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Abstract
Purpose In early 2020, the world is amid a significant pandemic due to the novel coronavirus disease outbreak, commonly 
called the COVID-19. Coronavirus is a lung infection disease caused by the Severe Acute Respiratory Syndrome Coronavirus 
2 virus (SARS-CoV-2). Because of its high transmission rate, it is crucial to detect cases as soon as possible to effectively 
control the spread of this pandemic and treat patients in the early stages. RT-PCR-based kits are the current standard kits 
used for COVID-19 diagnosis, but these tests take much time despite their high precision. A faster automated diagnostic 
tool is required for the effective screening of COVID-19.
Methods In this study, a new semi-supervised feature learning technique is proposed to screen COVID-19 patients using 
chest CT scans. The model proposed in this study uses a three-step architecture, consisting of a convolutional autoencoder 
based unsupervised feature extractor, a multi-objective genetic algorithm (MOGA) based feature selector, and a Bagging 
Ensemble of support vector machines based binary classifier. The proposed architecture has been designed to provide precise 
and robust diagnostics for binary classification (COVID vs.nonCOVID). A dataset of 1252 COVID-19 CT scan images, 
collected from 60 patients, has been used to train and evaluate the model.
Results The best performing classifier within 127 ms per image achieved an accuracy of 98.79%, the precision of 98.47%, 
area under curve of 0.998, and an F1 score of 98.85% on 497 test images. The proposed model outperforms the current state 
of the art COVID-19 diagnostic techniques in terms of speed and accuracy.
Conclusion The experimental results prove the superiority of the proposed methodology in comparison to existing methods.
The study also comprehensively compares various feature selection techniques and highlights the importance of feature 
selection in medical image data problems.

Keywords Coronavirus (COVID-19) · Convolutional autoencoder · Multi-objective genetic algorithm · Feature subset 
selection

1 Introduction

A chest infection disease affects the functioning of the lungs 
[1]. The common lung infections are lung cancer, Chronic 
Obstructive Pulmonary Disease (COPD), bronchitis, pneu-
monia and, asthma. Coronavirus disease (COVID-19) is a 
of lung infection disease caused due to the novel discovered 
virus known as SARS-CoV-2 [2]. COVID-19 began with 
reports of unknown causes of pneumonia in Wuhan City, 
China, around December 2019. The worldwide economy 
was impacted by the unprecedented rise in COVID-19 cases 
and it has been declared a pandemic by the World Health 
Organization [3].

On 18 June 2020, a total of 8,379,081 patients became 
infected with COVID-19, and 215 countries listed 450,101 
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deaths [3]. The standard diagnostic test for COVID-19 is 
the Reverse Transcriptase Polymerase Chain Reaction 
(RT-PCR) [4]. Due to PCR’s high selectivity and sensi-
tivity, it is prevalent. The limitations of the PCR technique 
are (1) time consuming, (2) expensive, (3) shortage of kits, 
and (4) long production time [5]. A faster and cheaper test-
ing mechanism is required to tackle the alarming rates of 
spread of COVID-19. Radiological analysis like Chest CT 
(computed tomography) scans and X-Rays produce high 
hit-rate in COVID-19 diagnosis. Authors in [6] established 
a high correlation between radiological results and RT-
PCR. The above reasons encouraged developing a cheaper 
and faster COVID-19 screening mechanism using a radio-
logical approach [7].

From the comprehensive analysis of the COVID-19 diag-
nosis field, it is inferred that the best alternative for COVID-
19 detection to the RT-PCR test kits is chest radiography 
(X-rays and CT scan) [8]. However, CT scan modality seems 
to be more efficient than chest X-ray for the following rea-
sons: (1) X-rays provide only a 2D perspective whereas CT 
scan provides a detailed 3D view of the organ, (2) in X-rays, 
ribs overlap the lungs and heart, whereas, the CT scan does 
not. A deep-learning-based three-step model is proposed 
for CT-scan based screening, consisting of a convolutional 
autoencoder (CAE) based unsupervised feature extractor, an 

evolutionary algorithm based feature subset selector, and a 
feature classifier.

