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Atomic structure of PI3-kinase SH3 amyloid fibrils
by cryo-electron microscopy
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High resolution structural information on amyloid fibrils is crucial for the understanding of
their formation mechanisms and for the rational design of amyloid inhibitors in the context of
protein misfolding diseases. The Src-homology 3 domain of phosphatidyl-inositol-3-kinase
(PI3K-SH3) is a model amyloid system that plays a pivotal role in our basic understanding of
protein misfolding and aggregation. Here, we present the atomic model of the PI3K-SH3
amyloid fibril with a resolution determined to 3.4 A by cryo-electron microscopy (cryo-EM).
The fibril is composed of two intertwined protofilaments that create an interface spanning 13
residues from each monomer. The model comprises residues 1-77 out of 86 amino acids in
total, with the missing residues located in the highly flexible C-terminus. The fibril structure
allows us to rationalise the effects of chemically conservative point mutations as well as of
the previously reported sequence perturbations on PI3K-SH3 fibril formation and growth.
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lzheimer’s and Parkinson’s Disease as well as spongiform

encephalopathies are prominent examples of protein

misfolding diseases!. These disorders are characterised by
the presence of amyloid fibrils?2. Amyloid fibrils are straight and
unbranched thread-like homopolymeric protein assemblies,
which are stabilised by backbone hydrogen bonding between
individual peptide molecules. These interactions lead to a highly
ordered, repetitive cross-p architecture, in which the B-strands
run perpendicularly to the fibril axis.

It has been shown that in the case of neurodegenerative protein
misfolding diseases, the final amyloid fibrils are often not the
most cytotoxic species, but that small, oligomeric precursors are
more hydrophobic and more mobile and hence more prone to
deleterious interactions with cellular components3. However,
recent progress in the mechanistic understanding of amyloid fibril
formation shows that the mature fibrils can be the main source of
toxic oligomers, due to their role as catalytic sites in secondary
nucleation processes®. Furthermore, in the case of systemic
amyloidosis diseases, where amyloid fibrils form in organs other
than the brain, the amyloid fibrils themselves are the deleterious
species, as their presence in large quantities can disrupt organ
functions®.

Until recently, structural information on amyloid fibrils could
only be obtained from relatively low-resolution methods, such as
X-ray fibre diffraction®, limited proteolysis’” and H/D exchange®.
High-resolution structural information on amyloid fibrils has
only become available in recent years through progress in solid
state NMR spectroscopy (ssNMR)®-!! and cryo-electron micro-
scopy (cryo-EM). In particular cryo-EM enables atomic resolu-
tion structures of amyloid fibrils to be determined, and this has
indeed been achieved in a few cases so far!2-23. Such detailed
structural information is crucial for the understanding of amyloid
formation mechanisms, as well as for the rational design of
inhibitors of the individual mechanistic steps, such as fibril
nucleation and growth?4.

Here we present the high-resolution cryo-EM structure of
amyloid fibrils of the Src-homology 3 domain of phosphatidyl-
inositol-3-kinase (PI3K-SH3). SH3 domains are kinase sub-
domains of usually <100 amino acids length and have been found
to be part of more than 350 proteins, ranging from kinases and
GTPases to adaptor and structural proteins, within various
organisms?>. SH3 domains are known to play a significant role
in several signalling pathways where they mediate protein-protein
interactions by recognising PxxP sequence motifs?®%7.
The structure of natively folded PI3K-SH3, a domain consisting
of 86 amino acids from bovine PI3K, has been well-characterised
by X-ray crystallography and NMR spectroscopy26-28,

Used initially as a model system for protein folding studies??,
PI3K-SH3 was among the first proteins discovered to
form amyloid fibrils in the test tube, while not being associated
to any known human disease3(. Fibril formation was observed
at acidic pH, where in contrast to the native fold at neutral
pH?728, monomeric PI3K-SH3 lacks a well-defined secondary
structure30-32. Since this discovery, PI3K-SH3 has played a
pivotal role in advancing our fundamental understanding of the
relationships between protein folding, misfolding and aggrega-
tion. Indeed, the hypothesis of the amyloid fibril as the most
generic ‘fold’! that a polypeptide can adopt was significantly
shaped by the finding that PI3K-SH3 forms amyloid fibrils. Many
pioneering studies on the basic biochemical, structural and
mechanistic features of amyloid fibrils have been performed with
PI3K-SH3. Early cryo-EM measurements highlighted the need for
conformational rearrangement of the sequence within the fibril33.
The important role of the destabilisation of native secondary
structure elements and the need for non-native contacts and
extensive structural rearrangements during the formation of

fibrillar aggregates was also observed for a related SH3 domain34.
Despite not being related to any human disease, PI3K-SH3
aggregates were shown to be cytotoxic, suggesting sequence-
independent toxic properties of amyloid fibrils and their pre-
cursors®>. PI3K-SH3 also provided insight into the kinetics of
molecular recycling of the monomeric building blocks of the
fibril®6, as well as into the dynamics of the formation of oligo-
meric precursors of amyloid fibrils?”.

