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Abstract

Purpose—In vitro blood flow studies in carotid artery
bifurcation models may contribute to understanding the
influence of hemodynamics on carotid artery disease. How-
ever, the design of in vitro blood flow studies involves many
steps and selection of imaging techniques, model materials,
model design, and flow visualization parameters. Therefore,
an overview of the possibilities and guidance for the design
process is beneficial for researchers with less experience in
flow studies.

Methods—A systematic search to in vitro flow studies in
carotid artery bifurcation models aiming at quantification
and detailed flow visualization of blood flow dynamics results
in inclusion of 42 articles.

Results—Four categories of imaging techniques are distin-
guished: MRI, optical particle image velocimetry (PIV),
ultrasound and miscellanecous techniques. Parameters for
flow visualization are categorized into velocity, flow, shear-
related, turbulent/disordered flow and other parameters.
Model materials and design characteristics vary between
study type.

Conclusions—A simplified three-step design process is pro-
posed for better fitting and adequate match with the
pertinent research question at hand and as guidance for less
experienced flow study researchers. The three consecutive
selection steps are: flow parameters, image modality, and
model materials and designs. Model materials depend on the
chosen imaging technique, whereas choice of flow parameters
is independent from imaging technique and is therefore only
determined by the goal of the study.

Keywords—Model, Design, Imaging techniques, MRI, Opti-
cal PIV, Ultrasound.
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INTRODUCTION

Atherosclerotic plaque formation in the carotid ar-
tery bifurcation causes narrowing of the artery
(stenosis) and the plaque may rupture, which can cause
stroke or transient ischemic attack (TIA). Several
parameters are known to influence risk of stroke in
patients with significant carotid artery stenosis, e.g.
plaque  vulnerability, = volume and  stenosis
degree.?*2%% Also, there is an association between low
and oscillating wall shear stresses (WSS) and forma-
tion and/or  progression  of  atherosclerotic
plaque.'”*!>7% Surgical treatment is indicated in
severe symptomatic carotid artery stenosis. An alter-
native approach is stenting of the lesion. However, this
approach is not optimized yet, since it results in higher
short-term stroke risk compared to surgery. There is a
need for a better understanding of the factors that
influence plaque characteristics and for analysis of flow
changes caused by intervention, to eventually improve
treatment and stroke prevention.

Blood flow studies are excellent approaches to en-
hance knowledge on the relationship between blood
flow dynamics and plaque formation/progression and
treatment outcome. General technological develop-
ment leads to improvements in imaging and postpro-
cessing techniques, which enables quantitative and
detailed blood flow studies, such as image velocimetry.
These techniques are superior to flow measurement
techniques that only enable qualitative investigations,
such as the way ultrasound Doppler is generally used
in the clinic, namely only the measurement of flow in
the center of the artery.
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There are three methods to perform hemodynamic
flow studies: in vivo, in vitro and in silico. The benefit of
in vitro and in silico over in vivo is that certain
parameters can be altered in a controlled environment.
Compared to in silico, in vitro studies are sometimes
preferred, due to the possibility to test and validate
potential use of flow imaging techniques in patient
studies. Furthermore, in vitro studies can be performed
in situations where it is difficult to experiment on
patients, for example in cases with radiation exposure
or in case of rare diseases. Therefore, this review fo-
cusses on in vitro flow studies.

Starting in vitro flow studies brings along many
steps and choices. For example, which imaging tech-
nique to choose from the wide range of (clinical)
imaging modalities, to measure WSS or other flow
parameters, and which phantom material to use. The
choices for the flow setup also have to match the
clinical research question. Review articles about
in vitro flow study techniques often focus on one
specific technique. Therefore, the aim of this review
article is to give an overview of the possibilities of the
various approaches for the design of in vitrro flow
studies. It will serve as guidance by best practice for
researchers with less experience in flow studies to get
familiar with the options and opportunities in flow
study design.

MATERIALS AND METHODS

Search Strategy

A systematic literature search was performed in
January 2017 and repeated in June 2018. The key
words are combinations of ‘carotid’, ‘flow’, ‘modeling’,
‘in vitro’, and synonyms of these terms, such as ‘set-
up’/setup’, ‘blood flow velocity’, ‘rheology’, ‘wall
shear stress’, hemodynamics’, ‘simulation’, ‘phantom’.
We have modified the search query to match each
specific database (Scopus, Medline, Embase, and Co-
chrane).

