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Background: Prognosis, recurrence rate, and secondary prevention strategies differ by
different etiologies in acute ischemic stroke. However, identifying its cause is challenging.

Objective: This study aimed to develop a model to identify the cause of stroke using
machine learning (ML) methods and test its accuracy.

Methods: We retrospectively reviewed the data of patients who had determined
etiology defined by the Trial of ORG 10172 in Acute Stroke Treatment (TOAST)
from CASE-II (NCT04487340) to train and evaluate six ML models, namely, Random
Forests (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGBoost), K-Nearest
Neighbor (KNN), Ada Boosting, Gradient Boosting Machine (GBM), for the detection
of cardioembolism (CE), large-artery atherosclerosis (LAA), and small-artery occlusion
(SAO). Between October 2016 and April 2020, patients were enrolled consecutively
for algorithm development (phase one). Between June 2020 and December 2020,
patients were enrolled consecutively in a test set for algorithm test (phase two). Area
under the curve (AUC), precision, recall, accuracy, and F1 score were calculated for the
prediction model.

Results: Finally, a total of 18,209 patients were enrolled in phase one, including 13,590
patients (i.e., 6,089 CE, 4,539 LAA, and 2,962 SAO) in the model, and a total of 3,688
patients were enrolled in phase two, including 3,070 patients (i.e., 1,103 CE, 1,269 LAA,
and 698 SAO) in the model. Among the six models, the best models were RF, XGBoost,
and GBM, and we chose the RF model as our final model. Based on the test set, the
AUC values of the RF model to predict CE, LAA, and SAO were 0.981 (95%CI, 0.978–
0.986), 0.919 (95%CI, 0.911–0.928), and 0.918 (95%CI, 0.908–0.927), respectively.
The most important items to identify CE, LAA, and SAO were atrial fibrillation and degree
of stenosis of intracranial arteries.

Conclusion: The proposed RF model could be a useful diagnostic tool to help
neurologists categorize etiologies of stroke.

Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT01274117].
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INTRODUCTION

At present, stroke is one of the major global health problems,
with 113 million disability-adjusted life years (DALYs) per year,
while more than 80% of DALYs occur in low-income and middle-
income countries (LMICs) (Pandian et al., 2018, 2020). The
recurrent strokes, frequently ischemic and more disabling and
costly than the first stroke, constitute a notable proportion (25–
30%) of all preventable strokes (Hankey, 2014; Campbell and
Khatri, 2020). Therefore, how to make an effective secondary
prevention strategy is crucial to reduce the stroke burden.

Secondary prevention strategies of acute ischemic stroke (AIS)
vary by different etiologies (Sacco et al., 1989b; Petty et al., 2000;
Lovett et al., 2004). Currently, the most widely accepted ischemic
stroke subtyping system is the Trial of ORG 10172 in acute
stroke treatment (TOAST) classification scheme (Adams et al.,
1993; Chen et al., 2012). However, even with extensive testing,
prompt identification is challenging to physicians in clinical
practice (Hankey, 2014; Jauch et al., 2017). Neurologists, who lack
comprehensive knowledge of etiology categorization, especially
junior neurologists, could not make an accurate assessment of
etiology. Previous studies have reported that junior neurologists
(less than 5 years of experience in clinical neurology) had a
lower inter-observer reliability of etiological classification than
senior neurologists (more than 12 years of practical experience)
(κ = 0.36 vs. κ = 0.74), as junior neurologists were usually
ambiguous about the medical record (Goldstein et al., 2001;
Meschia et al., 2006; Yang et al., 2019). The inaccurate assessment
of etiology definitely leads to poor secondary prevention of
stroke, which would become more prominent in the countries
with a large population but a less well-financed national health
system (Pandian et al., 2020). Thus, alternative methods for rapid
and accurate causative classification are needed to improve the
secondary prevention strategies of AIS for junior neurologists,
even for general practitioners.

Population-level studies from LMICs reported a high
prevalence of stroke, and any future increases in stroke rates
will most likely be driven by LMICs; people in LMICs more
often had severe strokes (Pandian et al., 2020). Given the
growing burden of stroke in LMICs, emphasizing strategies
for reducing the risk of stroke in these regions was crucial
to relieve the global stroke burden (Pandian et al., 2018).
Furthermore, studies have proven that consistent secondary
prevention was the key element to improve post-discharge
morbidity and mortality, and mHealth, using mobile phones
to provide patients and healthcare workers with support to
improve health, had potential benefits in LMICs (Pandian et al.,
2018, 2020). The excellent prediction performance with the
applications of machine learning (ML) in many healthcare areas
has inspired innovations in the development of novel ML-
based stroke etiology diagnostic technology. ML models can
capture complex, nonlinear relationships in medical data and
learn the features to classify the entity they describe, which
may be appropriate to mimic the process of etiology assessment.
Therefore, in this study, we investigated whether the model using
ML methods could precisely identify the cause of ischemic stroke
by learning the features of the etiologies and tested its accuracy.