The structure of PI3K-SH3 fibrils we present here is in
agreement with previous ssNMR data38, but we find that its
interface is orthogonal to that suggested previously based on a
low resolution reconstruction®3. Indeed, the inter-filament
interface in PI3K-SH3 fibrils is large compared to that of other
amyloid fibrils determined to-date, and is formed from residues
distant in primary sequence. With the atomic model we can
rationalise the effect of newly designed, as well as previously
reported sequence variants of PI3K-SH3 on the kinetics of fibril
growth. Our study therefore not only adds important insight into
the structural variety of amyloid fibrils, but also demonstrates
how such structures can be used to rationalise the dynamics of
protein assembly processes.

Results

Structure determination by cryo-EM. Fibril formation by the
full-length PI3K-SH3 domain under acidic solution conditions>’
led to long, straight fibrils of which the main population could be
structurally determined by cryo-EM (Fig. 1). High overall
homogeneity of the preparation has been shown by atomic force
microscopy (AFM) and negative staining EM imaging (Fig. 2,
Supplementary Figs. 1 and 2). Nevertheless, two different
morphologies could be distinguished in both AFM and EM
images (Fig. 2, Supplementary Fig. 1). The predominant, thick
morphology has a diameter of 7-8 nm while the other, thinner
morphology exhibits about half the diameter of the thick fibril
(Supplementary Fig. 2).

For cryo-EM imaging, samples of PI3K-SH3 amyloid fibrils
were flash-frozen on Quantifoil cryo-EM grids and imaged with a
Tecnai Arctica microscope (200kV) equipped with a Falcon 3
direct electron detector (Supplementary Fig. 3). Image processing
and helical reconstruction were performed with RELION-239-41,
A three-dimensional density map for the thick PI3K-SH3 fibril
could be reconstructed to an overall resolution of 3.4 A. The clear
density of the fibril allowed us to build an atomic model for
residues 1-77 out of a total of 86 amino acids (Fig. 1). The
missing nine residues are located at the C-terminus, which shows
blurred density likely due to substantial flexibility. Previously
reported low-resolution cryo-EM?33 data are in good agreement
with our structure (Supplementary Fig. 4).

Architecture of the PI3K-SH3 amyloid fibril. The thick PI3K-
SH3 fibril is a left-handed helical structure consisting of two
intertwined protofilaments, and is thus called DF (double fila-
ment) fibril. The handedness of the density reconstruction was
determined by comparison with AFM images (see Methods and
Supplementary Fig. 5). From an analysis of the fibril height
profiles in AFM images, we determined the helical pitch to be
170 £ 10 nm in reasonable agreement with a pitch of 140 nm
obtained from the cryo-EM structure.

Protofilament subunits (PI3K-SH3 monomers) are stacked in a
parallel, in-register cross-p structure. The spacing between the
layers of the cross-p structure is around 4.7 A and well visible in
the density (Supplementary Fig. 6). The subunits in the two
opposing protofilaments are not on the same z-position along the
fibril axis but are arranged in a staggered fashion (Fig. 1c). The
helical symmetry is therefore described by a twist of 179.4 ° and
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Fig. 1 Double Filament SH3 fibril structure. a Cross-section of the double filament (DF) PI3K-SH3 fibril (two monomers). The different protofilaments are
colored blue and orange. Density maps are shown at a contour level of 1.4 6. The density map was sufficiently clear to model residues 1-77. b Side view of
filaments twisting around each other displaying a total of 125 layers. ¢ Relative arrangement of two adjacent PI3K-SH3 monomers within the fibril, showing

a 2.35 A shift between the protofilaments

10 nm

Fig. 2 AFM images of PI3K-SH3 amyloid fibrils. a AFM image of PI3K-SH3
fibrils (scale bar, 3 um). b Four different close-up views of fibrils showing
both the thick, double filament (DF) fibril and thin, single filament (SF) fibril
morphology (scale bar, 300 nm)

rise of 2.35 A, which corresponds to an approximate 2,-screw
symmetry. The same staggering arrangement has been observed
previously for other fibril structures, such as amyloid-f(1-42)!3
and paired-helical filaments of tau?3

Each protofilament subunit, or PI3K-SH3 monomer, consists
of seven parallel in-register B-strands (f1, aal-5; B2, aa7-19; B3,
aa22-26; 4, aa28-34; B5, aa46-56; 6, aa59-68; B7, aa72-77) that

are interrupted by either sharp kinks, glycine or proline residues
—or a combination of those (Figs. la and 3, Supplementary
Fig. 6). In particular glycine residues at kink positions have also
been observed in other amyloid structures!”. The total of seven
kinks and turns (Fig. 3a) results in an amyloid key topology?°
which includes a structural motif similar to the bent p-arch
described by Li et al.l” for the a-synuclein fibril.