A CNN-based dense autoencoder has been used as the 
feature extractor because of CNN’s high representational 
power and the generality of unsupervised learning from it. 
The Autoencoder ensures an accurate and diverse feature 
set, while the feature selector removes all redundant and 
irrelevant features improving the performance. After obtain-
ing a reduced representation of raw data as a diverse set 
of features, the evolutionary algorithm based feature subset 
selectors is used to select optimal feature subsets. Finally, 
the bagging ensemble of support vector machines (SVM) is 
trained on the subsets chosen by the various selectors, and 
their performance is compared.

2  Related Works

Table 1 consists of various state of the art techniques cur-
rently available in the literature of COVID-19 diagnosis. 
Further, a detailed analysis of the review is presented.

Works from [10, 11, 13, 14] have used pre-trained CNN 
models for COVID-19 diagnosis. Transfer Learning tech-
niques are useful when data is limited, but they often fail to 
learn intricate features unique to the required dataset. Some 

Table 1  Related work results analysis on COVID-19 screening

References Technique Key findings

[9] infection Size Aware Random Forest method (iSARF) The accuracy of 87.9%, a sensitivity of 90.7%, and a specificity 
of 83.3% are achieved on chest CT scan

[10] ResNet-18 (CNN model) The performance parameters are: specificity: 92.2%, sensitivity: 
98.2% and, AUC: 0.996

[11] Pre-trained CheXNet and DenseNet An accuracy of 90.5%, a sensitivity of 100% is achieved using 
5323 (COVID19-115, normal - 1341, and pneumonia-3867) 
Chest X-ray images

[12] Joint Classification and Segmentation (JCS) Used a dataset of 400 COVID-19 patients (144,167 images) and 
350 Non-COVID patients. The model achieves a dice score 
of 78.3%, sensitivity of 95% and a specificity of 93% for the 
segmentation task

[13] Domain Exten. Transfer Learning (DETL) with Gradient Class 
Activation Map (Grad-CAM)

The Data A - Binary classes disease (13 diseases) and normal. 
Data B - Four classes (normal, pneumonia, other diseases, and 
Covid19). An accuracy of 95.3% using X-ray scans

[14] AlexNet, VGG16, VGG19, GoogleNet, and ResNet50 Pre-trained models used to train CNN on 742 chest CT scans 
for two binary classes (COVID and non-COVID). The highest 
accuracy of 82.91% is achieved with the ResNet50 pre-trained 
CNN model

[15] 3-Dimensional deep learning The specificity of 92.2%, a sensitivity of 98.2%, and AUC of 
0.996 is achieved by the 3-D CNN model

[16] Detail-Oriented Capsule Nets + Peekaboo (patch crop and drop 
strategy)

A recall of 91.5%, accuracy of 87.6%, precision of 84.3%, and 
AUC of 96.1 is achieved on chest CT scan dataset for classifi-
cation to binary classes(COVID-19 and Non-COVID)

[17] Multi-Objective Differential Evolution (MODE) deep learning The performance parameters of MODE outperforms by 1.927% 
of Kappa statistics, 1.68% of specificity, 1.82% of sensitivity 
and, 2.09% of F-measure in comparison to authentic CNN 
models
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authors have performed fine-tuning, but retraining the last 
few layers might not change the basic features extracted by 
the CNN.

Authors in [9, 12, 15, 16] have used random forest, peeka-
boo, and segmentation classification. They have not used 
explicit feature extractors, and since the classification uses 
chest CT images, a deep feature extractor architecture like 
CNN might perform significantly better in this case.

The authors in the literature have obtained quality results 
by focusing only on feature extractors and classifiers. In our 
work, we propose to shift the attention from feature extrac-
tion to feature selection as it is critical to remove the redun-
dant features in an unsupervised extractor and improve the 
performance of any standard classifier.