MATERIALS AND METHODS

Study Setting
This study was a retrospective analysis based on a multicenter
prospective registry, Computer-based Online Database of Acute
Stroke Patients for Stroke Management Quality Evaluation
(CASE-II, NCT04487340). Initiated in 2016, CASE-II was
designed to examine the current status of stroke care in China,
and the data would be used to help develop strategies to improve
stroke care. All data were preserved in a safe information
database and monitored by an independent contract research
organization. We collected and analyzed all consecutive patients
diagnosed with AIS within 24 h of onset with determined
stroke subtypes. Patients with incomplete information for
analysis (missing any data in data for developing models in
Supplementary Material) were excluded. We excluded patients
with stroke of undetermined cause (SUE) and stroke of other
determined etiology (SOE) in the process of ML because the aim
of this study was to identify three main causes of ischemic stroke.

The study was conducted in two phases. In phase one, eligible
patients from 63 sites were enrolled and partitioned randomly
into training (80%) and validation (20%) sets for algorithm
development from October 2016 to April 2020. In phase two,
eligible patients from 63 sites were enrolled in a test set from
June 2020 to December 2020. The 63 sites from the test set
were the same original 63 sites from the training and validation
sets in phase one. In addition, there were no patients present in
both phase 1 and phase 2. The models were developed through
the learning of the etiological features in the training set, while
validation set and test set were used to evaluate the model.

CASE-II (NCT04487340) was approved by the Human
Ethics Committee of the Second Affiliated Hospital of Zhejiang
University, School of Medicine, and the approval number is yan-
2018-102. Written informed consent was obtained from each
patient or an appropriate family member. Clinical investigation
had been conducted according to the principles expressed in the
Declaration of Helsinki.

Data Information
The data collected and analyzed in the study included
demographics; clinical information, such as baseline modified
Rankin Scale (mRS) score, baseline National Institutes of
Health Stroke Scale (NIHSS) score, history of hypertension,
atrial fibrillation (AF), diabetes mellitus, hyperlipidemia,
hyperhomocysteinemia, history of stroke/transient ischemic
attack (TIA), smoking, alcohol drinking, body mass index
(BMI), and vital signs; and laboratory tests and radiologic
data during hospitalization (data for developing models in
Supplementary Material).

Assessment of Stroke Cause
Each patient’s stroke subtype was assessed by two experienced
senior neurologists (more than 10 years of clinic practical
experience and research experience in stroke), who were
blinded to the study design and independently reviewed
each patient’s available data, with any disputes settled via
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reviewing by a third experienced senior neurologist for a
consensus decision. Etiological categories were defined by the
TOAST criteria. Cardioembolism (CE) includes patients with
arterial occlusions presumably due to an embolus arising in
the heart. Large-artery atherosclerosis (LAA) includes patients
with >50% atherosclerotic stenosis or atherosclerotic occlusion
at the bifurcation of the carotid artery on the symptomatic
side. Small-artery occlusion (SAO) includes patients who have
one of the traditional clinical lacunar syndromes, have no
evidence of cerebral cortical dysfunction, and have a normal
computed tomography (CT)/ magnetic resonance imaging (MRI)
examination or a relevant brain stem or subcortical hemispheric
lesion with a diameter of less than 1.5 cm. Meanwhile, potential
cardiac sources for embolism should be absent, and evaluation
of the large extracranial arteries should not demonstrate stenosis
of greater than 50% in an ipsilateral artery. SUE includes the
following: (1) ≥2 potential causes of stroke, or (2) no likely
etiology determined despite an extensive evaluation, or (3)
no cause found due to inadequate evaluation. SOE includes
patients with other determined pathogenesis subtypes, such
as non-atherosclerotic vasculopathies, hypercoagulable states,
or hematologic disorders. Diagnostic studies, such as blood
tests or arteriography, should reveal one of these unusual
causes of stroke. Cardiac sources of embolism and large-artery
atherosclerosis should be excluded by other studies (Adams et al.,
1993).