Study Selection

Two authors—A.H. and E.V.—independently
screened the query results on the basis of titles and
abstracts. Both authors independently checked full-
text eligibility. All discrepancies regarding inclusion or
exclusion were discussed until consensus was reached.
The inclusion criteria were: (1) in vitro flow study; (2)
carotid bifurcation models; and (3) quantitative flow
imaging. The inclusion was limited to carotid bifur-
cation models, since the design of an in vitro flow study
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strongly depends on specific flow rates and vessel wall
properties. Studies aiming at flow quantification in
other arteries, for example abdominal aorta, might use
other methods and characteristics, and are therefore
not included. Thus, studies regarding intracranial
carotid artery were excluded, as well as in vivo and
animal studies. Also, studies using ultrasound Doppler
measurement without further post processing and
studies describing flow velocities only were excluded.
Other exclusion criteria were: only in sil-
icojcomputational fluid dynamics, full-text not in
English, review articles and conference proceedings.

Data Processing

The included full-text articles were organized into
four categories of imaging techniques used to visualize
flow: magnetic resonance imaging (MRI), laser particle
image velocimetry (PIV), ultrasound, and miscella-
neous techniques. Data extraction parameters for all
imaging techniques are: resolution, study type (tech-
nique development/validation, flow exploration),
working fluid, fluid scatters, flow type (steady, sinu-
soidal, physiologic), Reynolds number, viscosity, flow
rate, velocity, model materials, model design: pathol-
ogy (healthy, stenosed or aneurysmatic), geometry
(average or patient-specific), wall (thin-walled or wall-
less), origin (commercial or home-made); and flow
visualization parameters. Technique-specific data
extraction parameters were:

— for MRI: sequence;

— for optical PIV: light source;

— for ultrasound: protocol/postprocessing, system
type (clinical or research);

— for miscellaneous techniques: methods.

RESULTS

The systematic search yields 1877 unique articles.
Most articles are excluded on the basis of title and
abstract screening. Full-text review includes 144 arti-
cles, of which 42 articles are selected for this review
(Fig. 1).

The oldest techniques to quantify blood flow pat-
terns in vitro in carotid artery bifurcation that are in-
cluded in this review, use laser doppler anemometry>*
and digital subtraction angiography.’* The first articles
that reported the use of MRI date from 1992. Studies
using ultrasound or optical PIV techniques are mostly
from 2008 and later. A timeline of included articles per
imaging technique is shown in Fig. 2.
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FIGURE 1. Schematic overview of systematic search.
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FIGURE 2. Timeline of all included articles. Each red dot
shows one publication.

Characteristics of Imaging Techniques and Methods
MRI

MRI is used in 14/42 articles (33%) to scan the
in vitro carotid bifurcation model to visualize the flow
(Table 1). One of these articles describes the use of
both MRI and ultrasound.'”® Among the several
imaging sequences (MRI protocols) that are used,
phase contrast sequences are applied in most arti-
cles, *!1:18:33.38.39.43.46.54.56.78 = A (istinction is made
between two-dimensional and three-dimensional phase
contrast sequences. Phase contrast MRI makes use of
the phase shift of moving spinning protons. Velocity
data can be computed by comparing the phase shifts
between moving and stationary protons.

Three articles use other MRI-sequences to visualise
flow. The first article proposes an extension of the
single-bolus multi-zone adiabatic passage technique.®
This extended version uses flow velocity profiles from
several directions other than the main flow direction.
The second article describes the feasibility of spiral
Fourier velocity encoded MRI for measuring carotid

wall shear rate.® Compared to standard Fourier
velocity encoding, spiral Fourier velocity encoding is
faster due to a higher temporal resolution, so wall
shear rate can be measured not only in vitro, but also
in vivo. The third article describes disordered flow,
which can be visualised using temporal variations in
magnetization by applying a two-dimensional Fourier
Transform Gradient Echo sequence.’® The resulting
images only show disordered flow.