By encompassing 13 residues of each monomer, 26 in total
(Supplementary Fig. 7), the inter-filament interface of the PI3K-
SH3 DF fibril is very large. The protofilaments mainly interact
through two identical symmetry-related hydrophobic patches
(Fig. 4) at the periphery of their interface, between the bottom
part of the bent B-arch motif and the respective C-terminal part
of the opposing protofilament. The stability is provided by the
hydrophobic clusters of Val38, Leu®?, Gly*!, Phe?2, Val’#, Tyr¢”
and Val’®, Leu®?', Gly*', Phe*?', Val’4, Tyr®7 (Figs. 1a and 4).

The amyloid-characteristic cross-f3 motif composed of parallel
in-register (-sheets connects the different DF fibril layers and
therefore contributes the largest share of intermolecular contacts
(Fig. 5, Supplementary Fig. 6). This cross-fB stacking is
complemented by multiple inter- and intramolecular contacts
including side chain interactions in homosteric and heterosteric
zippers*2. A further noteworthy feature of the structure is the
fact that the PI3K-SH3 subunits are not planar but extent along
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Fig. 3 Secondary structure comparison of the PI3K-SH3 DF fibril. Secondary
structure of the presented cryo-EM structure compared to data obtained
previously by solid-state NMR (fibrils) or liquid-state NMR (monomeric,
native state). a Tilted cross-section of four SH3 DF fibril layers. Secondary
structure is predominantly formed by seven cross-p sheets. b Secondary
structure comparison to the native solution structure (PDB: 1PKS28) and
ssNMR results (fibrils) modified according to Bayro et al.38. Flexible regions
are shown as dashed lines, B-sheets as arrows, and the helix as a cylinder
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Fig. 4 Hydrophobicity of the fibril cross-section. Hydrophobicity levels of
the SH3 DF fibril cross-section are coloured according to Kyte-Doolittle®.
Hydrophobic residues are mainly packed within the fibril core, while
hydrophilic residues point towards the solvent. Hydrophobic patches in
both monomers are clearly visible and are spanning several $-sheets

the fibril axis (Fig. 5). The subunits within a protofilament
therefore interact not only with the layer directly above
(i+2) and below (i — 2), but also with layers up to (i + 6) and
(i — 6); the subunits are interlocked.

A single PI3K-SH3 monomer in the DF fibril exhibits an
amyloid key topology (Fig. la), which is stabilised mainly by
hydrophobic patches stretching between the strands $3-B5 (Ile??
(i), Trp> (i — 4), Leu?4(i), Leu®®(i)) (Fig. 4), and hydrogen bonds
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Fig. 5 Side view of the secondary structure of the atomic model. a Single
subunit i highlighted in blue with adjacent subunits in beige, described by
even numbers, while the subunits of the opposite protofilament are

described by odd numbers. b View of the minimal fibril unit (i) to (i-6) in
one filament. The minimal fibril unit is displayed from two views by a turn of
180° highlighting the course of one monomer spanning several fibril layers

or salt bridges between strands 5 and 6 (Asp*4(i), Arg®o(i — 2),
Glu#’(i)) and B2-p6 (Arg®(i), Glu®l(i — 6)) (Figs. 1a and 3a). In
the turn between strands 5 and B6, Asp!3(i + 4) might bind to
Lys!5(i+4) while Glul7(i+4) might interact with Asn57(i)
(Figs. la and 3a). The bent B-arch motif between strands P4
and B5 is potentially strengthened by a contact between Asn33(i)
and GIn#0(i) that would tie the motif together (Figs. 1a and 3a).
Further possible electrostatic interactions can be observed
between strands B2 and B6 where the amino-group of Arg’
(i+4) might exhibit a salt bridge to Glubl(i-2) (Figs. 1a and 3a). In
addition, aromatic side chains are located in close proximity to
glycine residues Tyr®(i)-Gly’1(i + 6), Phe*2(i)-Gly®’(i + 2), Tyr”3
(i)-Gly>(i — 6), indicating a potential involvement of glycine-
aromatic Ca-H---m-interactions*>44, Further aliphatic-aliphatic
and aromatic-aliphatic interactions comprise Ile2%(i)-Pro®%(i — 2,
i—4)-Ala*8(i — 2, i—4), Metl(i)-Tyr!2(i), and Leull(j)-Tyr>®
(i-4). We could also observe possible interactions in-between
monomer layers, so-called hydrogen bond ladders, e.g. with Gln?,
GIn%®, Asn>7 and Asn®. Additionally, these ladders could
potentially be formed as well by side chains pointing outside of
the fibril such as Glu%, Glu?0, Asp?!, Asp?> and Asp?s.
Remarkably, nearly all side chains in the outer Ca-chain that
are oriented towards the solvent are non-hydrophobic (Fig. 1a)
(Ser%-Glu?, Tyr!4-Ser3). Hence, the polar outside of the fibril
shields the hydrophobic interface (Fig. 4). Only the hydrophobic
residues Leu?? and Val32, which are located on the fibril surface
next to the bent B-arch motif, disrupt this pattern (Figs. 1a and 4).

