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Artificial intelligence for prediction of COVID-19 progression using CT
imaging and clinical data
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Abstract
Objectives Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is
challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial
intelligence system to predict future deterioration to critical illness in COVID-19 patients.
Methods An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and
clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19.
Results A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was
included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or
mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting
individual COVID-19 patients’ to critical illness. The AI system successfully stratified the patients into high-risk and low-risk
groups with distinct progression risks (p < 0.0001).
Conclusions Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual
patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized
treatment.
Key Point
• AI system can predict time to critical illness for patients with COVID-19 by using CT imaging and clinical data.
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Introduction

Coronavirus disease 2019 (COVID-19) causes severe respira-
tory complications, including acute respiratory failure and has
put significant strain on healthcare systems worldwide to ac-
commodate the massive influx of critically ill patients. For
example, patients with acute-respiratory distress syndrome
(ARDS) from COVID-19 often require intubation and inten-
sive care unit (ICU) care, which are resource intensive [1].
Because of the shortage of mechanical ventilators and ICU
care, it is crucial to accurately and timely predict COVID-19
patients who will require critical care. More importantly, an
early determination of patient prognosis is useful when
implementing new treatments such as remdesivir [2], conva-
lescent plasma transfusion [3], ruxolitinib [4], and other
emerging therapies, leading to better outcomes [5, 6].
Progression to critical illness in COVID-19 occurs across all
patients, especially those with comorbidities such as obesity,
cardiovascular disease, chronic lung disease, hypertension, or
cancer [7]. However, it remains challenging to predict when a
COVID-19 patient will progress to critical illness.

Beyond patient demographics and laboratory parameters,
chest CT has been instrumental in distinguishing severe from
non-severe cases of COVID-19. For example, chest CT sever-
ity score has been developed and shown to correlate disease
severity and/or emergent status in COVID-19 patients [8–10].
Patients with severe disease will generally have diffuse multi-
lobe involvement, pleural effusion, consolidation, bronchial
wall thickening, and poor lung aeration on chest CT [8–12].
Due to the characteristic signs of COVID-19 on chest CT,
artificial intelligence (AI) may have utility in ascribing disease
severity status and prognosis to patients [13].

Using chest CT and clinical data, this study aimed to de-
velop an artificial intelligence (AI) system to predict future
deterioration to critical illness in COVID-19 patients.

Methods

Patient cohorts

A total of 1,051 patients with confirmed positive COVID-19
by RT-PCR and chest CT imaging suggestive of pneumonia
were retrospectively identified from nine hospitals in Hunan
Province, China; the Hospital of the University of
Pennsylvania in Philadelphia (HUP) in Philadelphia, PA; the
Rhode Island Hospital (RIH) in Providence, RI; and open-
source data from a previously published paper [13]. Ninety
COVID-19 patients without abnormality on chest CT were
excluded as they did not develop critical illness and the addi-
tion of these patients would have inflated model performance.
A diagram illustrating patient inclusion and exclusion criteria
is shown in Fig. 1.

The identified CT scans were directly downloaded from the
hospital Picture Archiving and Communications System
(PACS). The open-source data containing chest CT images and
clinical metadata of COVID-19 patients confirmed by molecular
PCR were directly downloaded from the China National Center
for Bioinformation (http://ncov-ai.big.ac.cn/download?lang=en).
Four radiologists, each with 5–10 years of experience in thoracic
radiology and direct clinical experience with COVID-19 chest
CT cases, reviewed and assessed the CT scans. Two radiologists
independently reviewed each half of the 1051 cases (F. F.Xie and
L. P. Zhu for one half, S. Li andD. Cao for the other half). A third
radiologist (Z. Xiong), with 20 years of cardiothoracic imaging
experience, helped to resolve differences to reach consensus.