Optical Particle Image Velocimetry

An alternative imaging technique to visualize flow is
optical PIV. It is a technique that uses one or more
lasers to illuminate contrast material flowing through a
transparent phantom and captures the motion using a
high-frame-rate digital camera. Each image frame is
divided into small, so-called interrogation areas. Sub-
sequently, each area is compared to the corresponding
area of the following frame by applying correlation
techniques. Finally, a velocity field is calculated, and
localized velocity vectors can be visualized.

11/42 articles (26%) report on the use of optical PIV
to study flow patterns in the carotid bifurcation in an
in vitro model (Table 2). Two articles also use ultra-
sound.>®”” The flow setups are equipped with a con-
tinuous wave laser,>3%! a pulsed laser,>?>* or a LED
light source.*” Where most of the studies uses one or
two (stereo-PIV) cameras, one article describes the
construction of a tomographic setup, using four digital
cameras arranged at various angles.’
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rate Velocity
(cm/s)

Flow
(mL/s)
P: 15

Viscosity
41 x 1072
Pa.s

Re num-
ber

Fluid Flow
type
Ph
Ph

Additional
scatterers
MB

Working

fluid

TABLE 3. Continued
BMF-S

Study
F

type
T

Resolution

S:1.1 x
1.1

Te: 125

System
type

\Y

Group Protocol/postprocessing
v

201828

Niu 2018
encoded speckle imaging, D Doppler, DCF Doppler Color Flow, E-PIV echo particle image velocimetry, F Flow exploration, HK published by research group at University of Hong Kong, HV

home-made, /Vimage velocimetry, LO published by research group at London Imperial College, M mean, MB microbubbles, P peak, Ph Physiologic, PD pulsed Doppler, Pl pulse inversion,

BMF blood-mimicking fluid, BMF-S blood-mimicking fluid (Shelley), BMF-R US blood-mimicking fluid: water, glycerol, dextran, surfactant, nylon particles,®' C clinical system, CESI Color-

Author
Jensen
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Ultrasound

In 16/42 articles (38%), ultrasound is applied as
imaging technique (Table 3). Three research groups
contribute to this review by two or more included
articles. The applied equipment is almost similar within
these groups. Both clinical and research-based ultra-
sound systems are used.

Seven out of 16 articles within the ultrasound cate-
gory perform image velocimetry. Different acquisition
protocols and post processing techniques are used:
echo particle image velocimetry using contrast agent
(echoPIV),”” high-frame-rate ultrasound imaging
velocimetry using speckle patterns,*®*” Vector Projec-
tile Imaging using multi-angle Doppler analysis,’”
transverse oscillation and directional beamforming for
vector velocity estimation,”® a biomechanical method
that produces a map of displacement vectors,*” and
vector flow mapping using color Doppler images from
a clinical system.

Doppler protocols are applied in seven articles. One
article uses a Doppler protocol to measure volume
flow.'® Some articles describe the use of a semiauto-
matic Doppler ultrasound acquisition system to obtain
small sample volumes at desired spatial intervals to
perform velocity measurements over time.*s %678 [
another article, pulsed Doppler and color flow imaging
are applied on a research system to investigate veloci-
ties in home-made phantoms.*

A combination of clinical Doppler flow measure-
ments and an advance plane wave protocol on a
research-based system is also described.” Another
technique applied in Ref. 73 called color-encoded
speckle imaging, uses high-frame-rate steered plane
wave imaging on a system that includes a pre-beam-
formed RF data acquisition tool (a channel-domain
imaging research platform).

Miscellaneous Techniques

4/42 articles (10%) report miscellaneous techniques
for flow visualization (Table 4). One article describes
the use of digital photographic imaging in combination
with photochromic dye.'* A novel grid reconstruction
technique has resulted in development of quantitative
measurements. The use of Laser Doppler Anemometry
(LDA) is described in two articles.'*** This technique
is based on the Doppler shift induced by scattering of a
laser beam when it hits moving fluid. Flow rate is
measured using Digital Subtraction Angiography in
the fourth article.”* Time density curves are created
and blood flow among the regions of interest is cal-
culated using the obtained velocity and known radius
of the vessel.