The author in [17] obtained improved results using 
MO-DE [18] feature selector over Deep CNN models, thus 
showcasing the importance of proper feature selection tech-
nique in medical image classification. We extend their work 
further and try to analyze and compare various feature reduc-
tion and selection techniques ranging from linear dimen-
sionality reduction (principal component analysis-PCA) to 
various multi-objective feature selectors. We obtained state-
of-the-art results, validating their results, and obtaining an 
improved, robust model for COVID-19 screening.

Further, authors in [19] have found genetic selectors to 
outperform standard results on the Flavia dataset. Authors 
in [20] use a Nondominated Sorting Genetic Algorithm II 
(NSGA-II) based MOGA for feature selection and evaluate 
its performance on various datasets. Authors in [21] show 
the use of the GA based feature selector for network intru-
sion detection. Authors in [22] compare GA based feature 
selectors on medical datasets focusing on diagnostic radiol-
ogy. Authors of [22] compare GA based feature selectors 
to other approaches. In the stated studies, optimization of 
internal parameters of the MOGA has not been explored. 
Further, there is no comparative analysis among MOGA and 
other multi-objective evolutionary techniques for feature 
selection on medical images. Multi-Objective Optimization 
using Evolutionary Algorithms has not been well explored 
in its use as a feature selector.

We try to improve upon the previous works by analyzing 
the effects of optimizing parameters of MOGA. We also 
studied and compared MOGA with other multi-objective 
evolutionary techniques for feature selection on COVID-19 
CT Scan Image Dataset, not done previously by any works.

3  Theoretical Background

3.1  Autoencoder (AE) Based Feature Extractor

Autoencoders [23] are unsupervised learning methods 
trained to reconstruct their inputs, usually by going through 

a compressed representation of lower dimensionality [24]. 
Structurally an AE comprises two parts, namely an Encoder 
and a Decoder. Figure 1 summarizes the structure of an AE.

The encoder (E) converts the input image (x) to an 
encoded representation (h), which reflects the features of 
the image due to the constraint to reduce dimensionality. 
An encoder deterministically maps its input to a reduced 
representation generally using an affine map:

here W denotes the weights for the encoder part, b represents 
the bias, and h represents the reduced representation. Simi-
larly, the decoder (D) takes the reduced representation (h) 
and outputs the reconstructed image (y). An Autoencoder 
is trained to minimize the reconstruction error of its input. 
Hence, training of AE can be seen as a minimization of the 
following cost function:

where N  represents the number of images, xi and yi repre-
sent the ith input-output image pair, and Loss is the recon-
struction error between two images. Mean squared error 
has been used as the reconstruction error. CAE combines 
convolutional operations with the architecture of an AE. The 
authors of [25] have shown that CAE shows high accuracy 
in finger vein identification. Since CNN can extract a very 
detailed set of feature maps from images, convolutional AE 
has been used as a feature extractor in this study.

3.2  Multi Objective Genetic Algorithm Based 
Feature Selector

3.2.1  Multi Objective Genetic Algorithm (MOGA)

Multi-Objective Optimization is the process of simultane-
ously optimizing more than one competing objective func-
tion. Two Objectives have been considered in this work, 
namely, classification accuracy and size of feature subset. 
These are competing objectives, and a single solution opti-
mizing both might not exist. An alternative is to generate a 
set known as the Pareto Optimal set of solutions. A Pareto 

(1)h = E(W ⋅ x + b)

(2)Cost =
1

N

∑

j

Loss[xi, yi]

Fig. 1  Schema of basic autoencoder
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set is a set of solutions where no solution is dominated by 
any other solution in the set. There is always a degradation 
in some objectives, required to improve any objective in a 
Pareto set of solutions.

Consider a set of M objectives that have to be mini-
mized. H = {h1, h2,… , hM} . Consider x1 , x1 ∈ {Pareto 
Set}, then x1 dominates x2 if:

A solution is said to be Pareto Optimal if there exists no 
solution which dominates it. All such Pareto Optimal solu-
tions together form the Pareto Optimal Set.

There exist various algorithms for multi-objective 
Genetic Optimizations. NSGA-II [26] is one such elitist 
principle-based algorithm much superior to classic gradi-
ent-based approaches. NSGA-II has been used to carry out 
the multi-objective feature subset selection in this study. 
Figure 2 summarizes the implementation of NSGA-II.