TheRT-PCR results were extracted from the patients’ electron-
ic medical records in the hospital information system. The RT-
PCR assays were performed using TaqMan One-Step RT-PCR
Kits from Shanghai Huirui Biotechnology Co., Ltd. or Shanghai
BioGerm Medical Biotechnology Co., Ltd., both of which have
had their use approved by the China Food and Drug
Administration and the COVID-19 RT-PCR test (Laboratory
Corporation of America) for Chinese and US cohorts, respective-
ly. For patients with multiple RT-PCR assays, a positive result on
the last performed test was used as a confirmation of diagnosis.

The institutional review boards of all institutions approved this
retrospective study, andwritten informed consentwaswaived. To
avoid any potential breach of confidentiality, the patient datawere
de-identified and had no linkage to the researchers.

Clinical information

The patient’s age, sex, symptom (presence or absence of fe-
ver), white blood cell count, lymphocyte count, comorbidity
status (cardiovascular disease, hypertension, chronic obstruc-
tive pulmonary disease, diabetes, chronic liver disease, chron-
ic kidney disease, cancer, and human immunodeficiency virus
[HIV]), and exposure history with the COVID-19 epicenter
and/or another patient with COVID-19 were collected.
Utilization of mechanical ventilation and/or intensive medical
care and/or progression to death was recorded as well. For all
patients, admission and discharge times were also recorded.

The patients were determined to be critical or have severe
disease if they reached any of the following endpoints: mechan-
ical ventilation, intensive medical care, and death. If not, they
were determined to be non-critical. For critical patients, the
timeframe of their progression to critical event was calculated
from time of CT to the earliest time of developing one of the
above three critical events. A comparison of clinical data among
the four patient cohorts is shown in Supplementary Table 1.

AI models

First, the pulmonary tissue and lung parenchymal abnormality
fromCOVID-19were automatically segmented onCT images
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by a deep learning (DL) model using deep convolutional neu-
ral network. Examples of the automatically segmented pulmo-
nary tissue and lung parenchymal abnormality from COVID-
19 are demonstrated in Supplementary Figure 1. Second, DL-
based severity prediction models were built using lung and
lesion segmentations to determine whether a patient with
COVID-19 will develop critical or non-critical illness at the
time of CT scan. Third, progression prediction models were
built by using DL features extracted from the severity predic-
tionmodels and clinical data as input to random survival forest
to assign risk scores to different subjects. The workflow pipe-
line is shown in Fig. 2. The detailed descriptions of AI-based
lung and lesion segmentation (Supplementary Text 1), AI-
based severity prediction models (Supplementary Text 2),
and AI-based progression prediction models (Supplementary
Text 3) are included in the supporting information.

Statistical analysis

Segmentations were evaluated by calculating the Dice simi-
larity coefficient scores and visual examinations. Accuracy,
sensitivity, specificity, and area under the receiver operating
characteristic curve (ROC-AUC) were calculated for the clas-
sification models. The 95% confidence intervals on accuracy,
sensitivity, and specificity were determined using the adjusted
Wald method [14]. C-index for right-censored data was ap-
plied to evaluate the performance of progression prediction
models [15]. Time-dependent ROC-AUCwas calculated from
the obtained risk scores and progression information via the
Kaplan-Meier method [16] to further evaluate the progression
prediction performance.

Data and code availability

In respect of patient confidentiality and consent, the CT images
and clinical information datasets analyzed in this study are not
available for download. The models generated by these datasets
are publicly available at https://www.dropbox.com/sh/
g1w13gyoezq36y8/AAC0DvGyuLHdPPXKtvOQ_lTma?dl=0

The DL models for severity prediction were implemented
with Keras (version 2.2.5) and Tensorflow (version 1.12.3)
and trained with NVIDIA V100 GPUs. The progression pre-
diction models were implemented with Scikit-Learn (version
0.21.3). To allow other researchers to develop their models,
the code is publicly available on Github at http://github.com/
robinwang08/COVID19.