Feature Selection
According to published literature and pathophysiological
consideration, we first selected clinical information,
including baseline mRS score, baseline NIHSS score, history
of hypertension, AF, diabetes mellitus, hyperlipidemia,
hyperhomocysteinemia, history of stroke/TIA, smoking,
alcohol drinking, BMI, and vital signs, and laboratory tests
and radiologic data during hospitalization (data for developing
models in Supplementary Material; Hankey, 2014; Yan et al.,
2017; Pandian et al., 2018; Campbell and Khatri, 2020).
The feature selection was done exclusively with training
set data. Then, we performed the score function based on
Python packages Scikit-learn to score every factor using 5
methods, f_classif, mutual_info_classif, chi2, f_regression,
mutual_info_regression, respectively. Based on the score,
we chose the top 20 as candidate variables. Variables of five
feature selectors selected for CE, LAA, and SAO models were
the same. The 20 variables selected for the CE model were
as follows: history of anticoagulants, previous coronary heart
disease, previous atrial fibrillation, previous valvular heart
disease, anterior circulation infarction, posterior circulation
infarction, newly diagnosed atrial fibrillation, discharged
atrial fibrillation, discharged valvular heart disease, discharged
coronary heart disease, discharged heart failure, discharged
hyperlipidemia, discharged diabetes mellitus, systolic blood
pressure at admission, Baseline National Institutes of Health
Stroke Scale score, platelet count, D-dimer, total cholesterol,
triglyceride, and low-density lipoprotein. The 20 variables
selected for the LAA model were as follows: female, history
of anticoagulants, history of hypoglycemic drugs, alcohol

drinking, previous coronary heart disease, previous atrial
fibrillation, previous valvular heart disease, previous diabetes,
anterior circulation infarction, posterior circulation infarction,
large vessel occlusion, newly diagnosed atrial fibrillation,
discharged atrial fibrillation, discharged valvular heart
disease, discharged coronary heart disease, discharged heart
failure, discharged diabetes mellitus, discharged deep venous
thrombosis, degree of stenosis of intracranial arteries, and
triglyceride. The 20 variables selected for the SAO model
were as follows: history of anticoagulants, previous coronary
heart disease, previous atrial fibrillation, posterior circulation
infarction, large vessel occlusion, newly diagnosed atrial
fibrillation, discharged atrial fibrillation, discharged coronary
heart disease, systolic blood pressure at admission, diastolic
blood pressure at admission, body mass index, Baseline
Glasgow Coma Scale score, degree of stenosis of intracranial
arteries, hemoglobin, platelet count, D-dimer, glucose at
admission, total cholesterol, triglyceride, and low-density
lipoprotein. Then, the further important factor selection and
the redundant factor exclusion were performed using the
Scikit-Learn package in Python software in the light of whether
there was a correlation between the factor and the cause.
There remained 6 variables in the CE model, 16 variables
in the LAA model, and 15 variables in the SAO model after
these two steps.

Data Analysis
We developed and validated three multi-class algorithms
and six common binary classification algorithms using the
Scikit-Learn package in Python software (Pedregosa et al.,
2011; Venthur et al., 2015). The highest area under the
curves (AUCs) of the multi-class algorithms were lower
than binary classification algorithms [0.962 (95%CI, 0.951–
0.970) vs. 0.981 (95%CI, 0.978–0.986) for CE; 0.903 (95%CI,
0.897–0.911) vs. 0.919 (95%CI, 0.911–0.928) for LAA; and
0.909 (95%CI, 0.900–0.916) vs. 0.918 (95%CI, 0.908–0.927)
for SAO], potentially due to the imbalance classifier nature
of the multi-class algorithm. Thus, we chose the binary
classification algorithms as the final algorithms. Details for the
performance of the binary classification algorithms were as
follows:

Random Forests (RF), Logistic Regression (LR), Extreme
Gradient Boosting (XGBoost), K-Nearest Neighbor (KNN), Ada
Boosting, and Gradient Boosting Machine (GBM) were selected.
The data of phase one were randomly stratified (8:2) to the
training and validation set for developing models, and the data
of phase two were used as the test set for evaluating the models’
performance. The models were then developed using the retained
features. During the preprocessing of the dataset, we used
“value-min/(max-min)” to normalize the variables. Procedural
details on how the Scikit-Learn package selects predictors
can be found in papers published by Abraham et al. (2014).
Five-fold cross-validation was used for the model derivation
and internal evaluation by dividing the training set into five
mutually exclusive parts, four of which were used as training
data for the model derivation and one for evaluation as inner
validation data; this process was repeated five times to generate
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five different but overlapping training data and five unique
validation data.

In the training step, we optimized model hyperparameters of
RF, LR, KNN, and Ada Boosting with a grid search algorithm
(plots of hyperparameters search in Supplementary Material)
and adopted the default value of hyperparameters of GBM and
XBGoost. Each model’s hyperparameters and values were as
follows: Hyperparameters of KNN are n_neighbors, leaf_size,
weights, and algorithm, respectively, and values of n_neighbors
are 3, 5, 8, 10, 15; values of leaf_size are 3, 5, 10; values of weights
are uniform, distance; values of algorithm are auto, ball_tree,
kd_tree, brute.

