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Rheumatoid arthritis (RA) is an autoimmune disease. The etiology of RA remains
undetermined and the pathogenesis is complex. There remains a paucity of ideal
therapeutic drugs and treatment strategies. The epigenetic modifications affect and
regulate the function and characteristics of genes through mechanisms, including DNA
methylation, histone modification, chromosome remodeling, and RNAi, thereby exerting a
significant impact on the living state of the body. Recently, the phenomenon of epigenetic
modification in RA has garnered growing research interest. The application of
epigenetically modified methods is the frontier field in the research of RA pathogenesis.
This review highlights the research on the pathogenesis of RA based on epigenetic
modification in the recent five years, thereby suggesting new methods and strategies for
the diagnosis and treatment of RA.
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INTRODUCTION

Rheumatoid Arthritis (RA) is a common autoimmune disease with certain specific pathological
features, including joint deformities and dysfunction caused by chronic inflammation of the
polyarticular synovium, formation of pannus, destruction of cartilage, and the subchondral bone
(1, 2). Approximately 1% of people, worldwide, are affected by RA, a frequent cause for the loss and
disability of the adult labor force. Currently, the pathogenesis of RA, which is mainly related to
immune disorders, remains unclear (3). The morphological and gene expression patterns of RA
synovial fibroblasts (RASF) are different from those of the normal synovial fibroblasts, are the key
factors for the development of RA (4). In the absence of cellular and humoral immunity, RASF
maintains its activated phenotype and destroys the cartilage, but its morphology and gene
expression pattern are different from that of normal synovial fibroblasts, thus indicating that
epigenetic modification plays a crucial role in RA pathogenesis (5). Based on the positivity of
anticitrullinated antibodies, RA can be classified into two categories, ACPA+ and ACPA- (6).
Genome-wide association analysis confirms that genetic variations are associated with RA incidence
in different populations. However, these mutations only explain RA susceptibility in a small
org March 2022 | Volume 13 | Article 8594001
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proportion of the ACPA+ population; the situation is much
worse for the ACPA- RA population. Although smoking is the
most vital environmental risk factor in the pathogenesis of RA,
the relationship of immunity, li festyle, genetic and
environmental factors with their specific roles in the
pathogenesis of RA remain unclear. Thus, epigenetic factors
may be an important connecting link for genetics and gene
expression, thereby facilitating the understanding of the
pathogenesis of RA (7, 8).

The term “epigenetics” was first proposed by a British
scientist, Waddington, in 1942. It refers to changes in the
expressions and functions of genes resulting in heritable
phenotypes even when the DNA sequences remain unchanged
(9). There are three kinds of epigenetic modifications: (1) elective
transcription and expression regulation of genes, such as through
DNA methylation, chromatin remodeling, and genomic
imprinting; (2) post-translational modifications of proteins,
including histone methylation and acetylation; chemical or
other modifications of histones, and covalent modifications of
non-histone proteins; (3) post-transcriptional regulation of
genes, including non-coding RNA, miRNAs, antisense RNAs,
introns, and riboswitches in the genome (10). Epigenetics plays a
significant role in autoimmune diseases including RA, as many
studies show (11). This review summarizes the recent findings, in
the last five years, on the roles and regulatory mechanisms
underlying different epigenetic modifications in the
development of RA, which may offer a new scientific
perspective for the diagnosis and therapy of RA.
THE EPIGENETIC REGULATORY
ROLES IN RA

DNA Methylation
DNA methylation is the most commonly occurring post-
replication DNA modification in mammals, and consequently, is
also one of the most extensively investigated epigenetic
modifications (12). Under the action of DNA methyltransferases,
the methyl group is covalently embedded on the fifth carbon atom
of cytosine to form 5-methylcytosine (5-mc) (13). Generally, DNA
methylation occurs in CpG islands in the promoter regions of
housekeeping genes, wherein the guanine dinucleotides (CpG) are
highly aggregated (14, 15). Hypermethylation in the promoter
region is related to gene silencing or gene inactivation, while its
hypomethylation activates transcriptional activity and promotes
gene expression (16). According to the differences in their
structures and functions, the methyltransferases were classified
into three categories, namely, DNMT1, DNMT3a, and DNMT3b
(17). DNMT1 is primarily responsible for maintaining the
methylation status and is necessary for the de novo methylation
of non-CpG sites (18). DNMT3a and DNMT3b exert important
effects during embryonic development, and DNMT3b possesses a
high density of CpG sites and can methylate the distal centromeric
sites (19).

Previous studies show that the significantly altered feature of
DNA methylation in synovial fibroblasts and peripheral blood
Frontiers in Immunology | www.frontiersin.org 2
mononuclear cells (PBMCs) of RA patients is the extensively
hypomethy la ted genomic DNA. For example , the
hypomethylation of the GC rich CpG island sequences on the
promoter of the DNA of the long interspersed nuclear element in
RASF affects the physiological and pathological processes,
including adhesion plaque formation, cell adhesion, cross
endothelial migration, and interactions with the extracellular
matrix, thereby participating in the processes of the whole body
or local joint inflammation in RA. All DNA hypomethylations in
RASF are caused by the increase in the polyamine metabolism and
a concomitant decrease in the levels of s-adenosine-l-methionine;
not only do the patterns of DNAmethylation change in RA but the
promoter region of a single gene also undergo methylation,
including those of the chemokine (CXC motif), ligand 12. The
promoter demethylation of IL-6 and IL-10 genes in a single CpG
sequence contribute to the increase in cytokine levels as the disease
progresses. In addition, DNA methylation on chromosome 10
promotes the activation offibroblast-like synovial cells (FLS) in RA
pathogenesis (20). Inhibitors of DNA methylation suppress the
release of cytokines and chemokines, as also the activation of FLS,
thereby reducing the paw swelling. A recent study reports that the
secreted frizzled-related protein 2 (SFRP2) is significantly
downregulated in rats with RA (21). Over-expression of SFRP2
inhibits RA pathogenesis and suppressed the canonical Wnt
signaling in fibroblast-like synovial cells (FLS) of RA rats (21).
Interestingly, the level of expression of DNMT1 in RA rats is
negatively correlated with that of SFRP2. Quantitative
methylation-specific PCR confirms direct methylation of the
SFRP2 promotor by DNMT1, thereby regulating FLS
proliferation and fibronectin expression in a rat RA model.
Therefore, the combination of DNMT1 and DNA methylation
may be a promising therapeutic strategy for RA patients with
down-regulated SFRP2 expression.