Results

Patient characteristics

From the 1,051 patients with RT-PCR confirmed COVID-
19 and chest CT, 282 patients developed critical illness
(aka severe disease), which was defined as requiring ICU
admission and/or mechanical ventilation and/or reaching
death during their hospital stay. The median time of initial
CT acquisition from RT-PCR confirmed COVID-19 diag-
nosis was 2 days. The distribution of time between CT
acquis i t ion and RT-PCR diagnosis is shown in
Supplementary Figure 2. The median age of patients
who progressed to critical illness was higher than that of
non-critical patients (57 vs. 45 years, p < 0.001). The
median number of days from admission to critical illness

Fig. 1 Patient exclusion inclusion workflow. Abbreviations: CT, computed tomography; RIH, Rhode Island Hospital; HUP, Hospital of the University
of Pennsylvania; AI, artificial intelligence; RT-PCR, reverse transcriptase polymerase chain reaction

207Eur Radiol (2022) 32:205–212

https://www.dropbox.com/sh/g1w13gyoezq36y8/AAC0DvGyuLHdPPXKtvOQ_lTma?dl=0
https://www.dropbox.com/sh/g1w13gyoezq36y8/AAC0DvGyuLHdPPXKtvOQ_lTma?dl=0
http://github.com/robinwang08/COVID19
http://github.com/robinwang08/COVID19


was 0.4 days (range: 0 to 30 days). The clinical charac-
teristics of COVID-19 patients with critical or non-critical
illness are shown in Table 1. This cohort was randomly
divided into training, validation, and testing sets with a
7:1:2 split ratio to build the severity prediction models
and progression prediction models. Patient characteristics
across sets can be found in Supplementary Table 2.

AI-based segmentation of lung and lesion

Deep learning–based lung and lesion segmentations result-
ed in mean validation Dice similarity coefficients of 0.97 ±
0.02 and 0.62 ± 0.22, respectively, using manual segmen-
tation as the gold standard. The average volume error for
lesion is 27.1% ± 29.0% of the ground truth. Average false
positive rate is 48.3% and average false negative rate is
12.6%, indicating that the automatic model tends to over-
estimate the lesion. Supplementary Figure 3 shows the
Bland-Altman plots for the volume differences from the
automatic and manual segmentation. Therefore, in order
to reduce the impact from automatic segmentation, the
generated lung and lesion segmentations were then manu-
ally corrected as needed—a total of 115 lesion segmenta-
tions (11%) were manually corrected. Examples of manu-
ally corrected segmentations are shown in Supplementary
Figure 4.

Severity and progression prediction models

The model utilizing the top 10 segmented lung slices based on
the largest lesion area for each patient achieved a slice level
accuracy of 0.778 (95% CI: 0.760–0.795), sensitivity of 0.710
(95% CI: 0.667–0.751), specificity of 0.796 (95% CI: 0.776–
0.815), and a ROC-AUC of 0.832. At the pooled patient level,
the model achieved an accuracy of 0.833 (95% CI: 0.776–
0.877), sensitivity of 0.622 (95% CI: 0.476–0.749), specificity
of 0.890 (95% CI: 0.832–0.930), and a ROC-AUC of 0.856. A
summary of the results for the model is shown in Supplementary
Table 3 with the ROC-AUC graphs presented in Fig. 3.

Built to predict the length of time from admission to critical
illness, the progression predictionmodel was optimized on the
same data split of severity prediction model and tested on an
independent test set. The prediction model achieved a C-index
of 0.804, demonstrating success in assigning patients with risk
scores consistent with their progression outcomes. As shown
in Fig. 4a–c, the progression prediction model achieved time-
dependent ROC-AUC of 0.82, 0.81, and 0.83 for prediction of
progression risk at cutoff values of 3, 5, and 7 days, respec-
tively. Median of risk scores obtained by the progression pre-
diction model were utilized to stratify patients into high-risk
and low-risk subgroups. As indicated by survival curves of the
stratified risk groups shown in Fig. 4f, the high-risk and low-
risk subgroups had statistically significant difference in the
risk of disease progression (p < 0.0001, log-rank test).

Fig. 2 Illustration of our analysis pipeline. The pipeline includes a
severity prediction stage and two progression prediction branches. (a)
Deep learning (DL)–based severity prediction. The top 10 segmented
lung slices by largest area of pathology were used as input to
EfficientNet to predict disease severity based on individual slices, and
then pooled to predict severity at the patient level. (b) DL-based
progression prediction. In this branch, 256-D DL features from the
model were aggregated via an average pool layer for each patient.