Hyperparameters of RF are n_estimators, max_depth,
bootstrap, max_features, min_samples_leaf, and
min_samples_split, respectively, and values of n_estimators
are 30, 50; values of max_depth are 5, 10, 15, 20; values
of bootstrap are True, False; values of max_features are 5,
8, None; values of min_samples_leaf are 5, 10; values of
min_samples_split are 5, 10.

Hyperparameters of LR are C, penalty, max_iter, respectively,
and values of C are 0.001, 0.01, 0.1, 1; values of penalty are l1,
l2; values of max_iter are 150, 300. Hyperparameters of Ada
Boosting are n_estimators, and learning_rate, respectively, and
values of n_estimators are 10, 30, 50; values of learning_rate
are 1, 0.5. Hyperparameters of XGBoost are learning_rate,
n_estimators, and max_depth, respectively, and values of
learning_rate are 0.1, 0.5, 1; values of n_estimators are 10, 25, 50;
values of max_depth are 5, 10, 15.

Hyperparameters of GBM are learning_rate, n_estimators,
and max_depth, respectively, and values of learning_rate are
0.1, 0.5, 1; values of n_estimators are 10, 25, 50; values of
max_depth are 1, 5.

During the searching process, we set the AUC of receiver
operating characteristic (ROC) as the score. To assess the
generalizability of each model, we evaluated the predictive
performance of all models on the test set. After determining
the best model on the test set to predict CE, LAA, and SAO,
respectively, we combined these three models into one new model
for predicting a certain patient who belongs to one of the three
causes. The algorithm to determine the certain cause was based
on the probability of the three causes, and the final cause was the
one that has the highest probability.

Definitions of Metrics
To measure the performance of the classifiers, we use the
conventional definitions of recall, precision, F1 score,
and accuracy. In the descriptions below, we used the
abbreviations TP (true positive), TN (true negative),
FP (false positive), and FN (false negative) to describe
correct and incorrect assignments of an unknown etiology
to a predicted type, as described by this confusion
matrix:

Recall: The proportion of samples of a particular stroke
subtype that are correctly assigned to that type:

Recall = TP/ (TP+ FN).

Precision: The proportion of samples assigned to a particular
type that are truly that type:

Precision = TP/ (TP+ FP).

F1 score: The harmonic mean of recall and precision:

F1 = 2(recall ∗ precision)/(recall + precision).

Accuracy: The ratio of the number of samples correctly
classified by the classifier to the total number of samples:

Accuracy = (TP+ TN)/(TP+ TN+ FP+ FN)

Gini importance is a measurement of the feature importance:
The importance of a feature is computed as the total reduction of
the criterion brought by that feature.

Code and Data Availability
The code and data used to generate results shown in this study
are available from the author M.L. upon request.

Statistical Analysis
Clinical characteristics were summarized by computing the
median (interquartile range), and differences between two groups
were estimated by the t-test or the Mann-Whitney U-test if
they were continuous variables. Categorical or binary datum was
summarized by proportion (n); differences between two groups
were estimated by the Pearson χ2-test. ROC analysis was used
to get the AUC of the prediction models. The ROC-derived
optimal cutoff was determined at the maximal Youden Index.
All statistical analysis was performed using SPSS, Version 22.0
(IBM, Armonk, New York). All comparisons were two-sided,
with statistical significance defined as P < 0.05.

RESULTS

Study Population
Between October 2016 and April 2020, a total of 18,209 patients
were included in phase one, and from June 2020 to December
2020, a total of 3,688 patients were finally included in phase two.
Of the included patients in phase one vs. phase two, mean age was
71 (62–80) vs. 70 (60–79) years, the number of female patients
were 7,488 (41.1%) vs. 1,442 (39.1%), and median NIHSS on
admission was 3 (1–7) vs. 3 (1–6). In phase one, the proportion
of CE subtype was the highest (6,089, 33.4%), followed by LAA
(4,539, 24.9%), SUE (4,481, 24.6%), SAO (2,962, 16.3%), and
SOE (138, 0.8%). ML models enrolled all patients with CE, LAA,
and SAO, and thus, 13,590 patients were included, with 10,872
cases (80%) in the training set (4,871 CE cases; 3,631 LAA cases;
2,370 SAO cases), and 2,718 cases (20%) in the validation set
(1,218 CE cases; 908 LAA cases; 592 SAO cases). In phase two,
the proportion of LAA subtype was the highest (1,269, 34.4%),
followed by CE (1,103, 29.9%), SAO (698, 18.9%), SUE (597,
16.2%), and SOE (21, 0.6%); 3,070 patients (1,103 CE cases; 1,269
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LAA cases; 698 SAO cases) were involved in the models. The
baseline characteristics of patients included in the cohorts of
algorithm development and test were listed in Table 1.