To investigate the epigenetic patterns of T lymphocytes in RA
synovium, Firestein et al. analyzed the DNA sequence methylation
patterns of CD3+ T cells in peripheral blood and synovial tissue
from patients with RA and osteoarthritis (OA) (22). The
differential sites of DNA methylation identified for RA and OA
in the CD3+ T cells were 4615 and 164, respectively, while
differentially methylated genes were 832 and 36, respectively.
Further analyses showed that the differences in T-cell
methylation were mainly related to their distribution (blood and
synovium), and the differential modification pathways between
RA blood and synovial T cells were mainly involved in
complement activation, integrin cell surface interaction, and the
p53 signaling pathway. Therefore, the specific immune
characteristics of RA joints may be caused by the selective
accumulation of the T-cell populations or the expansion of
differentially labeled adaptive immune cells. Bernatsky et al.
analyzed the differences in DNA methylation patterns between
ACPA+ and ACPA- subjects and found 402 differentially
methylated regions (DMRs) exerting genetic influence. These
DMR-related genes were mainly enriched in pathways related to
the Epstein-Barr virus infection and immune responses (23).

Analyses of the whole-genome DNA methylation and mRNA
expression profiles of PBMCs from patients with RA show that
March 2022 | Volume 13 | Article 859400
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approximately 1,046 DNA methylation sites are closely
associated with the pathogenesis of RA (24). Liebold et al.,
using 5’-mC based flow cytometry, report that the PBMCs
from RA patients show a significant overal l DNA
hypomethylation state relative to healthy people (25). The
global methylation pattern may be a promising biomarker for
therapeutic monitoring and prediction of the outcomes of
inflammatory diseases. In addition, there are differences in the
DNA methylation status in the B- and T- lymphocyte
populations of patients with RA (26). Most differentially
methylated positions (DMPs) in RA patients at the initial
stages after treatment with disease-modifying antirheumatic
drugs show increased DNA methylation, while most DMPs in
RA patients at remission stages of MTX treatment showed
reduced DNA methylation (27, 28). Therefore, the differential
DNA methylation patterns are closely associated with the
pathological processes of RA and can be used as the candidate
biomarkers for evaluating the first-line drug responses in RA.
The unbalance between T-regulatory (Treg)/T-helper (Th) 17 is
engaged in the development of epigenetically-mediated
autoimmune diseases. Relative hypermethylation of T-reg-
spec ific demethy la t ion reg ion gene leve l and the
hypomethylation of the retinoic acid-related orphan receptor
(ROR)–C, have been reported to be detected in the early stages of
active RA. Treg/Th17 imbalance is associated with stage, and
aberrant patterns of DNA methylation may contribute to the
pathogenesis of RA (29). Taken together, these findings suggest
that altered methylation of RA factors is involved in the
pathogenesis and progression of RA (Figure 1).

Histone Modification
Histone modification is a post-translational modification of a
specific site on histones in chromatin. Acetylation, methylation,
phosphorylation, and ubiquitination are all included within the
Frontiers in Immunology | www.frontiersin.org 3
modifications of the histone tails; among which acetylation is the
most common (Figure 2). HDACs are considered to play a
significant role in the activation or silent regulation of pro-
inflammatory genes, and their inhibitors are often used to study
the pathogenesis of RA.

The expression and activity of class I HDACs are found to
decrease in PBMCs of RA patients, which are implicated in
disturbing the balance between the activities of HDAC and
HATs (30). The hyperacetylation state caused by the decreased
activity and expression of HDACs promotes the pro-
inflammatory processes and ultimately leads to RA. Therefore,
the HDAC activity and histone H3 acetylation status in PBMCs,
are potential biomarkers for evaluating the disease activity. Mice
with a T cell-specific deficiency of HDAC1 (HDAC1-cKO) were
found to be resistant to the development of collagen-induced
arthritis (CIA) and unaltered antibody response to type II
collagen (31). Inflammatory cytokines, IL-17 and IL-6, were
significantly reduced in the serum of HDAC1-cKO mice.
Under the condition of high Th17, HDAC selective inhibitors
inhibited chemokine receptor 6 (CCR6) upregulation in a mouse
model and human CD4+ T-cells. Therefore, HDAC1 is not only
a key factor in the pathogenesis of CIA but also a promising
target for the treatment of RA patients.