Then, a random survival forest model was optimized based on the DL
features to assign risk scores to different subjects. (c) Clinical (Clin) based
progression prediction. In this branch, 15 clinical features extracted from
demographic recordings were input to another survival forest model to
assign risk scores to different subjects. Finally, for each patient, the DL-
based prediction and Clin-based prediction were combined to predict
progression for each patient
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Progression prediction models based on DL features and
clinical data separately achieved C-index values of 0.719
and 0.774, respectively. As shown in Fig. 4d and e, the
median of risk scores obtained by these two progression
prediction models also successfully stratified the patients
into groups with distinctive critical outcomes (p value

< 0.0001, log-rank test). The model based on the CT se-
verity scores as described by Yeun-Chung Chang et al [17]
achieved a C-index value of 0.724. The progression pre-
diction and risk stratification performances of the afore-
mentioned methods are summarized in Supplementary
Table 4.

Table 1 Clinical characteristics of critical and non-critical COVID-19 patients

Critical (n = 282) Non-Critical (n = 769) p value

Age (year) < 0.001
Median ± interquartile range 57 ± 23,

range of 0 to 92
46 ± 22,
range of 0 to 84

< 20 18 (6) 23 (3)
20–39 30 (11) 246 (32)
40–59 105 (37) 334 (43)
≥ 60 184 (65) 166 (22)
Sex 0.298
Male 154 (55) 393 (51)
Female 126 (45) 372 (48)
Presence of fever < 0.001
Fever 103 (37) 325 (42)
No fever 20 (7) 156 (20)
White blood cell count < 0.001
Elevated 45 (16) 22 (3)
Normal 79 (28) 457 (59)
Lymphocyte count < 0.001
Normal 78 (28) 193 (25)
Decreased 45 (16) 323 (42)

Comorbidities
Cardiovascular disease 42 (15) 37 (5) < 0.001
Hypertension 62 (22) 84 (11) < 0.001
COPD 15 (5) 20 (3) < 0.001
Diabetes 36 (13) 49 (6) < 0.001
Chronic liver disease 6 (2) 18 (2) 0.453
Chronic kidney disease 19 (7) 8 (1) < 0.001
Malignant tumor 9 (3) 8 (1) < 0.001
HIV 0 (0) 0 (0) 1.000

Outcomes*
Ventilator 93 (33) N/A
Intensive care unit 112 (40) N/A
Death 24 (9) N/A
Unknown critical** 152 (54) N/A

Progression to critical event (days)
Median 0.4, range of 0 to 30 N/A
Day 1 165 (59) N/A
Day 2 25 (9) N/A
Day 3 12 (4) N/A
≥ Day 4 69 (24) N/A

Progression to discharge (days)
Median N/A 12.0, range of 0 to 46
0–4 N/A 57 (7)
5–9 N/A 155 (20)
10–14 N/A 230 (30)
≥ 15 N/A 203 (26)

Epidemiologic contact
Epicenter*** 14 (5) 155 (20) <0.001
COVID-19 patients 26 (9) 114 (15) <0.001

*Patients with multiple critical outcomes may be counted in multiple categories

**For patients from public data source [17], the type of critical condition was not specified

***Epidemiologic contact with epicenter includes patients who have visited Wuhan, China, and New York City, New York, USA

COPD chronic obstructive pulmonary disease, HIV human immunodeficiency virus
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Discussion

Early disease detection and treatment has been linked to de-
creased mortality in COVID-19 patients, especially for those
who are severely ill [5, 6]. Approximately 15% of COVID-19
patients develop acute-respiratory distress syndrome and over

half of ICU admits develop hypoxia or respiratory exhaustion
[18]. Early anticipation of severe disease development is cru-
cial because it allows for timely intervention, which can po-
tentially improve outcomes for critically ill COVID-19 pa-
tients [18]. Further, strained resources such as mechanical
ventilators or extracorporeal membrane oxygenation
(ECMO) machines can be allocated appropriately when pa-
tients’ disease trajectories are known. This study developed an
AI system based on chest CT and clinical data that predicts
COVID-19 disease progression better than clinical data alone.
This is relevant and impactful because it demonstrates that AI
has the potential to help identify patients at risk for progres-
sion to critical illness and affect patient care by integrating
data from multiple sources.

