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Abstract
Rac-GTPases and their Rac-GEF activators play important roles in the recruitment

and host defence functions of neutrophils. These proteins control the activation of

adhesion molecules and the cytoskeletal dynamics that enable the adhesion, migra-

tion and tissue recruitment of neutrophils. They also regulate the effector functions

that allow neutrophils to kill bacterial and fungal pathogens, and to clear debris.

This review focuses on the roles of Rac-GTPases and Rac-GEFs in neutrophil

adhesion, migration and recruitment.
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1 | NEUTROPHIL FUNCTIONS

During inflammation, neutrophils are rapidly recruited from
the blood stream into inflamed and infected tissues. There
they release proinflammatory mediators to attract other
inflammatory cells and mount effector functions to kill
pathogens.1,2 For recruitment, neutrophils adhere to the
inflamed blood vessel wall and migrate through it into
inflamed tissues.1 As the fastest migrating vertebrate cell
type,3 they are the rapid-response unit of the immune sys-
tem. Once arrived at the source of inflammation, they
mount pathogen- and debris-clearing effector functions,
including degranulation, phagocytosis and the production
of both reactive oxygen species (ROS) and neutrophil
extracellular traps (NETs).2 Human leucocyte adhesion
deficiency and neutrophil immunodeficiency syndrome,
conditions characterized by severe recurrent infections and
poor wound healing, are evidence for the importance of
neutrophil recruitment and effector responses in host

defence.4-6 Yet neutrophils must be tightly regulated;
excessive recruitment and activity exacerbate inflammation
and cause tissue injury (references [1], [2], [7]; see also the
article by Gomez et al in this issue).

2 | NEUTROPHIL RECRUITMENT

Neutrophil recruitment into inflamed and infected tissues
proceeds in well-defined steps1 (Figure 1). First, the
upregulation of adhesion molecules on the surface of vas-
cular endothelial cells and circulating platelets renders
these cells sticky.1,8 Selectins enable the loose tethering
and rolling of neutrophils on the vascular endothelium, in
effect snatching the neutrophils from the fast-flowing cir-
culation. Neutrophil G-protein-coupled receptors (GPCRs)
are activated by inflammatory chemokines trapped on the
vascular surface.9 This activation induces the upregulation
and opening of integrins, which confer neutrophil arrest,
firm adhesion and intravascular crawling on the vascular
endothelium. Neutrophils then traverse the endothelial cell
layer (via para- or transcellular routes), the basal lamina
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and the abluminal pericyte layer by integrin-dependent
migration. Depending on the tissue, they follow chemo-
kine gradients, using either amoeboid (integrin-indepen-
dent) or integrin-dependent chemotaxis to migrate through
the interstitium.10 Finally, they reach the source of inflam-
mation or infection.

3 | RAC-GTPASES AND THEIR GEFS
IN NEUTROPHILS

Rac proteins are small guanine-nucleotide binding proteins
(G proteins, GTPases) of the Rho family.11,12 Neutrophils
express the ubiquitous isoform Rac1, hematopoietic Rac2
and widely expressed RhoG, but not the neuronal isoform
Rac3.13 These GTPases control the structure of the acto-
myosin cytoskeleton by signalling through several pathways,
mainly through IRSp53, WAVE and Arp2/3, thus enabling
the polymerization of branched actin filaments at the cell
periphery. This and other Rac signalling pathways that con-
trol actomyosin cytoskeletal dynamics are central for neu-
trophil adhesion, spreading and the formation of a leading
edge that confers cell polarization and migration14,15 (Fig-
ure 2). Indeed, the use of photoactivatable Rac has shown
that localized activation of Rac at the leading edge is suffi-
cient for directional neutrophil migration in zebrafish.16 In
addition, Rac-GTPases control other responses that require
cytoskeletal dynamics, such as integrin-dependent phagocy-
tosis and the degranulation of azurophil granules. Further-
more, active Rac2 is an integral part of the NADPH oxidase
(NOX2) enzyme complex and is thus directly involved in
ROS production. In turn, ROS is required to make NETs,
and both are crucial responses for killing pathogens [Van
Avondt & Hartl, this issue]. Finally, Rac also regulates gene
expression through kinases such as Pak and Jnk, which sig-
nal to a range of downstream effectors, including

transcription factors.13 The signalling pathways and func-
tions of Rac-GTPases in neutrophils are broadly recapitu-
lated in neutrophil-like cell lines (such as HL60 and NB4),
but there are significant differences, such as in migratory
behaviour. Hence, we focus here on primary neutrophils.