Further hints towards the role of electrostatic interactions in
maintaining the structure, comes from a pH-shift experiment. By
changing the pH from 2 to 7.4, we observed that fibrils
depolymerise almost completely after 1 h (Supplementary Fig. 8),
in agreement with the highly dynamic nature of PI3K-SH3 fibrils
reported previously>®. We propose three clusters that may be
highly influenced by this pH shift: (a) the space between strands
B5 and P6 (Asp*(i), Arg®®(i — 2), Glu*’(i)); (b) the interactions
between Aspl3(i) and Lys!°(i), and between Glul7(i+4) and
Asn®’(i); (c) the solvent-exposed and protonatable patch invol-
ving Asp21(i), Asp?3(i) and His?>(i) (also highlighted as having a
fundamental role in amyloid formation*).

The secondary structure of PI3K-SH3 fibrils and monomers
has been analysed by comparing available solution NMR
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(monomeric native fold, PDB: 1PKS)?8 and ssNMR data (amyloid
fold)3® with our model (Fig. 3b). The only feature that is shared
by all models is the flexible C-terminus starting around residue
80. Analysis of protein contact maps via the Contact Map
WebViewer4® of the DF fibril compared to the monomeric native
structure? showed no consistent residue contacts in both
structures, illustrating the substantially different conformation
that the monomer unit has to adopt in order to incorporate into
the fibril. The secondary structure of the native and amyloid fold
differs substantially apart from a p-sheet between residues 70-80.
While the monomeric native structure is characterised by one
helix between residues 34 and 39, B-sheets and multiple flexible
loop-regions, the DF fibril consists of seven B-sheets exclusively,
that are almost uninterrupted (Fig. 3b). The longest break in the
[B-sheet pattern of the fibril is the bent p-arch motif leading to a
rigid loop between Gly?> and Gly*> (Figs. la and 3a). Our
findings are consistent with former results by Bayro et al.3¥ who
proposed a PI3K-SH3 amyloid model based on solid-state NMR
data. Both structures show p-sheets as the only secondary
structure motif with most of the B-sheet regions corresponding
(Fig. 3b). The main differences between the ssNMR and cryo-EM
structures are found in the region between residues 25 and 60.
Here, ssNMR data suggest two wide-spanning [-sheets while
according to cryo-EM data this region consists of not two but
four B-sheets, that are disrupted by a glycine residue, Gly?” (83
B4) (Supplementary Fig. 6) and a sharp kink, Gly>*-Tyr>? (B5-36)
(Fig. 3a).

Impact of mutations on the SH3 aggregation. We probed the
sensitivity of the fibril growth kinetics towards chemically con-
servative single point mutations by substituting isoleucine resi-
dues for alanine across the protein sequence. We expressed and
purified the sequence variants and experimentally quantified the
rates at which five different variants (I22A, 129A, I53A, I77A,
I82A) elongated wildtype (WT) fibrils by quartz crystal micro-
balance (QCM) measurements (Supplementary Fig. 9)47:48. This
technology is ideally suited for such cross-seeding experiments.
The fibril growth rates of WT and variant proteins can be directly
compared, given that the same, constant ensemble of fibrils is
monitored. An additional big advantage is that the use of WT
seeds as templates ensures that the sequence variants adopt the
same fibril structure as the WT, and therefore the change in fibril
growth kinetics with respect to the wild type can be interpreted in
terms of the perturbation induced by the sequence modification.

We measured the rates of WT fibril elongation by the different
variants and expressed the rates relative to that of the elongation
by WT monomer (Fig. 6, Supplementary Fig. 9). We found that
the relative elongation rates differ by more than two orders of
magnitude, with the mutations in the first third of the sequence,
as well as around the middle of the sequence, displaying slow
elongation rates (I22A =0.02+10.9%, I29A =0.02+7.5%,
I53A = 0.003 + 72.7%), whereas the mutations close to or within
the disordered C-terminus display approximately the same rates
as the wild type (I77A =1.13+9.3%, 182A =1.59 £ 10.3%). We
also took AFM images of the different single point mutants at a
concentration of 100 uM that were all seeded with WT-derived
fibrils and incubated for 2 days at room temperature under
quiescent conditions (Supplementary Fig. 10). From these images,
it can be seen that all fibrils at the end of the experiment have a
very similar morphology and length, except for those in the
sample with I53A, where shorter fibrils are observed. The fibril
growth of all the mutants seems to have come to completion
within this time scale leading to very similar fibril lengths. Only in
the case of I53A, the fibril growth rate is so slow that the available
monomer was only partly incorporated into the seed fibrils

b
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WT 122A [129A I53A 177A 182A

Fig. 6 Point mutations and their effect on fibril elongation rates. a Top view
of a PI3K-SH3 monomer derived from DF fibrils. Highlighted residues:
Isoleucine residues mutated to alanine (122A, 129A, I153A, I77A, 182A), from
this work (red) and charged residues mutated by Buell et al.4” (K16Q, E52K,
E61K, pink). Mutation I182A is missing in the model due to the flexible C-
terminus. b Elongation rate of lle-to-Ala mutants. The elongation rates are
normalised to a WT rate of one. Source data are provided as a Source
Data file

during the course of the experiment. However, the very high mass
sensitivity of the QCM permits to resolve even the growth rate of
this slow growing mutant, and hence we base our analysis of the
relative growth rates exclusively on the QCM experiments
(Supplementary Fig. 9).