3.2.2  Initial Population and Encoding

Solutions in the population (a.k.a chromosomes) are repre-
sented as binary strings. The ith gene in a chromosome is 
one if the solution contains the ith feature of the input set. 
For the initial population, random binary chromosomes 
have been generated.

(3)
∀i = 1, 2,… ,M, {hi(x1) ≤ hi(x2)} and

∃i = 1, 2,… ,M, {hi(x1) < hi(x2)}

3.2.3  Crossover and Mutation

The creation of two new offspring chromosomes using the 
selected parent pair is known as crossover. Single point 
crossover has been used in this work, where each gene is ran-
domly selected from one of the parents. Parents are selected 
using tournament-based selection.

Mutation conserves population diversity. Mutation 
involves random modifications in the value of the chromo-
somes. Random bit flip has been used as the mutation opera-
tor in this study.

3.2.4  Termination

The MOGA based selector terminates when either the maxi-
mum number of generations or the stall generation limit has 
been reached. After termination, the selector returns the final 
population with objective scores and front rankings.

3.3  Ensemble SVM Based Classification

The SVM ensemble with Bagging is used in classification 
as SVM is a weak learner [27]. Using many small classifi-
ers can increase robustness and produce low error. Bagging 
[28], uses randomized training sets for creating different 
models. A single classifier’s training set is randomly gen-
erated by drawing N random data points (N is the size of 
the original training set) from the original training set with 
replacement. Figure 3 illustrates the structure of the bagging 
ensemble-based SVM.

As described above, bootstrap builds K duplicate 
training datasets from the given training data set (TR) 

Fig. 2  The working of NSGA-II
Fig. 3  A general architecture of SVM ensemble with an aggregation 
step



682 S. Bansal et al.

1 3

{TRk|k = 1, 2, ...,K} using random re-sampling with 
replacement.

After training, the independently trained SVMs are aggre-
gated. Thus, majority voting has been used in the study 
because it uses upper layer SVM to combine several lower 
layer SVMs (double layer hierarchical combining).

4  Proposed Method

A 3-step architecture is proposed for the screening of 
COVID-19 chest CT scans. The proposed architecture con-
sists of a feature extractor, a feature selector, and a clas-
sifier. Flowchart summarizing the proposed architecture is 
depicted in Fig. 4

An autoencoder based unsupervised learning approach 
is used to generate features from the CT scan images auto-
matically. This gives us a diverse feature set, essential for 
this classification.

Though diverse, the features extracted by the Autoen-
coder have very high dimensionality and suffer from a 
redundancy of features. To remove the extra features, a 
MOGA based feature selector is proposed to select an opti-
mal set of features.

Finally, for classification, a bagging based ensemble of 
support vector machines is used to carry out the binary clas-
sification of the feature sets into COVID-19 and non-COVID 
classes. A brief outline of the various methods is highlighted 
in the subsequent study.

4.1  Auto Encoder Structure and Training

The input image of size 128 × 128 × 3, is fed into the CNN, 
which contains convolutional layers (kernel size 3) and max-
pooling layers (downscaling factor of 2). ReLu activation is 
applied after every convolution. The encoder layers have 32, 
16, and 8 filters (output channels), respectively. A decoder 
follows the encoder to reconstruct the image using decon-
volution and up-sampling layers. The output of the encoder 
has the shape 14 × 14 × 16. This is flattened to generate a 
feature vector of length 2048 per CT Scan image. The CNN 
architecture has been summarized in Fig. 5.