wave, St Steady/constant, T Technique development/validation, T-P Technique development/validation—Phantom, Th (slice) thickness in mm, Te Temporal resolution in Hz, UWO published

PWI plane wave imaging, PW-PI plane wave pulse inversion, R research system, RRI published by Robarts Research Institute, S Spatial resolution in mm, Si sinusoidal, SPW steered plane
by research group at The University of Western Ontario, *Extracted from figure, “—” NA.
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TABLE 5. Model characteristics of all included papers.
Author Fabrication material Pathology Geometry Wall Origin
MRI
Napel 1992 - - - - -
Wolf 1992%¢ - H&S - - -
Frayne 19938 Polyester resin + TMM (agar-based) H AG TW HM
Vu 1993°° Glass - AG - HM
Botnar 2000* Silicone H PS WL HM
Kohler 200132 (1) Plexiglass (Perspex) 1) - - - (1) HM
(2) - @H (2) C™
Long 2002% - - - - CM
Papathanasopoulou 20036 - H - - CM
Zhao 200378 Acrylic H - - CM
Marshall 2004%° - H&S - - CM
Carvalho 20108 - - - - CcM
Rispoli 2015°* - H - - CM
Seong 2015%¢ Silicone H AG - HM
Cibis 2016 - H PS - HM
Optical PIV
Bale — Glickman 2003? Silicone S PS WL HM
Cheung 2010° Silicone (Sylgard 184) S PS WL HM
Buchmann 20117 Silicone (Sylgard 184) S PS WL HM
Zhang 201177 Silicone H PS W HM
Kabinejadian 20132° Silicone (PDMS) H PS WL HM
Kefayati 2013°" Silicone (Sylgard 184) H&S AG WL HM
Kefayati 2014%° Silicone (Sylgard 184%°) H&S AG WL HM
Nemati 2015* Silicone (PDMS) ] PS WL HM
Mokthar 20174° Perspex A AG WL HM
Shimizu 2017%° Permeable urethane - PS ™™ HM
Hewlin 2018%* Glass - PS TW HM
Ultrasound
Frayne 19938 Polyester resin + TMM (agar-based) H AG TW HM
Poepping 200248 Agar S AG WL HM
Poepping 20044° (1) Silicone (Sylgard 184) + TMM (Agar-based) S AG (1) TW HM
(2) Agar (2) WL
Wong 20098 PTFE (Teflon)®® S&u AG WL HM
Poepping 2010°° Silicone (Sylgard 184) + TMM (Agar-based*®) S AG ™ HM
Zhang 201177 Silicone H PS TW HM
Lai 2013°%° Compliant photopolymer + TMM (Agar-based) H&S&U AG T™W HM
Wong 2013%” PTFE (Teflon)®® S&u AG - HM
Yiu 201372 PVA S AG WL HM
Yiu 201472 - H&S AG - -
Leow 2015%6 Compliant photopolymer + TMM (Agar-based)®®  — AG TW HM
Chee 2016° PVA + TMM (Agar-based) H&S AG T™W HM
Shimizu 2017%° Permeable urethane - PS T™W HM
Jensen 2018%8 PVA H&S PS WL HM
Leow 2018%7 PVA H&S - WL HM
Niu 2018% (1 - H AG TW (1) Cc™m
(2) PVA (2) HM
Miscellaneous
Ku 1985%* (LDA) Glass and plexiglass H AG - HM
Yoshida 19867 (DSA) Vinyl H AG W HM
Couch 1996'? (Photochromic grid)  Plexiglass H AG WL HM
Ding 2008'* (LDA) Glass H AG TW' HM