Discussion

Concerning fibril architecture and polymorphism, we observed
that, in addition to the thick 7-8 nm SH3 DF fibril consisting of
two filaments, also thin fibrils of about half the diameter are
present in both AFM (Fig. 2, Supplementary Fig. 2) and negative
stain EM images (Supplementary Fig. 1). We therefore hypo-
thesise that the thin fibrils correspond to single filament fibrils (SF
fibrils) of the same type that make up the DF fibrils. Our
hypothesis is further supported by AFM images that suggest that
long SF fibrils can contain stretches that appear to be identical to
DF fibrils (Supplementary Fig. 2). It therefore seems likely that
fragments of an additional protofilament can attach to or grow on
a given SF fibril, to form DF fibrils. The incomplete cooperativity
between the elongation of the individual filaments in a DF fibril
suggests relatively weak interactions between the filaments. This,
in turn, implies that one filament could well be stable without
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contact to another filament. We conclude that, at least in the case
of PI3K-SH3, inter-filament interface contacts are not necessary
for fibril formation.

A similar observation has been made for B2-microglobulin
fibrils!®, which can comprise a single protofilament as well as two
or more filaments resulting in at least six different polymorphs
without major differences in the filament structure. Accordingly,
a mixture of all polymorphs yielded only a single set of NMR
resonances!'®. The stability of individual PI3K-SH3 filaments is
particularly noteworthy, inasmuch as the inter-filament interface
in the DF fibrils is comparatively large (Supplementary Fig. 7). A
large inter-filament interface does therefore not indicate stable
inter-filament interactions. We note here also that the identical
conformation of every subunit along the fibril axis is in line with
fibril growth by PI3K-SH3 monomer addition*®>.

A single subunit in the PI3K-SH3 DF fibril is not planar but
winds itself along the protofilament axis (Fig. 5), which leads to
interlocking within a protofilament. In contrast, in a planar
subunit, the inter-subunit interactions within one protofilament
would consist exclusively of the cross-B pattern, while all trans-
verse interactions would be intramolecular. Here, however, one
subunit within one protofilament is not only in contact with its
direct neighbours (above and below) but with four other mono-
mers in total, i.e. in addition to the longitudinal hydrogen bonds
in the cross-p structure, there are other transverse interactions
between the subunits. This staggered arrangement leads to an
interlocking mechanism connecting several monomers within a
protofilament, which very likely further stabilises the structure
(Fig. 5). Interestingly, this interlocking mechanism is commonly
seen in other amyloid fibril structures determined by cryo-
EM!3:17.182021 Tt should be noted that NMR data can only
distinguish between intra- and intermolecular contacts but can-
not directly reveal a potential staggering of subunits along the
fibril axis.

Given that the interlocking is observed in other fibril structures
as well, it might in general contribute to the formation of stable
fibrils by optimisation of the side chain packing!?. In addition, the
staggered architecture might in part be responsible for the tem-
plating effect during fibril elongation, as it establishes a rugged
binding interface that may guide the incoming monomer into the
fibril conformation, engaging it in more intermolecular contacts
than a flat interface could.

As a measure for the interlocking of subunits we have pre-
viously defined the concept of a minimal fibril unit!3, which is the
smallest fibril structure fragment in which the capping subunits at
both ends would have established the same full contact interface
with other constituting monomers as the capping subunits of an
extended fibril. Since we hypothesise that one protofilament of
the DF fibril could exist on its own and is identical to the SF fibril,
here we describe the minimal fibril unit also for a single proto-
filament. For the PI3K-SH3 fibril, the minimal fibril unit has a
size of four subunits when considering an individual protofila-
ment, and a size of eight subunits in the case of the DF fibril
(Fig. 5b).

In order to rationalise kinetic data of fibril formation and
growth, we substituted five different isoleucine residues with
alanines, probing how these chemically conservative single point
mutations at different positions affect the addition of new
monomers to the fibrillar structure formed by the wild type
sequence. Three mutations (1224, 129A, 153A) showed a strong
decrease of the elongation rate of two to three orders of magni-
tude compared to the wild type sequence (Fig. 6). In these
positions, the side chains of the three isoleucines are all pointing
towards the fibrillar core (Fig. 6). While the chemical nature of
the amino acid substitution we chose is conservative (aliphatic to
aliphatic), the bulkiness of the side chain decreases. The ability of

these variants to elongate the WT structure, albeit significantly
slower than the WT sequence itself, suggests that the formation of
a cavity due to the reduced bulkiness is energetically tolerated.
However, the free energy difference between the monomeric state
and the transition state (structural ensemble) of the elongation
reaction appears to be increased. Such an increase in energy
difference could come either from a stabilisation of the mono-
meric state, or from a destabilisation of the transition state. The
former seems less likely, due to the mostly disordered nature of
PI3K-SH3 at pH 2, while the latter possibility could be caused by
the reduction in hydrophobic contacts between the monomer and
the fibril end. This conclusion, which assumes some degree of
contact between the monomer and the fibril end in the transition
state for fibril growth, is in excellent agreement with previous
results that underline the importance of the sequence hydro-
phobicity for the magnitude of the elongation free energy bar-
rier°!, The remaining two mutations (I77A, 182A) (Fig. 6) are
instead located close to or within the flexible C-terminus and
show indeed a much weaker or no effect on the elongation rate.
In both cases a chemical modification to alanine does not perturb
any interactions crucial for the energetics of the transition state.