The distributions of patients in phase one and phase two
were not the same. Compared with patients in phase one, those
in phase two were less likely to be female patients, have AF,
have coronary heart disease, have CE and SUE, and more likely
to be younger, have smoking habit, have LAA and SAO, and
present lower baseline mRS and NIHSS score, have glucose at
admission, and have higher Glasgow Coma Scale score and BMI
at admission (Table 1).

Feature Selection and Importance of
Features Contributing to the
Identification of Cardioembolism,
Large-Artery Atherosclerosis, and
Small-Artery Occlusion
The final CE model incorporated 6 variables, including
discharged AF, previous AF, newly diagnosed AF, posterior
circulation infarction, anterior circulation infarction, baseline
NIHSS score, and age. The final LAA model included 16 variables,
which were degree of stenosis of intracranial arteries, discharged
AF, previous AF, newly diagnosed AF, large vessel occlusion,
anterior circulation infarction, baseline mRS score, international
normalized ratio, baseline NIHSS score, triglyceride, high-density
lipoprotein, low-density lipoprotein, total cholesterol, proportion
of neutrophils, and age. The 15 variables of the SAO model
were stenosis of intracranial arteries, discharged AF, previous AF,
baseline NIHSS score, newly diagnosed AF, large vessel occlusion,
posterior circulation infarction, baseline mRS score, age, baseline
GCS score, platelet count, triglyceride, international normalized
ratio, proportion of neutrophils, and total cholesterol.

Gini importance of every risk factor of CE, LAA, and SAO was
calculated. As expected, AF was identified as the most significant
contributor in the CE estimation, and other important items
included posterior circulation infarction and anterior circulation
infarction (Figure 1). The most significant items contributing
to identifying LAA were stenosis degree of intracranial arteries,
AF, and large vessel occlusion (Figure 2). In addition, the most
important items of SAO classification were stenosis degree of
intracranial arteries, AF, and baseline NIHSS score (Figure 3).
Furthermore, we noted that some items easy to ignore in ordinary
clinical practice (e.g., baseline NIHSS score, baseline mRS score,
and age) also had some contributions to causative classification.

Model Performance on the Test Set
The AUC, precision, recall, F1 score, and accuracy of each model
on the test set were presented in Table 2. Among six models, the
models with the best predictive performance were RF, XGBoost,
and GBM, and there was no difference in AUC between these
three models. The AUC of the best models to predict CE was as
follows: RF, 0.981 (95%CI, 0.978–0.986); XGBoost, 0.982 (95%CI,
0.978–0.986); and GBM, 0.982 (95%CI, 0.979–0.987). The AUC
of the best three models to predict LAA was as follows: RF,
0.919 (95%CI, 0.911–0.928); XGBoost, 0.920 (95%CI, 0.912–
0.929); and GBM, 0.920 (95%CI, 0.978–0.986). The AUC values of

TABLE 1 | Comparison of clinical characteristics between a cohort of algorithm
development and a cohort of algorithm test.

Cohort of
algorithm

development
(n = 13,590)

Cohort of
algorithm test

(n = 3,070)

P-value

Female, n (%) 5688 (41.8) 1214 (39.5) 0.019
Age, year, median (IQR) 72 (63–80) 70 (61–80) <0.001
Baseline mRS score,
median (IQR)

2 (1–4) 2 (1–4) <0.001

Baseline NIHSS score,
median (IQR)

3 (1–8) 3 (1–6) <0.001

GCS score, median (IQR) 15 (13–15) 15 (14–15) <0.001
SBP at admission, mmHg,
median (IQR)

151 (135–167) 151 (134–166) 0.523

DBP at admission, mmHg,
median (IQR)

84 (75–94) 84 (75–94) 0.859

Glucose at admission,
mmol/L, median (IQR)

5.3 (4.7–6.5) 5.3 (4.7–6.4) 0.018

BMI, kg/m2, median (IQR) 23.2 (20.9–25.6) 23.5 (21.5–25.7) 0.001

Hypertension, n (%) 8841 (65.1) 1955 (63.7) 0.135
Diabetes mellitus, n (%) 2673 (19.7) 559 (18.2) 0.065
Atrial fibrillation, n (%) 2941 (21.6) 507 (16.5) <0.001
Hyperlipemia, n (%) 218 (1.6) 42 (1.4) 0.341
Smoking, n (%) 4379 (32.2) 1071 (34.9) 0.004
Alcohol drinking, n (%) 4766 (26.2) 966 (26.2) 0.682
Coronary heart disease, n
(%)