LDA laser doppler anemometry, DSA digital subtraction angiography, PDMS polydimethylsiloxane, PVA polyvinyl alcohol, PTFE
polytetrafluoroethylene, H healthy, S stenosed, A aneurysmatic, U ulceration, PS patient-specific, AG average geometry, TW thin-walled,
WL wall-less, HM home-made, CM commercial model, “—” NA.
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material. In ten of eleven studies synthetic particles are
added to the working fluid (Table 2). One study uses
cornstarch as reflective material.”” There are several
working fluids reported in the optical PIV studies,
however, most studies use a glycerol-water mixture.
Four of sixteen ultrasound studies use microbubbles as
contrast material, both home-made®***”* and com-
mercial’’ (Table 3). Most other ultrasound articles use
a blood mimicking fluid containing nylon parti-
cles.?28:354830.67.68.7273  The  commercial available
BMF from Shelley Medical Imaging (BMF-S in Ta-
ble 3) is based on the recipe of*' (BMF-R in Table 3).
A photochromic dye is used in one article in the
‘miscellaneous’ category'> (Table 4). Another ‘miscel-
laneous’ article uses a mixture of 76% Renografin
digital subtraction angiography contrast medium, so-
dium and meglumine to visualize flow using x-ray
techniques.’*

Flow Visualization Parameters

Flow characteristics can be presented and visualized
using many quantitative parameters, each accentuating
different aspects of the blood flow. Some quantities
need to be measured to estimate or calculate other,
more relevant parameters. This review only includes
articles that quantified and visualized flow character-
istics and patterns.

The flow visualization parameters (Table 6) are di-
vided into five categories: velocity, flow, shear-related,
turbulent/disordered flow and other parameters.
Velocity and flow are commonly used parameters and
mostly presented as magnitude values, vectors, streak-/
streamlines, and profiles over time. All imaging tech-
niques are able to measure these two parameters. Wall
shear stress (WSS) is a commonly calculated parameter
in quantitative flow studies. Arterial WSS is defined as:
“the drag force acting on the endothelium as a result of
blood flow”.* WSS magnitude is calculated by multi-
plying wall shear rate (WSR) by fluid viscosity,®'" as
shown in Ref. 33 with the following equation:

dv

WSS = —n ar

)
r=a

where 7 is the fluid viscosity, v is the velocity, r is the

radial co-ordinate, and « is the vessel radius. Oscillat-

ing wall shear stress (OSI) (Table 6) can be calculated

T -

as follows:0SI(5) = 0.5 {1 _ Iy, wsstoad

> 1WSS(s0)|A

the position at the vessel wall, ¢ is the timepoint, At is

time step, and T is the number of time steps within one
cardiac cycle.'"*

Most of the parameters describing turbulent or

disordered flow are only reported by one paper or one
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] ,where § is

research group and are thus measured using one
visualization technique. Pulsatility index (PI) can be

Vmuxsysmle - Vmuxdiasmle

calculated following: PI = . The same

Va\'e(luringcurdiaccyc]e

article defines kinetic energy (KE) as: KE = m1?2.>

DISCUSSION

This systematic review serves as starting point for
designing in vitro carotid flow studies by presenting an
overview of methods that have been applied in in vitro
hemodynamic studies using imaging techniques to
visualize and quantify flow and flow-related parame-
ters. The review is limited to research using carotid
artery bifurcation models. The next paragraph shortly
summarizes the results, followed by a discussion on
considerations for in vitro flow studies, to be concluded
with a section of strengths and limitations of this re-
view.

Summary of Results

We distinguished four categories of imaging tech-
niques used to visualize and quantify blood flow
dynamics: MRI, optical PIV, ultrasound, and miscel-
laneous techniques. A trend towards the use of optical
PIV and ultrasound is seen in the last decade (Fig. 2).
Noticeable in model design is the use of commercial
models in MRI, while the other studies mainly use
home-made models. Furthermore, the choice of model
material depends on the imaging technique (Table 5).
Optical PIV and ultrasound require the use of scatter
particles, whereas the use of scatter particles in MRI
studies is limited. Visualization parameters are divided
into four categories (Table 6). Velocity-based param-
eters are widely reported, flow- and shear-based
parameters are frequently studied, and turbulent/dis-
ordered flow-based parameters are mostly reported for
optical PIV and ultrasound studies.

Considerations for In Vitro Flow Study Design

The starting point of flow studies in general strongly
depends on the goal of the study. Since there is a large
variety of goals and aims in flow studies, the authors of
this review article are not in the position to select one
favourite flow parameter, imaging technique, model
material or design for future use. This section illus-
trates a simplified three-step design process, combining
and discussing the information from the results sec-
tion.