SIRT1, is a type 3 histone deacetylase that, possesses anti-
inflammatory properties. Activated SIRT1 promotes the
phosphorylation of adenosine monophosphate-activated protein
kinase a(AMPKa)/acetyl-CoA carboxylase in macrophages
treated with interleukin IL-4, thereby upregulating the M2
genes, such as MDC, FcϵRII, MrC1, and IL-10 expression (32).
Moreover, activated SIRT1 downregulates the LPS/g interferon-
mediated NF-kB activity by inhibiting p65 acetylation and M1
genes (including CCL2, iNOS, IL-12p35, and IL-12p40) expression.
This indicates that SIRT1 can reduce the inflammatory responses
in RA by regulating M1/M2 macrophages polarization; thereby,
FIGURE 1 | DNA methylation and RA. Changes in the methylation status of RA-related are involved in regulating the pathogenesis and progression of RA.
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SIRT1 is a potential target for the treatment of RA. In previous
studies, high transcript and protein levels of DOT1L were detected
in the synovial tissues of RA patients. The results of
immunohistochemistry and western blotting proved a 13.8-fold
or 15.5-fold increase in methylation of H3K79 in synovial tissue of
RA patients, respectively (33). The role of DOT1L and H3K79 in
initiating and maintaining gnomically active transcription
important functions, indirectly demonstrating that histone
modifications contribute to the pathogenesis of RA.

Abnormal histone lysine methylation (HKM) in RASF
indicates that histone lysine methyltransferase (HKMT) and
demethylase (HKDM) are dysregulated in RASF. Upon TNFa
stimulation, the expressions of four HKDMs, including FBXL10,
NO66, JMJD2D, and FBXL11, catalyzing the methylations of
H3K4, H3K9, or H3K36 in RASF is higher than that of OASF.
Therefore, the HKM modifying enzyme participates in altering
HKM, leading to the changes in RASF gene expressions, thereby
affecting the processes of RA (34). The JumonjiC histone
demethylase (JMJD3) family is implicated in the regulation of
the FLS proliferation and activation, which is associated with
joint destruction and pathological processes in RA (35). JMJD3
expression is significantly upregulated in RA-FLS; in FLS, these
enhanced levels are induced by the platelet-derived growth factor
(PDGF), as it promotes proliferation and migration of FLS.
Inhibiting the activity of JMJD3 significantly reduces FLS
proliferation and migration. Knockdown of JMJD3 eliminates
PDGF-induced PCNA expression in FLS; additionally, it reduces
the inflammatory responses of SFs treated with IL-1b (36).
Therefore, JMJD3 plays an essential role in the development of
RA. Hence, targeting JMJD3 may serve as a new strategy for the
diagnosis and treatment of RA.
Frontiers in Immunology | www.frontiersin.org 4
Ubiquitination is an essential protein post-translational
modification mechanism whose main role includes protein
degradation and its functional regulation. The expression of
ubiquitin-specific protease 5 (USP5) is significantly
upregulated upon stimulation with IL-1b which increases the
USP5 levels in a time-dependent manner in RA-FLS (37).
Overexpression of USP5 significantly stimulates the production
of pro-inflammatory cytokines and activation of the related
nuclear factor kappa B (NF-kB) signaling pathway. USP5
interacts with the tumor necrosis factor receptor-related factor
6 (TRAF6), an E3 ubiquitin ligase, and a key cytoplasmic
signaling adaptor involved in the regulation of key biological
processes. Thus, USP5 inhibits polyubiquitination and stabilizes
TRAF6. Inhibition of TRAF6 can reduce collagen-induced bone
loss and MMP expression in rats with RA; thus, TRAF6 may be
an alternative treatment target for RA (38). Low levels of
chromatin modifier zeste homolog 2 (EZH2) expression were
detected in PBMCs and CD4+ T-cells from RA patients, which
may be attributed to the partial neutralization of EZH2
expression by anti-IL17 antibodies. The downregulation of the
EZH2 activity suppresses the differentiation of the Tregs and
transcription FOXP3. Moreover, it downregulates the RUNX1,
while upregulating the expression of SMAD7 in CD4+ T cells
(39). In addition, aberrations of EZH2 in CD4+ T-cells may
contribute to the lack of Tregs in RA patients.

Long non-coding RNA maternally expressed gene 3 (MEG3)
is a tumor suppressor that is also imprinted and involved in the
occurrence of several tumors. Li et al. report that MEG3 levels are
down-regulated in synovial tissues and FLS in a complete
Freund ’ s ad juvant (CFA) induced rat RA model .
Overexpression of MEG3 decreased the levels of NLRC5 and
FIGURE 2 | Schematic diagram of histone modifications mediating RA progression. Acetylation (HDAC1, SIRT1), methylation (DOTL1, HKDM, JMJD3), or
ubiquitination (USP5) of RA-related proteins mediates the expression of RA factors (IL-17, IL-6, AMPK, IL-10, IL-1b, NF-kB, TRAF6, EZH2, RUNX1, SMAD7 IL-4,
CCR6, etc.), thereby affecting the proliferation, invasion, and apoptosis of RA-related cells.
March 2022 | Volume 13 | Article 859400
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inflammatory cytokines. The data for methylation-specific PCR
suggest that the MEG3 gene promoter is significantly methylated
in the CFA-induced synovial tissue and FLS. However, DNA
methyltransferase 1 (DNMT1) is reported to be significantly
upregulated in the CFA-induced synovial tissues and cells,
suggesting that methylation inhibitors can attenuate the
hypermethylation of the MEG3 promoter. Therefore, the
imprinted gene MEG3 affects the processes of RA by targeting
NLRC5 in an effect to regulate the levels of methylation (40).

MicroRNA-Mediated Pathogenesis of RA
miRNAs are endogenous non-coding single-stranded small RNAs
of about 22 nucleotides in length. These are widely present in all
organisms. Binding to the 3’-untranslated region of the target
genes, miRNAs act as a post-translational repressor of the gene
leading to its degradation or translational repression. miRNAs are
involved in regulating approximately 30% of all gene expression
and translation patterns crucial for life processes of cellular
proliferation, differentiation, metabolism, inflammation, and
apoptosis. Recent studies show that miRNAs participate in
epigenetic regulation by regulating the levels of DNA
methylation or changing histone modifications, which in turn
affect the onset and progression of RA (Table 1). The miRNA-
targets are repeatable in Grand (https://grand.networkmedicine.
org/). A glossary of genes and form symbols is shown in Table 2.