1070 (7.9) 178 (5.8) <0.001

Myocardial infarction, n (%) 113 (0.8) 22 (0.7) 0.521
Valvular heart disease, n (%) 296 (2.2) 49 (1.6) 0.041
Mitral stenosis, n (%) 99 (0.7) 23 (0.7) 0.903
Hyperhomocysteinemia, n
(%)

20 (0.1) 5 (0.2) 0.839

Previous transient ischemic
attack, n (%)

57 (0.4) 8 (0.3) 0.202

History of stroke, n (%) 2962 (21.8) 635 (20.7) 0.176
Renal insufficiency, n (%) 206 (1.5) 47 (1.5) 0.951
CE, n (%) 6089 (44.8) 1103 (35.9) <0.001
LAA, n (%) 4539 (33.4) 1269 (41.3) <0.001
SAO, n (%) 2962 (21.8) 698 (22.7) 0.256

BMI, body mass index; CE, cardioembolism; DBP, diastolic blood pressure; GCS,
Glasgow Coma Scale; IQR, interquartile range; LAA, large-artery atherosclerosis;
mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale;
SAO, small-artery occlusion; SBP, systolic blood pressure.

these models to predict SAO were as follows: RF, 0.918 (95%CI,
0.908–0.927); XGBoost, 0.919 (95%CI, 0.910–0.928); and GBM,
0.919 (95%CI, 0.910–0.928). Finally, we chose the RF model
as the final prediction model, because RF is a widely applied
algorithm of being trained quickly and providing insights into
the features that can predict the stroke etiology and has shown
good predictive performance in the stroke field and other medical
studies (Denisko and Hoffman, 2018; Jurmeister et al., 2019; Lee
et al., 2020; Wang et al., 2020).

Further analysis of the new model that combined the three best
models showed 1,142 (94.07%) CE cases, 686 (76.73%) LAA cases,
and 440 (72.13%) SAO cases, which were predicted correctly.
Among the CE patients, 46 (3.79%) cases were incorrectly
identified as LAA and 26 (2.14%) cases were incorrectly identified
as SAO. Among the LAA patients, 35 (3.19%) cases were
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FIGURE 1 | Illustration of features contributing to the identification of CE by Gini importance values. CE, cardioembolism; NIHSS, National Institutes of Health Stroke
Scale. Gini importance is a measurement of the feature importance in the model; the higher the value of Gini importance is, the more important the feature is.

predicted to be CE and 173 (19.35%) cases were predicted to
be SAO. Among the SAO patients, the prediction of 9 (1.48%)
patients was CE, and the prediction of 161 (26.39%) patients was
LAA. The accuracy of predicting LAA and SAO was lower than
CE (Figure 4).

DISCUSSION

To our knowledge, it was the first study to implement ML to
determine stroke etiologies based on large cohorts of algorithm

development and test by far. Results showed that our proposed
model categorized the stroke subtypes with excellent accuracy
through integrating clinical information with radiologic data
and laboratory testing. In addition, we also found the most
important items for identifying stroke etiologies involved in heart
and image information, including AF and stenosis degree of
intracranial arteries.

Previous studies have put attention on CE. Imaging findings
revealed that delayed-contrast filling sign (Zhou et al., 2019)
and overestimation ratio of susceptibility vessel sign (Zhang
et al., 2017) could predict CE, and the AUCs were 0.80 and
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FIGURE 2 | Illustration of features contributing to the identification of LAA by Gini importance values. LAA, large-artery atherosclerosis; LVO, large vessel occlusion;
NIHSS, National Institutes of Health Stroke Scale. Gini importance is a measurement of the feature importance in the model; the higher the value of Gini importance
is, the more important the feature is.

0.928, respectively. Compared with previous studies, our
model showed better performance ability (0.981 vs. 0.80 and
0.928). There were several potential explanations for these
findings. First, clinical information, including primary vital
signs and the physical examination of patients with ischemic
stroke, was important when determining ischemic stroke
etiology (Garcia-Cazares et al., 2020). Our model enrolled
the necessary data and captured nonlinear relationships,
including interactions among the input parameters and

outputs until reaching high accuracy (Koo et al., 2013),
which might improve the predictive performance of the
model. Second, the popularization of advanced diagnostic
technology, including long-term monitoring to document
paroxysmal AF and computed tomographic angiography,
to visualize vessel pathologies (i.e., plaque, degree of
stenosis), could be useful in reducing the proportion of
cryptogenic stroke and revealing the underlying mechanisms of
the index stroke.
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FIGURE 3 | Illustration of features contributing to the identification of SAO by Gini importance values. LVO, large vessel occlusion; NIHSS, National Institutes of
Health Stroke Scale; SAO, small-artery occlusion. Gini importance is a measurement of the feature importance in the model; the higher the value of Gini importance
is, the more important the feature is.