The first step in flow study design is selection of
parameters for flow visualization. This is strongly re-
lated to the goal of the study. Clinical relevance can
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also be considered while selecting flow visualization
parameters. However, it does not restrict the imaging
modality choice. Velocity and flow-based parameters
give a global impression on flow dynamics and are
presented in many ways: over time, spatial, mean or
peak, as contour, etc. (see Table 6). Shear-based
parameters are frequently studied, however their clin-
ical relevance has yet to be determined. It is generally
accepted that regions of low WSS and oscillating WSS
correlate to formation and growth of atherosclerotic
| plaque.”*” However, a review on this topic shows that
there are novel studies that find an inverse relation-
ship.*” Moreover, there is no clear conclusion about
the relation between low and high WSS in plaque
vulnerability.®*%7®  Turbulent/disordered flow-based
parameters are mostly reported by ultrasound and
[ [ optical PIV studies. Some of these parameters clearly
show and quantify regions of disordered flow, however
some other quantitative parameters are hard to inter-
pret.

The second step in flow study design is selection of
an imaging technique. Generally, the choice of visual-
ization parameters does not lead to restrictions in
imaging techniques, thus the three main imaging
techniques (MRI, optical PIV, ultrasound) are all
available after flow parameter selection. The benefits
and limitations shown in Table 7 are discussed next. It
is necessary to realize that some imaging techniques
require the use of (clinical) contrast agents or scatter
particles when using it in vitro. In this respect, MRI is
beneficial, since retrieving flow information is not
dependent on scatter material. However, MRI is gen-
erally only available in a hospital. Also, the flow setup
needs to be adjusted so that there are no metallic parts
near the MRI-equipment, the help of a laboratory
technician is preferred during measurements, and
development and adjustment of a protocol or sequence
has a large learning curve. The benefit of MRI is the
possibility of conversion to a patient study. This
translation to a clinical study is not possible in optical
PIV, because laser will not pass through the human
body and the region of interest inside the patient
cannot be captured using digital cameras. Optical PIV
is ultimately suitable for accurate and precise quan-
tification of flow patterns in vitro. In some situations,
another benefit of optical PIV is that a hospital setting
is not required to perform the in vitro flow studies.
Optical PIV models need to be transparent and flat
laser-entry surfaces are required for preventing dis-
tortion or refraction of the laser beam. Considering the
third option, ultrasound, there is a division into studies
using clinical systems and studies using research-based
systems. To perform detailed flow analysis using image
velocimetry techniques, fast imaging is prescribed and
therefore the use of a research-based ultrasound system

Miscellaneous

us
89,35

168

1 28
435,48,50,68

Opt PIV
2a,30,31
22,10

MRI
166
156
156

TABLE 6. continued

Description/application
part of the complex eigenvalues of the gradient tensor
Shows a coloured overlay of disordered flow measured by
ges in KE seem to play a role in arterial remodelling

spread associated within the velocity spectrum
Indicates different levels of flow disturbances

between systolic and diastolic velocity
KE can be seen as dynamic pressure in fluid stream. Chan-

variation in phase signal on MRI
Quantifies degree of vortexes in space or over time

physiologic pulsatile flow
Quantifies the strength of swirling motions by the imaginary

Quantifies fluctuations in peak flow that are not related to
Indicates regions of recirculation, small flow values and
Quantifies pulsatility of blood by calculation of difference

index/spectral width
Doppler spectrograms

Others

velocity
Swirling strength

Standard deviation in peak
Disturbed flow overlay
Vorticity (fields)
Spectral-broadening
Pulsatility index

Kinetic energy (KE)

3From same research group.

Parameter
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TABLE 7. Benefits and limitations of imaging techniques for the design of in vitro flow studies.

MRI

Optical PIV

Ultrasound

Scatter material
Availability

+ Not necessary
-- Only available in hospital

Compatibility setup
and models tal)
Easy to use/learning
curve — Learning curve for protocol/
sequence development
Translation to clinical + Possible
patient study

-- Necessary
+ Setup in laboratory-environment + Both in hospital and laboratory-envi-
(not hospital dependent)
-- MR-compatible setup (no me- — Limited to transparent and flat- -- Need matching acoustic impedance
surface models

-- Laboratory technician needed + Relatively small learning curve

-- No translation possible

-- Necessary
ronment

and echogenicity
+ Intuitive clinical systems
— Learning curve for research systems

+ Possible
— Limited translation possible when using
research-based system

is necessary. However, a research-based ultrasound
system has a larger learning curve. Also, research-
based systems are not marketed for direct clinical use,
so translation to a clinical study is more complicated
compared to a clinical system.