HDAC1 was reported to be highly expressed in synovial
tissues of CIA, while miR-124 and MARCKS were lowly
expressed. Silencing or inhibiting HDAC1 can increase the
expression of MARCKS and miR-124 by promoting the H3
and H4 acetylation of promoter regions of miR-124 and the
MARCKS. miR-124 reduces the proliferation of synovial cells
and inflammation of the synovium by inhibiting the JAK/STAT
signaling pathway in CIA. Therefore, increasing the expressions
of miR-124 and MARCKS by silencing HDAC1 to reduce
synovial cell proliferation and synovial inflammation in CIA is
Frontiers in Immunology | www.frontiersin.org 5
a promising new strategy for RA treatment as evidenced from the
results in the mouse model (41). In addition, miR-449 exerts a
protective effect against RA by targeting HDAC1 to inhibit the
proliferation of RASFs and induce their apoptosis (54).

The lentivirus, Lv-miR-126, significantly increases miR-126
expression in RASF, and simultaneously, promotes the
proliferation of RASF and inhibits cellular apoptosis. In addition,
decreased levels of PIK3R2 and increased levels of those of PI3K
and p-AKT were detected in RASFs overexpressing miR-126. Co-
transfection of anti-miR-126 and PIK3R2 siRNA constructs
further increased PI3K and p-AKT levels while enhancing RASF
proliferation and reducing apoptosis. The luciferase reporter gene
assays indicate that miR-126 directly interacts with PIK3R2. In
general, overexpression of miR-126 expresses PIK3R2 and
apoptosis and promotes the proliferation of RASF (42). In
another study, inhibition of miR-126 expression was found to
significantly upregulate TNF-a, IFN-g, and IL-23R levels in RA
patients. Correspondingly, the overexpression of miR-126 in FLS
enhanced the levels of IL-23R, TNF-a, and IFN-g, indicating that
miR-126 negatively regulates the expressions of IL-23R, TNF-a,
and IFN-g, thereby affecting the processes of RA (42).

Jiang et al. show that long-chain non-coding RNA growth
arrest-specific transcript 5 (GAS5) can ameliorate RA
progression by inducing apoptosis in RA-FLS. Further
mechanistic examination showed that the overexpression of
miR-128-3p or HDAC4 knockdown attenuated the inhibitory
effects of GAS5 or anti-miR-128-3p on the development of RA.
GAS5, a miR-128-3p sponge, upregulates the expression of
HDAC4. Thus, GAS5 partially regulates HDAC4 through miR-
128-3p to inhibit inflammation in synovial tissues (44). miR-138,
which is highly expressed in the serum and synovial tissues of RA
patients, negatively regulates HDAC4 to mediates the activities
of NF-kB, PGRN, and RA-related inflammatory cytokines in an
acetylation-dependent manner. High expression of miR-138 in
the serum and synovial tissues of RA patients negatively
TABLE 1 | Representative miRNAs associated with RA pathogenesis and progression.

miRNAs Expression Source Type Effect Reference

miR-124 upregulation RA patients synovial tissues Inhibit cell proliferation promote apoptosis (41)
miR-126 upregulation RA patients Serum, synovial tissue and synovial fluid Inhibit apoptosis promote proliferation (42)
miR-128-3p upregulation RA patients PBMC Regulate the activity of inflammatory factors (43)
miR-138 upregulation RA patients synovial tissues Regulate the activity of inflammatory factors (44)
miR-145-5p downregulation RA patients synovial tissues Promote cell proliferation and inflammatory factor expression (45)
miR-155-5p downregulation RA patients plasma up-regulation of pro-inflammatory cytokines (46)
miR-17 downregulation RA patients synovial tissues Anti-inflammatory and anti-erosion (47)
miR-410-3p downregulation RA patients synovial tissues Inhibit cell proliferation promote apoptosis (48)
miR-21 upregulation RA patients synovial tissues Inhibit cell invasion and inflammatory factor expression (49)
miR-221-3p upregulation RA patients PBMC Promote inflammatory factor expression (50)
miR-23b upregulation RA patients fibroblast-like synoviocytes Inhibit inflammatory cytokine expression (51)
miRNA-340-5p downregulation RA patients serums, synovial tissues, FLSs Inhibit cell proliferation promote apoptosis (52)
miR-431-5p downregulation RA patients synovial tissues, FLSs Inhibit cell proliferation promote apoptosis (53)
miR-449 downregulation RA patients synovial tissues Inhibit cell proliferation promote apoptosis (54)
miR-4701-5p downregulation RA patients FLSs Inhibit cell proliferation promote apoptosis (55)
miR-574-5p upregulation RA patients synovial fluid promote bone destruction (56)
miR-590-5p downregulation RA patients synovial tissues, FLSs Inhibit cell proliferation and invasion (57)
miR-6089 downregulation RA patients FLSs, synovial tissues Inhibit cell proliferation induce apoptosis (58)
miR-613 downregulation RA patients Synovial tissues Inhibit cell proliferation and invasion promote apoptosis (59)
miR-650 downregulation RA patients Synovial tissues Inhibit cell proliferation and invasion promote apoptosis (60)
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TABLE 2 | The glossary of all genes and formal symbols is mentioned in this paper.