The Auto Encoder is trained using the training set with 
the validation set for validation, as explained in Sect. 4.1. 
Adam optimizer has been used for training the AE, with 
Mean Squared Error (MSE) as the loss function. The AE 
has been trained for two hundred epochs with a batch size 
of 10 per epoch. Figure 6 shows a reconstruction of test set 
images by AE.Fig. 4  Flowchart summarizing the proposed architecture

Fig. 5  Proposed architecture of Convolution Auto-encoder
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4.2  Feature Selector

The feature extractor extracts 2048 features from an input 
image of 128 × 128 × 3. MOGA has been applied for 
selecting a superlative set from the extracted features using 
two fitness criteria:

where S is the cardinality of F  and F  is the subset of fea-
tures selected, and Accuracy is classification accuracy on the 
test set. Reducing the number of features ensures that there 
are no redundant or irrelevant features in the dataset. Clas-
sification accuracy is measured on the test set using an SVM.

Instead of constant Crossover and mutation rates, linear 
crossover and mutation rates have been used in this study. 
This ensures a high initial mutation rate preventing pre-
mature convergence and a low mutation rate when MOGA 
is close to the Pareto front. Similarly, the crossover rate is 
initially low to maintain diversity and gradually increases. 
Figure 8 shows the plot of the crossover and mutation rates 
against generations for the MOGA.

The summary of GA Parameters is given in Table 3. For 
evaluation, an average of 100 runs has been considered. 
The run summary of the MOGA based selector showing 
the min., max., avg., and std. dev. of the number features 
and highest accuracy for the given generation (using SVM 
as a classifier) is shown in Table 2. The plot of highest 
accuracy vs. No of features selected by MOGA is shown 
in Fig. 7

4.3  Feature Classifier

An ensemble of support vector machines (SVM) is used 
to classify the selected features. The bagging technique 
is used to construct the SVM ensemble. For classifica-
tion, the dataset is randomly divided into ten parts, and 
the individual SVMs are trained independently(bootstrap 
techniques). These individual models are then aggre-
gated by the deterministic averaging process to make a 

C1 =
1

S
C2 = Accuracy(F)

joint decision. Each SVM has an RBF kernel with C and 
Gamma tuned values using the Genetic Algorithm-based 
Hyperparameter Optimizer. The classifier’s performance, 
evaluated using the test set, and the number of features is 
stated in Table 8.

Fig. 6  Original and reconstructed (from Convolution Autoencoder) chest CT images from validation set

Fig. 7  The plot of highest accuracy vs the maximum number of fea-
tures)

Fig. 8  Crossover and mutation rates of MOGA vs generations plot
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5  Data and Validation

5.1  Dataset

The images of CT Scans used in this study are taken from 
the public database of COVID-19 CT Scans by the name of 
“SARS-CoV-2 Ct-Scan Dataset” published and maintained 
by Soares et al. [29]. The dataset consists of 2482 images 
of chest CT Scans, out of which 1252 are from patients 
infected with COVID-19. The remaining 1230 images are 
from patients of other non-COVID pulmonary Diseases. 
The presence of other non-COVID respiratory diseases 
allows the model to learn COVID specific features.

The patients considered in the compilation of the 
dataset mentioned above are from various hospitals in 
Sao Paulo, Brazil. The COVID-19 CT Scan images are 

collected from 60 patients (32 males and 28 females). The 
non-COVID CT Scan images were also collected from 60 
patients (30 males and 30 females).

The dataset has been split into three sets, namely train-
ing (0.6), validation (0.2), and testing (0.2). The splitting 
is random, and an average of 5 splits is stated for all evalu-
ations. The summary of the dataset after splitting is stated 
in Table 4.

5.2  Evaluation Metrics

The screening performance of the model was assessed by 
accuracy (ACC), precision (PRE), area under ROC curve 
(AUC), recall/sensitivity (REC), and F1 score (F1). Preci-
sion is the number of true positives over total positive pre-
dictions. Recall is defined as the number of true positives 
over the number of correct classifications. F1 score is simply 
the harmonic mean of precision and sensitivity of the model. 
AUC is the total area contained under a ROC Curve, and it 
shows the usefulness of tests on the model.

Table 2  Summary of the run for 
MOGA selector

Generations Number of evalu-
ations

Number of features Accuracy

Min Max Avg Std. dev.