Like most small GTPases, Rac proteins are molecular
switches, active when GTP-bound and inactive when GDP-
bound11 (Figure 3). They are activated when guanine-
nucleotide exchange factors (GEFs) remove GDP, thus
allowing excess free cellular GTP to bind to Rac.17,18 In their
active GTP-bound conformation, Rac-GTPases engage target
proteins that transmit signals downstream. Deactivation of
Rac occurs by GTP hydrolysis through its GTPase activity,
which is enhanced by GTPase-activating proteins (GAPs).17

Additional regulation comes from guanine-nucleotide disso-
ciation inhibitors (GDIs), which bind C-terminal prenylated
residues of Rac, thus sequestering the inactive GTPase in the
cytosol. Our review describes the roles of Rac-GTPases and
their GEF activators in neutrophils. For related reviews that
discuss neutrophil GAPs, the proteins that switch off GTPase
signalling (please see references [13], [19]; and Cs�ep�anyi-
K€omi et al in this issue).

Multiple types of Rac-GEFs are usually expressed
within each cell type. Neutrophil Rac-GEFs include pro-
teins from the Dbl-type P-Rex, Vav and Tiam families,
and from the structurally unrelated DOCK family (Fig-
ure 4). These GEFs show substrate preferences for differ-
ent Rac isoforms, determined by the precise structure of
their catalytic DH or DHR2 domains (for Dbl and
DOCK-type Rac-GEFs, respectively). Some Rac-GEFs can
also activate other Rho-GTPases, for example Vav, which
can activate RhoA as well as Rac. In addition to their cat-
alytic domains, Rac-GEFs have varied multidomain struc-
tures that couple each GEF to specific upstream and
effector proteins. Together, these mechanisms determine
which Rac-dependent cell responses ensue.13,20 Therefore,
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FIGURE 1 Neutrophil recruitment. Neutrophil recruitment from the blood stream into inflamed and infected tissues begins with the
upregulation of selectins on the surface of vascular endothelial cells and circulating platelets. Selectin-dependent interactions of neutrophils with
platelets and vascular endothelial cells enable the tethering and rolling of neutrophils along the vascular endothelium. GPCR signalling activates
integrins, which bring about neutrophil arrest on the vascular wall, followed by firm adhesion, spreading and polarization, intravascular crawling
and transendothelial migration. Neutrophils use amoeboid chemotaxis to follow chemokine gradients within the interstitium towards the source of
the inflammation
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the activity of Rac-GEFs must be acutely and tightly reg-
ulated, through a combination of mechanisms, including
phosphorylation, protein and lipid binding, unique to each
type of GEF.18,20

A central mechanism of regulation is the lipid second
messenger phosphatidylinositol-(3,4,5)-trisphosphate (PIP3),
produced by phosphoinositide 3-kinase (PI3K) within the
cell membrane.19,20 Without PIP3, neutrophils cannot

generate stable polarity and migration.21,22 PIP3 localizes
several Rac-GEFs and other signalling proteins to the plasma
membrane and activates some directly, by binding to their
PH domain. This enables activation of Rac at the cell periph-
ery to confer firm adhesion and spreading. Polarized produc-
tion of PIP3 and activation of Rac induce the formation of a
leading edge, cell polarization and migration.15 Importantly,
PIP3-dependent regulation of neutrophil Rac-GEFs always
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FIGURE 2 Rac in neutrophil adhesion and migration. Rac-GTPases control actomyosin cytoskeletal dynamics in several ways, including the
IRSp53, WAVE, Arp2/3 pathway, which induces the polymerization of branched actin filaments at the cell periphery to enable firm adhesion and
spreading. Localized Rac activity induces leading edge formation and polarization. In addition, Rac blocks actin depolymerization through the
Limk pathway and stimulates myosin contractility at the uropod through MLCK. Combined, these pathways stabilize polarity and enable
migration, as well as other processes such as degranulation and phagocytosis. In addition, active Rac is an integral subunit of the NADPH
oxidate complex, which produces ROS and thus controls the ROS-dependent production of NETs. Finally, Rac also controls gene expression
through Jnk
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FIGURE 3 Regulation of Rac activity. Rac-GTPases cycle between their GTP-bound active and GDP-bound inactive form. They are
activated by guanine-nucleotide exchange factors (GEFs), which remove GDP, thus enabling excess cellular GTP to bind. The binding of active
Rac to downstream effector proteins elicits cell responses. GTPase-activating proteins (GAPs), which increase the GTPase activity of Rac, are the
off-switch. Inactive Rac is sequestered in the cytosol by guanine-nucleotide dissociation inhibitors (GDIs)
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occurs in conjunction with other signalling mediators unique
to each GEF.