Genes Formal symbols Definitions

DNMT1 DNMT1 DNA (Cytosine-5-)-Methyltransferase 1
DNMT3a DNMT3A DNA (Cytosine-5-)-Methyltransferase 3 Alpha
DNMT3b DNMT3B DNA (Cytosine-5-)-Methyltransferase 3 Beta
SFRP2 SFRP2 Secreted Frizzled Related Protein 2
TP53 TP53 Tumor Protein P53
RORC RORC RAR Related Orphan Receptor C
HDAC1 HDAC1 Histone Deacetylase 1
IL-6 IL-6 Interleukin 6
IL-17 IL-17 Interleukin 17
CCR6 CCR6 C-C Motif Chemokine Receptor 6
IL-1b IL1B Interleukin 1 Beta
TNF-a TNF Tumor Necrosis Factor
VEGF VEGFA Vascular Endothelial Growth Factor A
EGF EGF Epidermal Growth Factor
JUN C-Jun Jun Proto-Oncogene, AP-1 Transcription Factor Subunit
AGXT AGXT Alanine-Glyoxylate And Serine-Pyruvate Aminotransferase
RLP3 RLP3 Ribosomal Protein L3
AHCY AHCY S-Adenosyl-L-Homocysteine Hydrolase
NFKB1 NFKB1 Nuclear Factor Kappa B Subunit 1
PGE2 PGE2 Prostaglandin E Receptor 2
RANKL TNFSF11 TNF Superfamily Member 11 2
PDK1 PDK1 Pyruvate Dehydrogenase Kinase 1
AKT AKT1 AKT Serine/Threonine Kinase 1
TRAF6 TRAF6 TNF Receptor Associated Factor 6
Ubc13 UBE2N Ubiquitin Conjugating Enzyme E2 N
HDAC6 HDAC6 Histone Deacetylase 6
IL-12 IL-12 Interleukin 12
IL-10 IL-10 Interleukin 10
MMP2 MMP2 Matrix Metallopeptidase 2
MMP9 MMP9 Matrix Metallopeptidase 9
PI3K PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
MMP1 MMP1 Matrix Metallopeptidase 1
MMP3 MMP3 Matrix Metallopeptidase 3
CCL2 CCL2 C-C Motif Chemokine Ligand 2
CXCL8 CXCL8 C-X-C Motif Chemokine Ligand 8
CXCL10 CXCL10 C-X-C Motif Chemokine Ligand 10
NR1D1 NR1D1 Nuclear Receptor Subfamily 1 Group D Member 1
AKT2 AKT2 AKT Serine/Threonine Kinase 2
DKK1 DKK1 Dickkopf WNT Signaling Pathway Inhibitor 1
MAP2K3 MAP2K3 mitogen-activated protein kinase kinase 3
STAT3 STAT3 Signal Transducer And Activator Of Transcription 3
JAK3 JAK3 Janus Kinase 3
CXCL13 CXCL13 C-X-C Motif Chemokine Ligand 13
TLR4 TLR4 Toll Like Receptor 4
FOXP3 FOXP3 Forkhead Box P3
JAK1 JAK1 Janus Kinase 1
IL-23R IL-23R Interleukin 23 Receptor
MARCKS MARCKS Myristoylated Alanine Rich Protein Kinase C Substrate
XIAP XIAP X-Linked Inhibitor Of Apoptosis
Notch Notch1 Notch Receptor 1
NLRC5 NLRC5 NLR Family CARD Domain Containing 5
MEG3 MEG3 Maternally Expressed 3
SMAD7 SMAD7 SMAD Family Member 7
EZH2 EZH2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit
IL-8 IL-8 Interleukin 8
TRAF2 TRAF2 TNF Receptor Associated Factor 2
cIAP2 BIRC3 Cellular Inhibitor Of Apoptosis 2
PGRN GRN Granulin Precursor
HDAC4 HDAC4 Histone Deacetylase 4
GAS5 GAS5 Growth arrest-specific transcript 5
IFN-g IFNG Interferon Gamma
PIK3R2 PIK3R2 Phosphoinositide-3-Kinase Regulatory Subunit 2
JMJD3 KDM6B JmjC Domain-Containing Protein 3

(Continued)
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regulates HDAC4, which in turn regulates NF-kB and PGRN in
an acetylation-dependent manner, thereby affecting the RA-
related inflammatory cells and RA factors (61).

miR-145-5p is the target miRNA of the long non-coding RNA,
PVT1. The expressions of PVT1 and miR-145-5p are negatively
correlated in the synovial tissues of RA patients; thus, the
expression of miR-145-5p was reduced, whereas the expression
of PVT1 increases significantly. In addition, the tumor necrosis
factor-a (TNF-a) stimulates an increase in PVT1 in RA-FLS and
suppresses the level of miR-145-5p. Knockdown of PVT1 inhibits
TNF-a-induced over-proliferation of RA-FLS, suppressed
interleukin (IL)-1b, and IL-6 production, and suppressed NF-kB
activation mediated by miR-145-5p. The above findings show that
PVT1 regulates the apoptotic and inflammatory responses of RA-
FLS by targeting miR-145-5p (45).

Ahmed et al. show that miR-17 negatively regulates TNF-a by
mediating the protein ubiquitination processes in RASF. miR-17
increases the polyubiquitination of K48-linked TRAF2, cIAP1, and
cIAP2 stimulated by TNF-a in RASF. Therefore, the destruction of
TRAF2 by miR-17 reduces the ability of TRAF2 to bind to cIAP2,
thereby reducing TNF-a-induced nuclear translocation of NF-
kBp65, c-Jun, and STAT3, and production of IL-6, IL-8, MMP-1,
and MMP-13 in RASF (62). In addition, miR-17 inhibits the
proteins of the IL-6 family by directly targeting JAK1 and STAT3
signaling cascades, thereby exerting anti-inflammatory and anti-
erosion effects. MicroRNA-17 directly targets the 3’-untranslated
regions of STAT3 and JAK1, resulting in a decrease in the mRNA
and protein expressions of STAT3 and JAK1 (47).