The availability of the high-resolution structure also allows us
to rationalise the influence of previously reported single point
mutations of PI3K-SH3 on the kinetics of fibril elongation. In a
previous study?’, the effect of changes in charge at three different
positions (Fig. 6; K16Q, E52K, E61K; residues depicted in pink)
led to very different effects on the elongation rate. While these
mutations, similar to the ones we have designed and studied in
the present work, could lead to different fibrillar structures if
induced to form fibrils de novo, the use of WT seed fibrils in both
studies allows us to discuss here the effect of these mutations in
the light of the present fibril structure. This is because the well-
known templating effect in amyloid fibril growth imprints the
structure of the fibril template onto the monomeric protein that
adds onto the fibril end. The mutation E52K probably leads to the
creation of a positive charge inside the hydrophobic fibril core, a
highly unstable arrangement. In the WT fibril, Glu®! can form a
salt bridge with Arg?, which leads to an additional driving force
for the deprotonation of Glu®l. If Glu®! is substituted by a lysine
(E61K), two positive charges come into close proximity, again
leading to a highly unstable situation. On the other hand, the
mutation K16Q does not lead to any major change in the kinetics
of fibril elongation, which is most likely due to the side chain
pointing towards the outside of the fibril>2.

Our structural model can also help to understand the effects of
further sets of previously investigated sequence changes*>. With
the aim of understanding which part of the sequence plays a
major role in the amyloidogenicity of the protein, different por-
tions of the sequence were replaced or mutated. In the vast
majority of cases, the amyloidogenic behaviour was completely
abolished, which we can now explain with our structural model:
the introduction of bulky or charged residues facing the inner
core of the structure destabilises the present amyloid fold, as
evidenced by the mutants E17R/D23R and Q7E/R9K/E17R/
D23R*. The only mutation that does not show a significant
decrease in amyloidogenicity does not involve changing
the charge of a buried residue: the mutant referred to as PI3-
QMR (E17Q/D23M/H25R) modifies a single charge of outward
pointing residue 25 (assuming Glu!” and Asp?? to be protonated
at pH 2%°).

It should also be noted that the circularisation of the PI3K-SH3
sequence through the use of disulphide bridges causes a decrease
of the elongation rate but does not prevent the circularised
mutant to acquire the amyloid conformation®3. The close
proximity of the N- and C-termini (Fig. 1a), in combination with
the flexibility of the C-terminal nine residues, likely allows the
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cyclised (disulfide bridge between Cys®> and Cys32) sequence to
form an amyloid structure very similar, if not identical to the one
presented here.

A noteworthy example of substantial sequence modification is
the grafting of the N-Src loop of SPC-SH3 onto PI3K-SH3, while
simultaneously removing the stretch from residue 31 to 53 from
PI3K-SH3°%. This operation did not remove the amyloidogenic
properties from the modified PI3K-SH3 domain. The removed
sequence stretch is part of the bent B-arch motif in the amyloid
conformation. The removal of this prominent motif could have
been expected to lead to a more significant impairment of amy-
loid fibril formation. However, the altered sequence is likely to be
able to respond to this strong perturbation by forming an alter-
native structure.

In summary, we have determined the structure of a PI3K-SH3
amyloid fibril. The PI3K-SH3 fibril has been extensively studied
in the past and the effect of many mutations on the kinetics
of amyloid formation has been described. The atomic structure of
the PI3K-SH3 fibril enables us now to rationalise the effect
of these mutations, which is the basis for understanding the
sequence-dependence of amyloidogenicity and ultimately the
determinants of amyloid formation in general.

Methods
Protein production. WT and mutants of the bovine PI3K-SH3 domain were
purified according to the protocol of Zurdo et al.3!. All constructs contain a 6xHis-
tag linked to the protein by a thrombin cleavage site. The sequence of the WT
protein after cleavage is the following, with the peptide Gly-Ser remaining as
overhang from the cleavage:

GSMSAEGYQYRALYDYKKEREEDIDLHLGDILTVNKGSL
VALGFSDGQEAKPEEIGWLNGYNETTGERGDFPGTYVEYIGRK
KISP

The protein was expressed in a BL21 E. coli strain with TB medium for auto-
induction containing 0.012 % glucose and 0.048 % lactose. The cells were grown for
over 24 h and then harvested by centrifugation. After resuspension in sodium
phosphate buffer (50 mM sodium phosphate pH 8, 5mM imidazole and 100 mM
NaCl), the cells were disrupted by sonication, in presence of protease inhibitors and
DNAse. The lysate was centrifuged, and the supernatant loaded on a Ni-NTA
Superflow Cartridge (Qiagen, Venlo, Netherlands) equilibrated in 50 mM sodium
phosphate pH 8, 5 mM imidazole and 100 mM NaCl. The protein was eluted with a
linear gradient from 5 to 300 mM imidazole in 50 mM sodium phosphate pH 8,
100 mM NaCl in 25 ml elution volume. Fractions containing the protein were
collected and cleaved overnight at 7 °C with 1 unit of thrombin (from bovine
plasma, Sigma-Aldrich Saint Louis, Missouri, USA) per 1 mg of protein. The
cleaved solution was then concentrated and loaded on a SEC HiLoad 26/60
Superdex 75 column (GE Healthcare, Chicago, Illinois, USA) equilibrated with
5mM ammonium acetate pH 7. Fractions containing the PI3K-SH3 domain were
collected and lyophilised for further use.

Fibril formation. The lyophilised protein was resuspended in 10 mM glycine-
hydrochloride pH 2.5 buffer at a final concentration of ca. 200 uM. The solution
was shaken in an Eppendorf tube at 1400 rpm at 42 °C for 24 h to form seeds.
These seeds were then sonicated in an Eppendorf tube in a volume of ca. 500 pl for
155 (1s ‘on’, 2's ‘off, 10 % amplitude) with a Bandelin Sonopuls using a M72
probe. To prepare the twisted fibrils, a new solution with ca. 100 uM monomer in
10 mM glycine-hydrochloride pH 2.5 was then mixed with 5 uM of equivalent
seeds mass and incubated without stirring at 50 °C overnight.

AFM imaging. The fibril samples were diluted in 10 mM glycine-hydrochloride,
pH 2.5 to a concentration of 5uM and 10 ul were pipetted on a mica substrate.
After 10 min of incubation, the mica was washed extensively with milliQ water and
dried under a nitrogen gas flush. The pictures were taken in tapping mode on a
Bruker Multimode 8 (Billerica, Massachusetts, USA) using OMCL-AC160TS
cantilevers (Shinjuku, Tokyo, Japan).

Fibril elongation measurements with QCM. The elongation rate of PI3K-SH3
fibrils was measured through immobilisation of fibrils on a QCM sensor and
subsequent incubation with monomer solution®. To immobilise the fibrils on the
sensor, chemical modification is necessary. To achieve that, the fibrils were mixed
at a final concentration of 50 uM in buffer (10 mM glycine-hydrochloride, pH 2)
with EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (1 M)
and cystamine hydrochloride (0.5 mgml~!). After pelleting and washing the
chemically modified fibrils, they were sonicated in an Eppendorf tube in a volume
of ca. 500 microlitre with a Bandelin Sonopuls using a MS72 probe (10%

amplitude, 155, 1s ‘on’, 2's ‘off’). The gold sensors (Biolin Scientific, Gothenburg,
Sweden) were then incubated with the above-mentioned solution overnight in a
100% humidity environment. The measurements were performed with a QSense
Pro (Biolin Scientific, Gothenburg, Sweden) by measuring the elongation rate as
change in resonant frequency over time. With the temperature set at 25 °C, the
monomer solutions were injected for 30 s at a flow rate of 100 pl per second and the
measurement lasted until a stable slope was reached. To obtain the relative rates,
the protein solutions were injected in different sensor chambers after a WT
injection, the latter being used as normalization reference. Two different triplicate
measurements were performed for I53A. Two different duplicate measurements
were performed for all the other mutants. The rate was measured as slope of the
3rd overtone and averaged among the multiple injections. The data are presented
as average values with error bars indicating the standard deviation.

Fibril dissociation at pH 7.4. Fibril dissociation at pH 7.4 was probed by mea-
suring ThT and intrinsic fluorescence change over time in two series of triplicates.
The ThT measurements were performed by mixing 40 ul of 100 uM PI3K-SH3
fibrils and 50 uM ThT in 10 mM glycine-hydrochloride pH 2 with 60 ul of 100 mM
sodium phosphate pH 7.4. The mixing was carried out using the injection system of
a CLARIOstar plate reader (BMG LABTECH, Ortenberg, Germany) and mea-
suring immediately afterwards by exciting at 440 nm and recording the signal
intensity at 480 nm. The intrinsic tryptophan fluorescence measurements were
carried out by mixing the same two solutions (without ThT) by pipetting, followed
by the measurement of fluorescence spectra every 15s by exciting at 290 nm and
recording between 300 and 380 nm in 2 nm intervals.

The analysis of soluble peptide by concentration determination at the end of the
dissolution experiment was performed after one night of equilibration after the
mixing of the two solutions mentioned above (without ThT). The samples were
spun down for 30 min at 16,100 g. The protein concentration in the supernatant
was determined by measuring the asorbance at 280 nm together with the extinction
coefficient of PI3K-SH3 of 550 = 15,930 M~ lcm~! using a V650 UV-Vis
spectrophotometer (Jasco, Easton, MD, USA).