AI can help in identifying patients at risk for progression to
critical illness within the timeframe for early treatment and
improve prognosis. Remdesivir was recently approved for
emergency use by the Food and Drug Administration (FDA)
and, along with ruxolitinib [4], has shown preliminary prom-
ise in reducing recovery time for critically ill patients [19].
Similarly, convalescent plasma transfusion (CPT) has shown
efficacy in reducing clinical symptoms and mortality for se-
verely ill COVID-19 patients [3]. Historically, CPT has been
used to successfully treat Spanish influenza A (H1N1), severe
acute respiratory syndrome (SARS), and Ebola among others

Fig. 3 Performance of deep learning severity model in area under
receiver operating characteristic curve (ROC-AUC) utilizing top ten
segmented lung slices by largest lesion area

Fig. 4 Time-dependent ROC-AUCs and risk stratified subgroup survival
curves based on deep learning (DL) features extracted from top lung
slices. a–c Time-dependent ROC curves and AUCs with different
cutoff values (3-day, 5-day, and 7-day). d–f The risk-stratified survival
curves based on DL-based progression prediction, clinical-based

progression prediction, and combined progression prediction. The y-
axis is survival probability representing the probability of not
progressing to critical event. The “+” in survival curves denotes the
censored patient. Risk tables of these stratification results are also listed
in the bottom of this figure
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[3]. If these results are maintained in future studies, identifying
patients with severe disease early on may be necessary to
maximize clinical benefit of these treatments.

This chest CT–based AI system has the potential to assist
physicians in patient management by enhancing clinical data
in the prediction of progression risk. In contrast to previous
studies [13, 20, 21], this study was attentive to the exact
timespan between the performance of chest CT and the earli-
est occurrence of critical events (i.e., ICU admission, intuba-
tion, or death) using a multi-international cohort of patients
from different institutions. Different from existing studies that
build prediction models using pattern classification tech-
niques, our AI system was built in a time-to-event (survival)
analysis framework that can effectively handle censored data
in the risk prediction study. By using the risk prediction AI
model based on CT imaging and clinical data, it may be pos-
sible to stratify patients into different risk groups for progres-
sion to critical illness, assign a critical window for early treat-
ment, and have a more informed timeline for obtaining ad-
vanced respiratory support equipment.

The study has several limitations. There was likely patient
selection bias secondary to the retrospective and multi-
institutional nature of the study. For example, the clinical
characteristics differed between the cohorts from USA and
China. While the percentage of critical patients was 22% for
the cohort form China, it was almost 50% for both cohorts
from USA. The data heterogeneity likely reflects the differ-
ences in practice pattern. In the Chinese population, the CT
scans were used more often for COVID-19 screening, espe-
cially during the earlier period of the pandemic. Other expla-
nations include the difference in demographics and disease
prevalence. However, our study encompasses data from two
hospitals in the USA, nine hospitals in China, and open-source
data [13]. The stable performance on an independent held-out
test set supported the robustness and generalizability of the
model. Additionally, the definition of critical outcome defined
herein may encompass more patients than is typical of other
COVID severity studies such as respiratory failure, septic
shock, or multiple organ dysfunction. The present study fo-
cused on patients who went to the ICU, were intubated, or
died.

Conclusions

AI based on CT imaging and clinical data has the potential for
prediction of risk for future deterioration to critical illness
among patients with COVID-19. As this technology is further
developed, providers may be able to utilize AI to help desig-
nate high-risk patients based on their disease severity and
progression risk prediction, enabling them to readily allocate
appropriate treatments, equipment, and other necessary re-
sources and to assist with early clinical decision-making.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-021-08049-8.
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