10 147 265 308 287.45 7.71 0.65
20 126 263 305 284.3 6.21 0.79
30 142 259 302 279.64 7.34 0.83
40 112 257 299 276.34 5.66 0.86
50 139 253 294 273.3 7.27 0.88
60 154 245 291 268.18 5.83 0.89
70 128 242 292 264.82 4.59 0.91
80 146 239 291 261.74 6.69 0.92
90 135 234 287 258.84 5.52 0.93
100 128 235 285 256.4 6.34 0.94
110 117 231 281 250.24 5.21 0.94
120 115 228 279 248.32 5.91 0.95
130 128 224 274 245.96 6.47 0.97
140 108 227 275 247.32 8.45 0.96
150 113 226 275 246.33 7.93 0.97
160 123 226 271 243.9 5.24 0.98
170 105 224 272 242.14 4.35 0.97
180 101 224 271 241.66 6.01 0.98
190 107 221 269 240.72 6.81 0.98
200 97 224 273 242.35 4.46 0.99

Table 3  Summary of the hyperparameters used for MOGA

Parameter Value

Population size 200
No. of generations 200
Mutation probability Linear increase from 0.5 to 0.9
Crossover probability Linear decrease from 0.5 to 0.1
Selection procedure Tournament based
Mating pool size 50

Table 4  The brief details of the dataset for CT scans

Set of images Training set Validation set Test set Total

COVID 756 236 260 1252
non-COVID 732 261 237 1230
Total 1488 497 497 2482
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5.3  Experimentation

5.3.1  Comparison of AE Depths

Depth of any Neural Network directly affects its perfor-
mance, and an optimal depth ensures an accurate and robust 
model. The reconstruction Structural Similarity Index 
(SSIM) and Mean Squared Error (MSE) has been used to 
compare various autoencoders. Three different autoencoders 
have been considered for this with 2, 3, and 4 convolution 
layers, respectively, in the encoder. The exact structure of 
the autoencoders is given below:

– 2-Layers: two convolution layers of kernel 3x3 with 32 
and 64 filters, respectively. Each layer is followed by a 
max-pooling layer of 2 × 2.

– 3-Layers (proposed) : three convolution layers of kernel 
3 × 3 with 16, 32, and 64 filters, respectively. Each layer 
is followed by a max-pooling layer of 2 × 2.

– 4-Layers: four convolution layers of kernel 3x3 with 8, 
16, 32, and 64 filters, respectively. Each layer is followed 
by a max-pooling layer of 2 × 2.

The analysis is summarized in Table 5. The AE has been 
trained on the train set and tested on the validation set for 
this analysis. The size of images used is 128x128, and the 
pixel values have been scaled to lie between 0 and 1.

5.3.2  Effect of Bagging Estimators on Performance

Bagging ensemble uses several estimators instead of a single 
estimator for prediction. This improves performance since a 
single estimator may have high test error, but it is overcome 
by using many small estimators. A different number of esti-
mators are compared based on their accuracy on the valida-
tion set, and the box plot of the accuracy vs. the number of 
estimators is shown in Fig. 9. It can be seen that the accuracy 
improves till 20 estimators, then it saturates.

5.3.3  Comparing Different Population Sizes

Optimal population size is obtained by applying the pro-
posed MOGA based selector on the validation set. For 
obtaining the accuracy values, multiple runs were conducted, 

and an average of these was recorded. The graphs show the 
accuracy against the population size of MOGA, which is 
varied between 50 and 300 in increments of 50. The plot 
shows that the performance improves up to size 200, after 
which it stabilizes. Figure 10 shows the plot of the accuracy 
vs. population size.

5.3.4  Comparing Generation Size of MOGA

Improvement of Pareto fronts with generation is studied in 
this section. The fronts are plotted using 5 points from each 
generation, with the parameters for MOGA being as stated 
in Table 3. Y-axis represents the selected subset’s accuracy 
on the validation set, while the X-axis represents the inverse 
of the number of features selected. It can be seen that the 
fronts improve till 150 generations and then the front sta-
bilizes. This is also observed in the overlap of the fronts 
in generation 150 and 200. Figure 11 shows the generation 
wise Pareto fronts.