Negative stain and cryo-EM image acquisition. Negatively stained fibrils were
prepared on 400 mesh carbon-coated copper grids (S160-4, Plano GmbH, Ger-
many), stained with 1% uranyl acetate, and imaged using a Libral20 electron
microscope (Zeiss) operated at 120 kV. Cryo-preparation was performed on glow-
discharged holey carbon films (Quantifoil R 1.2/1.3, 300 mesh). The sample con-
taining 50 uM PI3K-SH3 was 4x/10x/20x diluted with 10 mM glycine-
hydrochloride (pH 2) to a final concentration of 12.5, 5 or 2.5 uM monomer
equivalent. A total sample volume of 2.5 ul was applied onto the carbon grid and
blotted for 3.5 s before being cryo-plunged using a Vitrobot (FEI). With 110,000-
fold nominal magnification 622 micrographs have been recorded on a Tecnai
Arctica electron microscope operating at 200 kV with a field emission gun using a
Falcon IIT (FEI) direct electron detector in electron counting mode directed by EPU
data collection software. Each micrograph was composed of 60 fractions. Each
fraction contained 42 frames, i.e. in total 2520 frames were recorded per micro-
graph. The samples were exposed for 65 s to an integrated flux of 0.4 e~/A%/s.
Applied underfocus values ranged between 1.5 and 2.25 um. The pixel size was
0.935 A, as calibrated using gold diffraction rings within the powerspectra of a cross
grating grid (EMS, Hatfield).

Cryo-EM image processing and helical reconstruction. MotionCor2>> was used
for movie correction. Fitting CTF parameters for all 622 micrographs was per-
formed using CTFFIND4°, Further image processing and 3D reconstructions were
done with RELION-23%40, Selection of 256 micrographs was done with
CCTFFIND by estimating the maximum resolution at which Thon rings could be
detected to be better than 5 A. From these micrographs, 4540 fibrils were manually
picked. From these fibrils, 103,733 segments were extracted using an overlap of 90
% between neighbouring segments. The size of the segment images is 220 pixels.
For data set characterisation we performed 2D classification (Supplementary
Fig. 11). As an initial model for the refinement we used a noise-filled cylinder.
After several rounds of 3D refinements with helical symmetry search, we found
a problem with the tilt priors: the tilt angle distribution became bimodal with
maxima at 85° and 95°. However, we would expect the tilt angles to show a
unimodal distribution around 90°. The ~4.7 A cross-p pattern is a strong signal and
substantially affects the alignment. If the helical rise parameter is slightly smaller
than the correct value, the cross-p pattern can still be aligned by changing the tilt
angles to higher or lower values (which accordingly reduces the spacing of the
cross-f pattern). To overcome this problem, we fixed the tilt prior to 90° by usage
of the RELION option helical_keep_tilt_prior_fixed, and then first optimized the
helical parameters. In subsequent refinements, the helical symmetry parameters
were fixed and the tilt angles (together with the other angles) were optimized.
Since the automated 3D refinement in RELION did not yield high-resolution
reconstructions, we performed gold-standard refinements by splitting the data into
an even and an odd set by selecting entire fibrils (not just segments, as they are
overlapping). The FSC curve (Supplementary Fig. 12) was computed between the
two half-maps and yields a resolution (with the 0.143 criterion) of 3.4 A.
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The handedness of the fibril structure was determined by comparing the
reconstructed density with AFM images (Supplementary Fig. 5). For this
comparison, the 3D density map of the fibril was converted to a height profile using
Chimera®’ as follows: set surface color by height and set the color scale to gray.
Then set camera projection mode to orthographic and save the image. The
alignment of the AFM image with the calculated height profiles yields a cross-
correlation coefficient of 0.943 for the left-handed and 0.914 for the right-
handed helix.

Model building and refinement. A single chain atomic model of PI3K-SH3 was
built with Coot>®>°. Subsequently, seven copies of a single chain were placed into
the EM density map. At residues GIn#® and Glu®’, between strands p4 and {5, the
density map is slightly ambiguous and could possibly be in agreement with an
alternative interpretation for the trace of the Ca-chain (Supplementary Fig. 13).

The final model containing seven helical symmetry-related chains was used for
further real space refinement in PHENIX®. Refinement was carried out using a
resolution cut-off of 3.4 A and NCS restraints between all seven subunits. At later
stages of the refinement, hydrogen-bond restraints were defined for the cross-p
sheets and Ramachandran restraints were used. The model-map FSC curve as
obtained from phenix.real_space_refine is shown in Supplementary Fig. 12 (dashed
line). The final statistics on the details of the refinement are shown in
Supplementary Table 1. Molecular graphics and analyses were performed with
Chimera®’.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The structure of the PI3K-SH3 fibril has been deposited in the Protein Data Bank under
accession code 6R4R [https://doi.org/10.2210/pdb6R4R/pdb]. The 3.4 A cryo-EM density
map has been deposited in the Electron Microscopy Data Bank under accession code
EMD-4727. The source data underlying Fig. 6b and Supplementary Fig. 8 are provided as
a Source Data file. Other data are available from the corresponding authors upon
reasonable request.
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