Interestingly, we found that AF and stenosis degree of
intracranial arteries were the most important items for
determining CE, LAA, and SAO. This is consistent with previous
studies which reported that AF was the common cause of CE, and
stenosis degree of intracranial arteries was the most important
component to diagnose LAA (Adams et al., 1993; Hankey, 2014;
Boodt et al., 2020). According to TOAST criteria, potential large-
artery atherosclerotic sources of thrombosis or embolism should
be eliminated when CE was diagnosed, and the diagnosis of LAA
should exclude potential sources of CE; meanwhile, potential

cardiac sources for embolism and stenosis of greater than 50% in
an ipsilateral artery should not be revealed when diagnosing SAO
(Adams et al., 1993). Thus, these features were closely related
to etiological assessment, and the sensitivity and specificity of
the model could be significantly improved when these items
were incorporated.

Notably, the characteristics of patients in the test group were
different from those in the model-developed group, while our
model showed excellent performance ability in both groups,
suggesting the generalizability of the algorithm. There are some
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TABLE 2 | Comparison of six models to predict etiology.

Etiology AUC (95% CI) Precision Recall F1 score Accuracy

CE

RF 0.981 (0.978–0.986) 0.955 0.955 0.955 0.958
LR 0.976 (0.971–0.981) 0.937 0.934 0.933 0.934
XGBoost 0.982 (0.978–0.986) 0.959 0.959 0.959 0.959
KNN 0.974 (0.970–0.980) 0.955 0.955 0.955 0.955
Ada Boosting 0.976 (0.971–0.981) 0.940 0.937 0.937 0.937
GBM 0.982 (0.979–0.987) 0.958 0.958 0.958 0.958
LAA

RF 0.919 (0.911–0.928) 0.847 0.849 0.848 0.849
LR 0.866 (0.857–0.877) 0.785 0.771 0.775 0.771

XGBoost 0.920 (0.912–0.929) 0.846 0.848 0.846 0.848

KNN 0.902 (0.893–0.912) 0.833 0.836 0.833 0.836

Ada Boosting 0.916 (0.908–0.925) 0.845 0.847 0.845 0.847

GBM 0.920 (0.978–0.986) 0.846 0.848 0.846 0.848

SAO

RF 0.918 (0.908–0.927) 0.864 0.864 0.864 0.864

LR 0.855 (0.843–0.868) 0.761 0.791 0.758 0.791

XGBoost 0.919 (0.910–0.928) 0.868 0.867 0.867 0.867

KNN 0.837 (0.824–0.851) 0.765 0.781 0.771 0.781

Ada Boosting 0.918 (0.909–0.927) 0.857 0.860 0.858 0.861

GBM 0.919 (0.910–0.928) 0.863 0.863 0.863 0.863

AUC, area under the curve; CE, cardioembolism; CI, confidence interval; GBM, gradient boosting machine; KNN, K-nearest neighbor; LAA, large-artery atherosclerosis;
LR, logistic regression; RF, random forests; SAO, small-artery occlusion; XGBoost, extreme gradient boosting.
The model method is more effective when the F1 score is higher.

potential application scenarios for our algorithm. Currently, the
incidence of cryptogenic stroke is 25–39% in different registries
(Sacco et al., 1989a; Petty et al., 2000; White et al., 2005). Previous
studies have reported that an observer’s experience may affect
the reliability of etiological classification systems. For example,
junior neurologists had a lower inter-observer reliability value
of TOAST than that of the senior neurologists (κ = 0.36 vs.
κ = 0.74) (Goldstein et al., 2001; Meschia et al., 2006; Yang et al.,
2019). According to the previous report, the overall accuracy
of junior physicians judging the TOAST etiologies varied from
0.354 to 0.643, with the senior neurologists as the reference. The
detailed accuracy of junior physicians judging LAA varied from
0.750 to 0.774, CE from 0.387 to 0.516, and SAO from 0.373 to
0.667, respectively (Goldstein et al., 2001; Selvarajah et al., 2009;
Yang et al., 2019; Suo et al., 2020). Our model outperformed
the junior neurologists (CE: 0.958; LAA: 0.849; SAO: 0.864). In
this respect, our proposed model could provide a better tool for
physicians at different levels to give a causative classification of
ischemic stroke and even provide clues to neurologists when the
diagnoses were disputed.