In response to TNF-a stimulation, the expression of long
non-coding RNA NEAT1 is upregulated in the synovial tissues
and RA-FLS. It promotes cell proliferation and inflammatory
cytokines secretion. NEAT1 directly binds and negatively
regulates the miR-410-3p expression (48). Inhibition of miR-
410-3p can partially rescue the inhibitory effects on cell viability
induced by NEAT1 depletion in RA-FLS. Knocking out NEAT1
attenuates the TNF-a-induced proliferation and inflammatory
cytokines production in RA-FLS; simultaneously, it promotes
cellular apoptosis through miR-204-5p (63). These findings
suggest that NEAT1 may serve as a sponge of multiple
miRNAs and is a potential treatment target for RA.
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Treg transcription factor FoxP3 shows high expression in
inactive RA and repression in active RA, while the Th17
transcription factor RORc shows the opposite trend, as shown
in some previous studies (64). The upregulation of miR-21
increases the proportion of Tregs and decreases that of the
Th17 cells, thereby regulating the Treg/Th17 balance and
resulting in favorable progression of RA (65). In addition, high
levels of miR-21 can inhibit the expressions of IL-6 and IL-8 by
suppressing the Wnt signaling pathway, thereby alleviating the
symptoms of RA (66).

Evidence suggests that macrophages with an inflammatory
phenotype (M1) predominate in the synovium of RA relative to
those with the anti-inflammatory phenotype (M2). Regardless of
RA patients or healthy individuals, the expressions of miR-221-
3p and miR-155-5p in M1 are significantly higher relative to the
M2 macrophages. miR-221-3p promotes IL-6 and IL-8 secretion
in M2-macrophages but suppresses those of IL-10, CXCL13,
JAK3, and the activation of pSTAT3. JAK3, a target of miR-221-
3p, is involved in mediating the functions of the inflammatory
M2-macrophages induced by TLR4 (50).

Wang et al. report that plasma levels of miR-23b are
significantly higher in RA patients relative to healthy controls.
Meanwhile, plasma miR-23b expression is significantly related
with levels of hemoglobin (Hb), total bilirubin (TBIL), direct
bilirubin (DBIL), indirect bilirubin (IBIL), total cholesterol (TC),
and low-density lipoprotein cholesterol (LDL-C level is
negatively correlated) (P <0.05). After receiving appropriate
treatments, the plasma miR-23b level decreased in RA patients.
Therefore, circulating miR-23b may be a promising biomarker
for evaluating RA disease activity (51).

The expression of miRNA-340-5p is significantly downregulated
in the serum, synovial tissue, and RA-FLS of patients with RA. The
overexpression significantly inhibited cell proliferation and
inflammatory factor expression in RA-FLS and promotes
apoptosis (52). Similarly, miR-431-5p is down-regulated in the
synovial tissue and FLS of RA patients. Overexpressed miR-431-
5p can inhibit the proliferation of cells and promote cellular
apoptosis, indicating its prospect in the treatment of RA (53).

Long non-coding RNAs play a key role in several autoimmune
diseases, including rheumatoid arthritis (RA). Zheng et al. identified
TABLE 2 | Continued

Genes Formal symbols Definitions

USP5 USP5 Ubiquitin-specific protease 5
RUNX1 RUNX1 RUNX Family Transcription Factor 1
FBXL10 KDM2B F-Box And Leucine-Rich Repeat Protein 10
NO66 RIOX1 Ribosomal Oxygenase 1
JMJD2D KDM4D Jumonji Domain-Containing Protein 2D
FBXL11 KDM2A F-Box And Leucine-Rich Repeat Protein 11
DOT1L DOT1L DOT1 Like Histone Lysine Methyltransferase
SIRT1 SIRT1 Sirtuin 1
iNOS NOS2 Nitric Oxide Synthase 2
CCL2 CCL2 C-C Motif Chemokine Ligand 2
MDC CCL22 C-C Motif Chemokine Ligand 22
FcϵRII FCER2 Fc Epsilon Receptor II
MrC1 MRC1 Mannose Receptor C-Type 1
AMPK a PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1
ACACA ACACA Acetyl-CoA Carboxylase Alpha
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a long intergenic non-protein-coding RNA162 (LINC00162, also
known as lncRNA PICSAR: p38 inhibited cutaneous squamous cell
carcinoma associated lincRNA), which is highly expressed in RA-
FLS and RA synovial fluid (55). Inhibition of LINC00162
significantly alters the proliferation, migration, invasion, and
production of pro-inflammatory cytokines from RA-FLS cells.
Further studies show that miR-4701-5p acts as a sponge of
LINC00162 and regulates its function. Therefore, miR-4701-5p
may be a potential treatment target for RA.

Characterized by synovial inflammation and joint
destruction, RA is a chronic autoimmune disease. Intercellular
communication in the synovial microenvironment is mediated
by small cell-derived extracellular vesicles (sEVs) as they carry
microRNAs. Saul et al. show that sEVs in the synovial fluid of RA
patients significantly promote osteoclast differentiation through
miR-574-5p-mediated activation of TLR7/8. miR-574-5p is a key
mediator in RA pathogenesis and may be a potential target in the
fight against bone destruction (56).

Zhao et al. report that miR-590-5p alleviates RA by inhibiting
the MAPK signaling pathway. miR-590-5p inhibits the expression
of mitogen-activated protein kinase kinase 3 (MAP2K3) in RA-FLS
post-transcriptionally, thereby inhibiting FLSs proliferation and
invasion. Inhibitors of miR-590-5p or its sponge linc02381
enhance the MAP2K3 expression and activation of p38 and AP-1
in the MAPK signaling pathway, thereby aggravating the
pathogenesis of RA. Therefore, upregulation or overexpression of
miR-590-5p can alleviate the pathogenesis of RA (57).