5.3.5  Comparison with Simple GA, PCA and No‑Selector

This section compares the MOGA based selector, PCA, and 
Simple GA. Accuracy on the validation set is taken as the 
comparison metric. PCA, a popular dimensionality reduction 
technique, is applied with a variance set to 0.95. Simple GA 
tries to find the optimal feature set using validation accu-
racy as the fitness function. Direct classification with all 
the extracted features without any feature selection has also 
been performed. The results obtained are summarized in 
Table 6. Directly using the features without selection results 
in poor performance of the model. The proposed model out-
performs all the techniques in terms of accuracy. In terms 
of the number of features, it can be seen that MOGA selects 
considerably fewer features than simple GA.

Table 5  Comparison of AE depth on the basis of reconstruction

Auto-encoder SSIM score MSE score

2-Layer 0.76 0.0014
3-Layer 0.91 0.0004
4-Layer 0.89 0.0007

Fig. 9  Box plot of validation set accuracy vs number of bagging esti-
mators
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5.3.6  Comparison of Crossover and Mutation Rates

Crossover and mutation rates are the parameters that con-
trol the convergence of the MOGA selector. A non-con-
stant linear crossover rate has been used in this study to 
improve the selector’s ability to find the optimal front. The 
proposed selector is compared with constant crossover and 
mutation rate based MOGA. Accuracy on the validation 
set averaged over multiple runs is used for this compari-
son. The result of the analysis is summarized in Table 7.

5.3.7  Comparison of Feature Selectors

Multiple feature selection techniques, namely Multi-Objec-
tive Particle Swarm Optimization (MOPSO) [30], Multi-
Objective Differential Evolution (MODE) [18] and MOGA 
are compared in this study. The standard implementations of 
these techniques (except the proposed method) are used for 
this analysis. Table 8 shows the evaluation results on differ-
ent selectors. For evaluation, features are extracted using the 
proposed AE architecture, selected using different selectors, 
and finally classified using SVM Ensemble. For more effec-
tive comparison, the test set, which is unseen by the selec-
tors, is used for the evaluation. The details of the train-test 
split are provided in Sect. 4-A. The results obtained show 
that the proposed model outperforms other multi-objective 
feature selection techniques. Figure 13 shows the confusion 
matrices obtained for different feature selectors on the test 
set.  

6  Results and Analysis

For evaluation, the dataset is split according to Table 4. 
The proposed method has been evaluated using the test set, 
composed of 260 COVID-19 chest CT images and 237 non-
COVID chest CT Images. The performance is measured 
based on the evaluation metrics discussed in Sect. IV-B. The 
features are extracted using the AE encoder defined in III-A 
and selected using MOGA as described in III B. Finally, the 

Fig. 10  The plot of population 
size vs validation accuracy for 
MOGA selector

Fig. 11  The plot of various Pareto Fronts w.r.t. Generations, for the 
proposed MOGA. Five points are chosen from each generation for 
plotting this graph

Table 6  Validation accuracies with MOGA, PCA and GA as feature 
selector

Feature selector Accuracy No. of features

MOGA 0.991 244
Simple GA 0.961 316
PCA 0.947 207
No selector 0.893 2048

Table 7  Validation accuracy of MOGA selector using different cross-
over and mutation rates

Crossover rate Mutation rate Accuracy

Linear increase from 0.5 
to 0.9

Linear decrease from 0.5 
to 0.1

0.991

0.9 0.1 0.973
0.8 0.2 0.977
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features are classified using a Bagging Ensemble of SVM 
classifiers, described in III C.

The proposed methodology is implemented on python 
software, running on a CPU. The system architecture uses 
an Intel Core i7 processor with a 4 GB graphic card, running 
at 1.80 GHz, a 64-bit operating system, and 16 GB RAM.

The proposed architecture achieves an accuracy (ACC) 
of 98.79%, precision (PRE) of 98.47%, sensitivity (SEN) 
of 99.23%, F1 score (F1) of 98.85%, specificity (SPE) of 
98.31%, net positive rate (NPV) of 99.14% and area under 
ROC curve (AUC) of 99.8%. The prediction time on the 
system used is 127 ms per image. The proposed model out-
performs the current state of the art COVID-19 diagnostic 
techniques in terms of speed and accuracy.

