriosis and 
the size of the  endometriosis lesions [147]. Antagonist 
treatment also reduces the production of pro-inflamma-
tory cytokines and angiogenesis in the lesions of endo-
metriosis [147].
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Circulating endometrial cells (CECs) were identified 
in the  peripheral blood of all the acknowledged endo-
metriosis stages: minimal, mild, moderate, and severe 
(Fig. 1). The CECs captured during the menstrual cycle 
phases display stem cell-like characteristics [148]. 
CECs are also found in the  patients with pelvic endo-
metriosis and spontaneous pneumothorax, with the 
properties of epithelial, stroma-like, glandular [149], 
or stem cell-like  cells. A reporter found that  DsRed+ 
cells can be found in blood of DsRed− mice with endo-
metriosis receiving the peritoneal cavity transplanta-
tion of DsRed+ mice endometrial tissues. Almost all 
of CECs originated from endometriosis rather than 
uterus express CXCR4 and MSCs biomarkers, but not 
hematopoietic stem cell markers, and contribute to 
both endometriosis and angiogenesis. Cells originated 
from endometriosis lesions may migrate and implant in 
lung tissues and display the  abilities of differentiation 
into adipogenic, osteogenic, and chondrogenic lineages 
in vitro, indicating a retained multipotency.

Overall, endometrial stem/progenitor cells in men-
struation blood (MenSCs) are the most clinically acces-
sible sources of stem cells with a great potential in  the 
regenerative medicine and tissue engineering. The 
advantages of MenSCs are that they can be collected 
regularly and noninvasively. MenSCs are also promising 
candidates in the stem cell therapy for inflammation and 
immune-related diseases, and may play an immunosup-
pressive role in the regulation of the cell-mediated immu-
nity and humoral immunity. The  bone marrow-derived 
and endogenous stem/progenitor cells participate in 
the origin and development of endometriosis. Endog-
enous stem/progenitor cells with  the altered molecular 
properties from the shedding endometrium fragments 
may  reflux into the pelvic cavity via RM, which may be 
considered as the main inducer of endometriosis. The 
ectopic lesions compete with  the eutopic endometrium 
for the limited BMDSCs in blood  circulation to induce 
the establishment of the deep invasive endometriosis. In 
addition, stem-like cells in ectopic lesions may also enter 
the peripheral blood circulation and cause distant inva-
sion. The study of the molecular mechanisms of stem/
progenitor cells or stem-like cells in endometriosis may 
provide some promising targets for molecular therapy of 
the associated reproductive and cancerous diseases.
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