The Rac-GEF P-Rex1 is known to signal downstream of
GPCRs, E-selectin and toll-like receptor 4 (TLR4) in mouse
neutrophils.23 It is directly activated by PIP3 and also by the
Gbc subunits of heterotrimeric G proteins, which are
released upon activation of GPCRs. In addition, various
phosphorylation events modulate its activity23-25 (Figure 5).
PIP3 and Gbc subunits also recruit this GEF to the plasma
membrane,25-27 possibly in conjunction with the GPCR-
adaptor protein Norbin, although this remains to be tested in
neutrophils.28 Like P-Rex1, the Rac-GEF DOCK2 signals in
response to GPCR stimulation. However, in contrast to
P-Rex1, DOCK2 is activated by the binding of active RhoG
to its adaptor protein ELMO, and it is recruited to the
plasma membrane by PIP3 and phosphatidic acid, a product
of phospholipase D or diacyl-glycerol kinase activity.29,30

Differently again, Vav family Rac-GEFs (of which Vav1
and Vav3 are most prominently expressed in neutrophils)
are activated by protein tyrosine kinases downstream of var-
ious types of receptors, including integrins, Fc receptors
(FcR), GPCRs and TLR4.31 Least is currently known about
the Rac-GEF Tiam2, which was described fairly recently in
neutrophils.32 Tiam-family Rac-GEFs are generally directly
activated by Ras and modulated by a variety of mechanisms,
including phosphorylation, and they translocate to the
plasma membrane upon binding PIP3.

33 In neutrophils,
Tiam2 was shown to regulate chemoattratant-stimulated
responses.32 However, the mechanisms of Tiam2 regulation
in these cells remain to be elucidated.

4 | RAC-GTPASES IN NEUTROPHIL
ADHESION, MIGRATION AND
RECRUITMENT

Human neutrophil immunodeficiency syndrome is caused
by a dominant-negative Rac2 mutation (D57N). This muta-
tion renders Rac2 unable to bind GTP but still able to bind
Rac-GEFs, thus forming an unproductive complex that can-
not exchange GDP for GTP, and thereby sequestering
upstream signals without transducing them further.5 This
Rac2 mutation impairs the L-selectin-dependent rolling,
integrin-dependent adhesion and chemotaxis of neu-
trophils.5,6,34,35 In zebrafish neutrophils, introduction of this
Rac2 mutation as a transgene largely recapitulates the
human disease; neutrophil motility and tissue recruitment
are impaired, and fish larvae are less likely to survive
infection with P. aeruginosa.36 In addition to this domi-
nant-negative mutation, a loss-of-function mutation of Rac2
(W56X) was recently identified in patients with a form of
common variable immunodeficiency. Neutrophils from
these patients show reduced chemotaxis and abnormalities
in their secretory granules,37 but further in-depth analysis
remains to be performed. Rac2�/� mouse neutrophils show
reduced actin polymerization, L-selectin-dependent rolling
and integrin-dependent spreading and are unable to form
stable leading edges and thus cannot migrate.5,38,39 Conse-
quently, neutrophil recruitment is reduced in Rac2�/� mice
during sterile peritonitis5,38 and during immune-complex
induced acute lung injury.40 Rac2�/� zebrafish larvae also
show reduced neutrophil recruitment to cut wounds and
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FIGURE 4 Neutrophil Rac-GEFs. Neutrophils express several types of Dbl-type and DOCK-type Rac-GEFs. The Dbl-type Rac-GEFs,
which all feature the typical catalytic DH domain and tandem PH domain, include P-Rex1, the 3 Vav family Rac-GEFs (Vav1, Vav2, Vav3) and
Tiam2. The Rac- and Cdc42-GEF PIXa is also expressed, but to date, only its Cdc42-GEF activity has been observed directly. The DOCK-type
Rac-GEFs, which signal through a DHR2 catalytic domain, include DOCK2 and DOCK5. The precise structure of their catalytic domain
determines which Rac isoform the GEFs can activate. The multidomain structure unique to each type of Rac-GEF couples these proteins to
distinct sets of regulators and effectors, ensuring the activation of GEFs within specific signalling networks and thus enabling the activation of
selected subsets of Rac responses. The GEF domains that confer this specificity include protein-binding domains, such as SH3 and PDZ, and
lipid-binding domains such as extra PH domains outside of the catalytic DH/PH tandem
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poor immunity against P. aeruginosa infections.41 Further-
more, there is a clear gene-dosage effect of Rac2 expres-
sion in neutrophils; heterozygous Rac2+/� mouse
neutrophils chemotax less well than wild-type but better
than Rac2�/� cells.42 Similarly, partial suppression of Rac2
levels by overexpression of microRNA-722 in zebrafish
larvae reduces neutrophil recruitment to sites of tissue
injury. Unexpectedly, this also increases larval survival
upon endotoxin challenge or P. aeruginosa infection,
whereas knockout studies would have predicted worse out-
comes. The authors argue that such partial suppression of
Rac2 may retain immune functions while preventing exces-
sive inflammation.43 Further corroboration of this hypothe-
sis would be useful. In principle, it is imaginable that a
drug could be developed which fine-tunes Rac2 to levels
that preserve immunity but reduce neutrophil-dependent
inflammatory conditions.