The receiver operator characteristic curve on the pro-
posed model’s test set is depicted in Fig. 12. The area 
obtained under the ROC Curve (AUC) is 0.998. A high 
value of AUC shows the robustness of the proposed model. 
Table 8 summarizes the evaluation results of the proposed 
architecture. Confusion matrices for different feature 
selectors on the test set are shown in Fig. 13.

The proposed study (MOGA) outperforms other multi-
objective feature selectors. A decrease in ACC is expected 
in GA with an increase in the number of variables. As the 
number of variables for optimizing the selection are less, 
MOGA outperforms MODE and MOPSO.

Fig. 12  ROC characteristics curve for the proposed methodology 
(convolutional autoencoder + MOGA + Bagging Ensemble with 
SVM)

Fig. 13  Confusion matrices of the proposed methodology with different multi objective feature selectors on the test set

Table 8  Comparative assessment of various feature selectors on the test set

Bold indicates the best performance

Feature selector Number of fea-
tures selected

Classification summary Evaluation metric

TP TN FP FN ACC PRE SEN F1 SPE NPV AOC

Multi objective
Differential evolution

252 256 231 6 4 0.9798 0.9770 0.9846 0.9808 0.9746 0.9829 0.991

Multi objective
Particle swarm
Optimization

227 256 232 5 4 0.9839 0.9809 0.9884 0.9846 0.9789 0.9872 0.994

Multi objective
Genetic algorithm
(proposed study)

244 258 233 4 2 0.9879 0.9847 0.9923 0.9885 0.9831 0.9914 0.998
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7  Conclusion

An unsupervised learning-based approach is proposed for 
feature generation because of the higher feature diversity 
obtained from such an approach. Various evolutionary and 
non evolutionary feature selectors are compared in this 
study, and finally, a MOGA based selector is proposed. 
An ensemble of SVMs is used for the final classification. 
The bagging technique is used in the ensemble as it works 
well with complex feature maps.

The study further finds many insights in feature extrac-
tion, feature selection, and classification, which are listed 
below.

– Unsupervised learning-based feature extractors can 
provide detailed and accurate feature maps for medi-
cal image classification.

– Evolutionary Feature Selectors remove data redun-
dancy better than standard techniques like PCA in 
terms of accuracy and number of features. Not using a 
feature selector results in inferior performance

– Optimizing the number of features and accuracy forces 
the model to learn from a smaller feature set, resulting 
in a more robust model since only the most productive 
features are retained.

– MOGA outperforms MOPSA and MODE in medical 
image classification because of the large number of 
parameters that need to be optimized for MOPSA and 
MODE.

– Variable Crossover and Mutation rates for MOGA can 
significantly improve performance in medical image 
classification.

– Bagging improves a classifier’s performance, as a large 
number of classifiers produce a lower test error than a 
single classifier. This is because diversity compensates 
for bias.

The proposed model achieves better results than state-
of-the-art techniques for all performance metrics. With 
such high-performance results and a little prediction time 
compared to Physical RT-PCR tests, the proposed model 
can be an effective and efficient COVID-19 Chest CT Scan 
screening Technique. Shortly, clinically verified AI-based 
diagnosis may be the way for rapid screening and early 
containment of outbreaks. With increasing structured 
medical data, deep learning models can be helpful for it.

Further, the study proposes that techniques like unsu-
pervised feature extractor and evolutionary feature selec-
tor can help address the problem associated with limited 
COVID-19 radiology data. The study also comprehen-
sively compares various feature selection techniques and 
highlights the importance of feature selection in medical 

data problems. The study uses open-sourced dataset for 
COVID-19 screening. The technique’s effectiveness is 
limited by the dataset available and needs to be verified 
on other data. Also, for clinical validation, there will be 
a need to localize the infection regions, map them in the 
images, and track the degree of infection.
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