Compared to the healthy controls, the expression of miR-
6089 was significantly lower in the synovial tissue and FLS of RA
patients. Upregulation or overexpression of miR-6089 in RA-FLS
inhibits cell proliferation and induces apoptosis along with the
expressions of cleaved-caspase-3, -8, and -9 proteins. In addition,
AKT1 serves as a direct target of miR-6089. miR-6089 regulates
inflammation through the AKT1/NF-kB signaling pathway (67).
As a result, miR-6089 may be a promising target for the
prevention and treatment of RA.

The Dickkopf Wnt Signaling Pathway Inhibitor 1 (DKK1) is
the main regulator of joint remodeling. DKK1 is upregulated in
RA tissues and RASF, thereby aggravating joint destruction. The
significantly downregulated miR-613 in RA tissues and RASF
can bind to and suppress the DKK1 expression. miR-613 or
DKK1 knockdown inhibits the proliferation and invasion of
RASF and induces its apoptosis. Hence, one of the
mechanisms for alleviating or treating RA is to inhibit the
proliferation and invasion of RASFs and induce apoptosis by
regulating DKK1 expression (59).

In RASFs from 16 patients with rheumatoid arthritis (RA)
and 13 patients with joint trauma who underwent joint
replacement surgery, miR-650 was down-regulated, whereas
AKT2 was up-regulated (60). Detection of the dual-luciferase
reporter genes revealed that miR-650 is specifically bound to the
3’-untranslated region of AKT2, thereby downregulating AKT2
expression. Further downregulation of miR-650 or upregulation
of AKT2 in RASF increases cell proliferation, migration, and
invasion while decreasing the occurrence of apoptosis. Therefore,
suppressing the expression of AKT2 in RASF may be the
Frontiers in Immunology | www.frontiersin.org 8
mechanism by which miR-650 may function as a potential
therapeutic target for RA.
THE EFFECTS OF COMPOUNDS ON
EPIGENETIC REGULATION OF RA

The Effect of Epigenetic Inhibitors on RA
Cho et al. show that the histone deacetylase (HDAC) inhibitor,
suberoylanilide hydroxamic acid (SAHA), reduces the clinical score
and the incidence in mice with collagen-induced arthritis (CIA).
SAHA relieves CIA by specifically inhibiting Th17 cell
differentiation and Th17 cell-related transcription factors
expression through NR1D1. Therefore, the histone deacetylase
(HDAC) inhibitor, SAHA, may be a potential therapeutic agent
for RA (68). Similarly, Song et al. report that the overexpression of
HDAC6 in macrophages results in the enhanced expressions of
TNF-a and IL-6. Downregulation or the treatment with HDAC6
inhibitor, CKD-506, significantly reduces the TNF-a and IL-6
production from the PBMCs of activated RA patients. CKD-506
directly or indirectly inhibits the proliferation of Teffs by regulating
the functions of iTregs. In addition, CKD-506 improves the clinical
arthritis score of AIA rats in a dose-dependent fashion. Moreover,
the combination of CKD-506 and methotrexate also produce a
synergistic effect on RA (69). Recently, the anti-RA activity ofM808,
a selective inhibitor of HDAC6, has been evaluated. M808 down-
regulates the production of IL-1b-related RA factors, including
MMP-1, MMP-3, IL-6, CCL2, CXCL8, and CXCL10. M808
increases the clinical arthritis score of AIA mice in a dose-
dependent style. Besides, M808-induced HDAC6 inhibition is
implicated in milder synovial inflammation and joint destruction.
Therefore, HDAC6 inhibitors may be used as potential therapeutic
drugs for RA (70).

Choudhary et al. report that the HDAC1 inhibitor, phenethyl
isothiocyanate (PEITC), possesses potential anti-RA activity. The
preventive treatment using PEITC reduces paw edema, total
arthritis index, mobility score, stair climbing ability, behavioral
parameters, and bone erosion in rats with CFA-induced arthritis
in a dose-dependent manner. In addition, PEITC expressively
downregulates the level of TNF-a in the synovial tissues of the
CFA rats (71).

Trichostatin A (TSA), an inhibitor of HDACs, also exhibits
potential anti-RA activity. TSA significantly inhibits the
proliferation, invasion, and apoptosis of RA-FLS under
hypoxic conditions. Further mechanistic verification shows
that the anti-RA activity of TSA is related to the inactivation
of PI3K/Akt signaling evidenced by the suppression of the matrix
metalloproteinases (MMP-2 and MMP-9) and PI3K expression,
as well as the phosphorylation of Akt (72).

Since pan-HDACi inhibits all of the 11 Zn2+-dependent
HDACs and causes a wide range of side effects, it was
hypothesized that specific inhibitors of histone deacetylase 6
(HDAC6i) are would have fewer side effects. Therefore,
Mahboobi et al. developed a new selective drug, Marbostat-100,
that targets HDAC6.Marbostat-100 can effectively improve arthritis
induced by type II collagen and shows good drug resistance (73).
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The E3 ligase, TNF receptor-related factor 6 (TRAF6), is
involved in chronic immune stimulation in several diseases,
including autoimmune disorders, inflammation, and cancer.
TRAF6 is highly expressed in patients with RA and SLE, and it
interacts with Ubc13 to activate the NF-kB signaling pathway,
thereby promoting the processes of RA. Brenke et al. developed
the first inhibitor of TRAF6-Ubc13 protein-protein interaction,
C25-140. C25-140 strongly inhibits the activation of NF-kB
signaling in a variety of immune and inflammatory signaling
pathways in both human and mouse primary cells. Notably, C25-
140 has been shown to reduce inflammation in preclinical mouse
models and improve the autoimmune RA status (74).