In contrast to Rac2, no Rac1 mutation is known to
cause human immunodeficiency. Interestingly, reduced
levels of Rac1 (and other Rho-GTPases and their regula-
tors) were recently linked to the upregulation of micro-
RNAs in human myelodysplastic syndrome, a condition
characterized by a range of functional neutrophil defects.44

However, more study is required to establish causal

relationships and specificity. Deleting Rac1 in the mouse is
embryonic lethal, but drug-inducible conditional Rac1-defi-
ciency is known to increase the integrin-mediated spreading
of neutrophils derived from hematopoietic stem cells.39

Myeloid-lineage specific Rac1 deletion reduces actin poly-
merization and the efficiency of chemotaxis,45 the latter by
affecting directionality46 and uropod retraction.47 In vivo,
conditional Rac1-deficiency impairs neutrophil recruitment
during sterile peritonitis45 and acute fMLP-induced lung
inflammation.48 Combined deficiency of Rac1 and Rac2
has more severe effects. It abolishes neutrophil recruitment
to lungs infected with E. coli.49 It also delays recruitment
into the synovial fluid of inflamed joints in an arthritis
model triggered by C. trachomatis infection. This amelio-
rates the acute phase but causes more severe disease during
the chronic phase.50

The Rac-GTPase RhoG can signal upstream of Rac1 and
Rac2, at least in some pathways (see below), and might
therefore be expected to have similar importance for neu-
trophil adhesion and migration. Indeed, RhoG does con-
tribute to full polarization of actin filaments at the leading
edge of chemoattractant-stimulated neutrophils.30 However,
unlike Rac1 and Rac2, RhoG is dispensible for the chemoat-
tractant-stimulated actin polymerization and migration of
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FIGURE 5 Signalling pathways of neutrophil Rac-GEFs. The Rac-GEF P-Rex1, which mediates signalling through GPCRs, E-selectin and
TLR4 (not all shown here for simplicity), is activated by the lipid second messenger PIP3 and by the Gbc subunits of heterotrimeric G proteins.
The Vav family Rac-GEFs, which are activated by tyrosine phosphorylation, are important in integrin and FcR signalling, but they also couple to
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mouse neutrophils,30,51 as well as for neutrophil recruitment
during sterile peritonitis.51

5 | RAC-GEFS IN NEUTROPHIL
ADHESION, MIGRATION AND
RECRUITMENT

As neutrophil Rac-GEFs couple Rac-GTPases to different
signalling pathways, it is no surprise that they also control
different aspects of neutrophil adhesion, migration and tis-
sue recruitment (Figures 5 and 6). We should note that we
focus here on neutrophil-intrinsic roles of Rac-GEFs. Neu-
trophil-extrinsic roles in recruitment, for example through
effects on vascular endothelial cells or platelets, are
reviewed in more detail elsewhere.8,13