The inferior accessibility to stroke care services and clinical
management, the lack of consciousness of prevention, the poor
control of risk factors, and poor quality of diagnoses and
treatments in LMICs may jointly lead to the great stroke burden
in these regions (Yan et al., 2017; Pandian et al., 2018). In
addition, patients with stroke in LMICs were usually treated
by internists or family physicians, rather than by a stroke
specialist, because stroke units and trained specialists in stroke
care were scarce in LMICs (Pandian et al., 2020). Therefore,
strategies to help improve the knowledge and awareness of

stroke of physicians in LMICs were very crucial for reducing
the stroke burden in these regions. Furthermore, because of
the growing ownership of mobile phones worldwide, there
was great potential to use mHealth in LMICs, particularly
in regions with poor access to healthcare (Pandian et al.,
2018). Our proposed model with excellent accuracy could
enable patient-centered messaging and precisely provide the
clues of stroke causes, which was effective in the secondary
prevention of stroke. In addition, our model provided the
most important items to identify stroke causes, which could
help improve the knowledge and awareness of stroke in
physicians and help them to better treat and manage the
stroke in the future.

We noted that there were other etiological stroke classification
systems besides TOAST (such as Causative Classification System,
Atherosclerosis, Small-Vessel Disease, Cardiac Source, Other
Cause, Chinese Ischemic Stroke Subclassification, magnetic
resonance imaging-based diagnostic algorithm for AIS subtype
classification, Stop Stroke Study TOAST), which try to improve
upon the TOAST system (Ay et al., 2005; Chen et al., 2012; Ko
et al., 2014). Stroke causes can be complex and multifactorial.
Our proposed model is just the beginning to make primary
assessments for stroke etiologies, provides clues that are most
relevant with stroke for physicians, and does not aim to stop the
workup when one etiology is identified. In addition, clinicians
should consider other stroke-relevant risk factors on the basis
of the assessments of our model to further find the exact cause
and comprehensively understand the disease in clinical practice.
In this way, physicians could comprehensively evaluate the
conditions and further perform the optimal prevention measures.
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FIGURE 4 | Confusion matrix of the model in identifying CE, LAA, and SAO
on the test set. CE, cardioembolism; LAA, large-artery atherosclerosis; SAO,
small-artery occlusion. Confusion matrices are calculated by comparing the
position and classification of each measured sample with the actual
corresponding position and classification. Each column represents the
predicted category of the data, and each row represents the true attribution
category.

LIMITATIONS

Limitations of this study should be noted. First, the number of
input parameters can be large, and the use of the model would
require integration with communication systems and clinical
database systems or other image storage databases, however,
which is relatively easy to achieve in modern hospital systems.
The model could be implemented as a rapid diagnostic tool
to flag patients with different etiologies when radiologic data
and clinical information are available, and neurologists could
review these suspected cases identified by the model with a higher
priority. In addition, we found two variables in LAA and SAO
models, namely, degree of stenosis of intracranial arteries and
large vessel occlusion, which might not be available in LMICs.
But our proposed model still had a good prediction power when
we tried to run the model in the absence of these two variables.
In the absence of these two variables, the AUCs of LAA and
SAO were 0.756 (95%CI, 0.744–0.766) and 0.794 (95%CI, 0.788–
0.803). Actually, we still recommended the popularization of
vascular examination, such as CTA, for better management of
stroke patients. Second, the accuracy of identifying LAA and
SAO was low, and we should take further study to improve
the prediction of LAA and SAO. Third, this algorithm was
developed using a cohort of only Chinese stroke patients. There
was some potential limitation of generalizability of our findings.
Future studies should further verify our conclusions. Fourth,
we excluded patients with SUE and SOE in the process of
ML because the aim of this study was to identify three main
causes of ischemic stroke to bring forward the precise secondary
prevention for stroke patients. This step may influence the
robustness of the model when applied to the real-world situation.

The best situation for this tool is to identify CE, LAA, or SAO
when the possibilities of SOE and SUE are low. Fifth, our model
inherited some inherent limitations of the TOAST system: (1)
SAO was defined by the clinical syndrome and the size of the
infarct (≤15 mm in diameter). Consequently, a single larger
deep infarct could be classified as SUE rather than a more
appropriate diagnosis of SAO. (2) SUE group accounted for
approximately 40% of all strokes, including those patients with
potential multiple etiologies or patients who had incomplete
diagnostic workup.

CONCLUSION

In conclusion, the RF model proposed, which combined clinical
information, radiologic data, and laboratory testing, could be
a useful diagnostic tool to help neurologists quickly give the
causative classification of ischemic stroke and initiate the optimal
strategies of secondary prevention.
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