As mentioned above, GSK-J4, as an inhibitor of JMJD3,
suppresses inflammatory responses by suppressing IL-1b-induced
upregulation of TLR2 and COX-2 (36). Furthermore, GSK-J4
regulates osteoclastogenesis and differentiation. The number of
TRAP+ multinucleated cells was significantly reduced in the
presence of lower concentrations of GSK-J4, with little effect on
cell viability. After continuous daily intraperitoneal injection of
GSK-J4 (20 mg/kg body weight, n = 8) for 40 days, the severity of
arthritis in CIA mice was significantly reduced.

The Effects of Traditional Chinese
Medicine-Mediated Epigenetic
Regulation on RA
The classic traditional Chinese medicine (TCM), Wutou
Decoction (WTD), has been clinically used for thousands of
years and has proven to be reliably efficient and safe in the
treatment of RA. WTD exerts anti-inflammatory effects by
regulating DNA methylation and histone modification. The
mRNA level expressions of DNMT1 and DNA methylation in
CIA rats treated by WTD gavaging were found to be significantly
downregulated. In addition, WDT increases the level of H3
acetylation in PBMCs (75). In-depth mechanistic studies show
that the five herbs in WTD exert synergistic anti-arthritis effects
in RA. Among them, aconite (AC) is the main anti-inflammatory
active substance; the auxiliary component, ephedra (EP), can
significantly inhibit the NF-kB-mediated inflammatory
responses. Another auxiliary ingredient, astragalus (AS),
whether used alone or in combination with AC, significantly
upregulates the expression of Nrf2. Nevertheless, WTD is better
than any combination of ingredients in the treatment of RA (76).

Tripterygium wilfordii is extensively used in TCM for the
treatment of autoimmune diseases, such as RA and systemic
lupus erythematosus. The structure-optimized analog of its
extract, (5R)-5-hydroxy triptolide (LLDT-8), has high
immunosuppressive and low toxicity capacities. Notably,
LLDT-8 also inhibits the differentiation of Th1 and Th17 cells,
thereby impacting the immune responses in RA patients. He
et al. showed that significant differential expression of 394 genes
(281 downregulated and 113 upregulated) was found in FLS
under LLDT-8 treatment. KEGG enrichment analysis indicated that
20 pathways associated with immune response were significantly
enriched, including cytokine-cytokine receptor interaction
(P=4.61×10-13), chemokine signaling pathway (P=1.01×10-5), and
the TNF signaling pathway (P = 2.79 × 10-4) (77).
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The main active substance isolated from the oldest and most
commonly used Chinese medicine, astragalus, is astragalus total
flavonoids (TFA), which increases FCA-induced weight in rats,
reduces primary foot swelling, and arthritis index, as well as the
thymus and spleen indexes. Mechanistic studies show that TFA
inhibits the production of TNF-a, IL-1b, PGE2, and RANKL,
and promotes that of OPG in rat serum induced by FCA. These
results show that the OPG/NF-kB pathway is one of the main
mechanisms underlying the effects of astragalus against FCA-
induced RA (78). In addition, previous studies report that
astragaloside IV (AST) increases miR-17-5p expression in FLS,
and downregulates those of lncRNA LOC100912373, PDK1, and
p-AKT in an effect to inhibit cell proliferation (79).

Xu et al. explored the mechanism of action of the Baihu
Guizhi Decoction in a model of histopathological heat joint pain
(PA). The Baihu Guizhi Decoction improves foot swelling and
pathological damage and significantly inhibits the expressions of
IL-1b, TNF-a, EGF, VEGF, IL-17, and IL-12p70 in the PA
model. In addition, the mRNA levels of methylated genes
AHCY, RPL3 were down-regulated, while the mRNA levels of
Agxt were up-regulated. Therefore, Baihu Guizhi Decoction can
alleviate RA by regulating the unique synovial gene methylation
pattern in the PA model (80).
CONCLUSION AND OUTLOOK

From the foregoing discussion, it is clear that epigenetics plays a
significant regulatory role in the processes of gene transcription and
is participate of the onset and progression of several diseases.
Epigenetics is closely related to the pathological mechanism
underlying RA, and we summarized the representative DNA
methylation, histone modification patterns, and miRNAs in RASF
over the past 5 years (Figure 3). However, the study of epigenetics in
the pathogenesis of RA is still in its infancy, and more research is
needed to further analyze its roles underlying the progression of RA.
Although pan-hypomethylation in RA has been demonstrated, key
pathogenic and therapeutic proteins, as well as genes, need to be
identified. Histone acetylation inhibitors, in particular the HDAC1
antagonists, show good anti-inflammatory effects in the laboratory,
and more experiments are still needed to verify their therapeutic
effects in clinical settings. In addition, investigations to verify the
role of other modifications of histones, such as ubiquitination and
phosphorylation, in RA, are potential research directions. On the
other hand, the toxicity/side effects of rheumatoid arthritis drugs
due to the induction of epigenetics should be concerned. For
example, the neurotoxicity of methotrexate is caused by changes
in epigenetic modifications that it induces during myelination (81).
Epigenetic changes that miRNA-mediated is directly implicated in
the aberrant expression of RA-related genes and ultimately
determine the reversibility of cellular functions and
pharmacology. TCM plays a vital role in the health of the
Chinese people and even human beings, especially in the global
fight against COVID-19 (82–85). However, due to the complex
components of TCM, the epigenetic modification of RA caused by
TCM is a comprehensive effect of multiple pathways, multiple
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targets, and multiple mechanisms. Therefore, it is necessary to
create more effective research methods to clarify the mechanism
of action of TCM in the treatment of RA, and to provide theoretical
and data references for the modernization of TCM. An in-depth
understanding of the epigenetic regulatory mechanisms of RA will
help identify new markers, signaling pathways, and target drugs/
TCM, leading to new strategies for the diagnosis and treatment
of RA.
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