5.1 | P-Rex

Isolated Prex1�/� mouse neutrophils show reduced actin
polymerization, adhesion and speed of migration upon
stimulation of GPCRs, although their directional sensing is
preserved.52-54 Under flow conditions (employed to mimic
the shear-stress encountered by neutrophils within the vas-
culature), Prex1�/� neutrophils show impaired slow rolling,
due to effects on E-selectin-mediated activation of the b2-
integrin LFA-1, as well as reduced Mac-1 integrin-
dependent crawling on endothelial cells.55 In vivo,
Prex1�/� mice show similar defects in the E-selectin and
LFA-1-dependent slow rolling and Mac-1-dependent crawl-
ing of neutrophils in the inflamed cremaster vasculature55

(Figure 6). Moreover, their neutrophil recruitment is also
impaired in sterile peritonitis and during ischaemia reperfu-
sion of the kidney.52,53,55

5.2 | Vav

Vav1�/� mouse neutrophils show impaired fMLP-stimu-
lated actin polymerization and chemotaxis.56 They also
show reduced Mac-1-dependent crawling under flow condi-
tions, both in vitro and in MIP-2 inflamed cremaster mus-
cle venules.57 Neutrophils from Vav1�/�Vav3�/� mice can
adhere and chemotax towards fMLP, but show defects in
either FcR- or integrin-dependent adhesion and spreading.
This is not seen in cells lacking either Vav isoform
alone.58,59 Furthermore, the firm adhesion of neutrophils to
fMLP-inflamed cremaster muscle venules is reduced in
Vav1�/�Vav3�/� mice.59 Vav1�/�Vav2�/� Vav3�/� (Vav-
null) neutrophils show a substantial spreading defect.54 Yet
surprisingly, neutrophil recruitment is largely normal during
sterile peritonitis in Vav1�/� and Vav1�/� Vav3�/�

mice,56,57,59 upon immune-complex deposition in the skin
or lung in Vav1�/�Vav3�/� mice,60 and during S. aureus
infection of the lung in Vav-null mice.61 Despite this rela-
tively normal neutrophil recruitment, the ability of Vav-null
mice to clear pulmonary infections of P. aeruginosa or
S. aureus is strongly impaired.61 In addition, these mice
show impaired interstitial neutrophil migration during
L. monocytogenes infection in the footpad, which suggests
a prominent role of the Vav family in integrin-independent
amoeboid neutrophil migration.62

5.3 | P-Rex/Vav cooperation

Although Vav GEFs alone are largely dispensable for neu-
trophil recruitment, they do cooperate with P-Rex1 to regu-
late neutrophil adhesion, migration and tissue
recruitment.13,54,63 Prex1�/� Vav1�/� neutrophils show
reduced cell surface levels of LFA-1 and Mac-1 and have
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more profound defects in fMLP-stimulated Rac1 and Rac2
activity, adhesion and migration than neutrophils which lack
either the P-Rex or Vav families.54,63 Similarly, neutrophil
recruitment during sterile peritonitis is more severely
impaired in Prex1�/�Vav1�/� or Prex1�/�Vav3�/�mice
than in strains that lack either GEF family.63 During LPS-
induced pulmonary inflammation, neutrophil transmigration
and airway infiltration are impaired in Prex1�/�Vav1�/�

and Prex1�/�Vav3�/� mice, as a result of reduced L- and
E-selectin-mediated adhesion to airway postcapillary
venules and ICAM-1-dependent slow rolling.63 Importantly,
however, these in vivo defects are caused largely by neu-
trophil-extrinsic roles of the GEFs in platelets which confer
platelet-dependent neutrophil adhesion to the vasculature.63

5.4 | Tiam

The Tiam-family Rac-GEF Tiam2 was identified in neu-
trophils as a target of the transcription factor ATF3. Len-
tiviral knockdown of Tiam2 in primary mouse neutrophils
inhibits chemotaxis, but it increases fMLP-stimulated actin
polymerization and integrin clustering, which suggests that
expression of this GEF may limit adhesion rather than pro-
mote it as other neutrophils Rac-GEFs do.32 However, the
consequences of Tiam2 expression on other neutrophil
responses and on recruitment in vivo remain to be investi-
gated. Furthermore, the Tiam2 homologue Tiam1, which is
widely expressed, including some types of leucocytes, also
remains to be researched in neutrophils.

5.5 | Pix

One further Dbl-type GEF is expressed in neutrophils,
PIXa, which is known to activate both Rac and the related
GTPase Cdc42 in other cell types. During neutrophil che-
motaxis, PIXa regulates directional sensing. However, this
GEF was shown to activate Cdc42 rather than Rac during
chemoattractant signalling.64 Interestingly, another study
suggested that a complex containing PIXa, the kinase Pak1
and the Arf-GAP Git2 can regulate the membrane localiza-
tion and activity of Rac1 under similar conditions.65 In
general, the substrate specificity of PIXa (Rac vs Cdc42)
depends on its dimerization state, with the binding of Gbc
subunits turning the GEF monomeric and Cdc42-specific.66

This considered, it seems likely that PIXa might activate
Rac within Gbc-independent neutrophil signalling path-
ways, but this remains to be seen.

5.6 | DOCK

Murine deficiency in the DOCK-type Rac-GEF DOCK2
causes profound defects in neutrophil chemoattractant sig-
nalling, thus impairing actin polarization, leading edge

formation and migration speed, although these cells retain
b2-integrin-mediated adhesion and directional sensing.29,67

Although deficiency in the DOCK2-homologue DOCK5 has
little effect on its own, combined deficiency exacerbates the
migration defect caused by the absence of DOCK2.68 The
importance of these DOCK GEFs for neutrophil recruitment
in vivo remains to be tested. Interestingly, treatment of iso-
lated neutrophils with the small-molecule DOCK inhibitor
CPYPP has similar effects on migration as the mouse
knockout.68 The efficacy of this inhibitor is currently rather
limited (a general problem with Rac-GEF inhibitors), but it
certainly merits further development.

5.7 | P-Rex and DOCK in sequence

Finally, there is a possibility that some neutrophil Rac-
GEFs may signal in sequence. Upon GPCR stimulation, P-
Rex1 can activate RhoG as well as Rac1 and Rac2. As
active RhoG is an upstream regulator of DOCK2 (through
Elmo), P-Rex1 might signal through RhoG to activate
DOCK2.30 However, as described above, the actin poly-
merization and migration defects of Prex1�/� and Dock2�/

�neutrophils are more varied and severe than those of
RhoG�/� neutrophils, which implies that these GEFs signal
largely independently of RhoG and each other to generate
neutrophil responses.

6 | CONCLUDING REMARKS

The complexity of Rac-dependent responses necessitates
the tight control mechanisms described here to ensure that
neutrophils provide robust antibacterial and antifungal
immunity without causing inflammatory disease. Rac-GEFs
are key elements of these tight control mechanisms, each
regulating specific aspects of neutrophil adhesion, migra-
tion and tissue recruitment. One avenue of research that we
expect to be developed over the coming years is the use of
live imaging to define how different neutrophil Rac-GEFs
bring about specific subsets of Rac-dependent cell
responses. One intriguing possibility is that different types
of GEF activate spatiotemporally distinct subcellular pools
of Rac. A valuable tool for this research will be the Rac-
FRET mouse that reports Rac activity15 and can be crossed
to Rac-GEF deficient mouse strains. In addition, it is likely
that more neutrophil Rac-GEFs remain to be identified, and
others require further characterization. For example, no
neutrophil Rac-GEFs have been identified to date that con-
trol the initial tethering step, transendothelial migration or
the crossing of the basal lamina and pericyte layer during
recruitment. Furthermore, while changes in neutrophil Rac
levels or activity clearly cause human immunodeficiencies,
it remains to be seen whether altered Rac-GEFs levels or
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activity also causes human disease. Such a discovery would
be very exciting, as it would open up new avenues of
translational research. The idea to fine-tune Rac activity to
a level that preserves immunity while combating neu-
trophil-mediated inflammatory conditions is appealing. Yet,
direct inhibition of Rac or Rac-GEFs is not trivial, as these
proteins work through protein/protein interactions, and
most current inhibitors are quite inefficient and lack speci-
ficity. The targeting of cell surface adhesion molecules and
receptors to which Rac-GEFs are coupled seems to be a
more promising approach, which has already started to
yield results in animal models of inflammatory disease.
The identification of new roles for Rac-GEFs in controlling
the surface levels or activity of neutrophil adhesion mole-
cules and receptors will be another important area of future
research that will hopefully pave the way for novel ration-
ally designed anti-inflammatory therapies.
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