In short, MRI and ultrasound are appropriate
imaging modalities if translation to a patient study is
desired. MRI requires a learning curve or specific
knowledge and a metal-free setup. For in vitro flow
studies, ultrasound requires contrast agents or scatter
material in the working fluid. Optical PIV is preferred
if there is no aim to translate it to a patient study, if no
clinical equipment is available and if restrictions to
transparent models are not an issue.

The third step is selection of model materials and
model design. This depends on the imaging technique
that will be used. For example, poly(vinyl alcohol) gel-
based models are ultimately suitable for ultrasound
studies. If optical PIV is considered, silicone models
are preferred, such as polydimethylsiloxane (PDMS).
As stated before, the models for optical PIV need to be
transparent and require flat surfaces. Ultrasound
models often have a tissue mimicking layer, while
MRI-models frequently are thin-walled without
TMM. Remarkably, the included studies barely
reported on choices made in model selection. For
example, only a few studies indicated that the model is
elastic or rigid and moreover, elasticity was quantified
in only four articles.”?**** These are certainly
parameters that need to be considered, since rigidity or
elasticity has a large influence on the similarity of the
simulation with the real situation.

Strengths and Limitations of this Review

This review summarizes in vitro carotid artery flow
studies according to used imaging techniques, model
materials and designs. Compared to other review
articles which usually focus on one specific imaging

technique, this review has a wide scope as it provides
an overview of multiple imaging techniques. For the
design of an in vitro flow study, this wide scope is
beneficial, because model materials and model designs
depend on the chosen imaging techniques.

In the ultrasound category, multiple articles of the
same research group are found. This is a bias to the
results which we took into consideration by noting the
research groups (Table 3). Furthermore, we marked
the flow parameters that we found in multiple articles
from the same research group (Table 6). Since our
analysis does not strongly depend on the number of
parameters and it only happens in the ultrasound
category, this bias does not influence our conclusions.

The notations and units of several parameters, such
as accuracy, resolution, viscosity, vary widely among
the included articles. Therefore, interpretation of these
parameters was difficult.

To the authors knowledge, imaging techniques and
model parameters might have been missed in our
search by restricting it to carotid artery bifurcations.
Moreover, newest techniques might be tested first on
‘simple’ straight models, so we might have missed these
novel techniques by restricting the search. Techniques
and methods might have been missed as well by
restricting the search to carotid arteries, since in vitro
flow studies are also widely performed in intracranial,
abdominal or other peripheral artery models. On the
other hand, carotid artery specific flow rates, types of
diseases, and vessel wall characteristics, lead to specific
choices of materials and methods in the design of the
flow study.

The imaging techniques reported in this review are
not only used to study carotid arteries. Other parts of
the cardiovascular system are studied as well. The
ascending aorta,?’>>%% aortic arch® and also aortic
coarctation®” are studied using three- and four-di-
mensional flow MRI. In addition, this technique is
applied intracranially to study aneurysms,” also in
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combination with optical PIV flow studies.’>! Fur-
thermore, ventricular filling is studied using four-di-
mensional flow MRI.'® Ultrasound-based vector flow
imaging and echoPIV are used to study flow in the
ascending aorta,”? the abdominal aorta,'”® and to
study ventricular blood flow.>’?? The latter is also
reported in combination with optical PIV flow stud-
ies."** Moreover, optical PIV is applied in enlarged
coronary artery flow phantoms.®®® Thus, despite the
restriction of the systematic search to carotid artery
bifurcation, the reported imaging techniques and
considerations for the design of an in vitro flow study
can generally be applied.

Fabrication methods of the models for in vitro flow
studies fall out of the scope of this review article. Only
a small amount of the included articles reported about
the fabrication method of the models. A specific search
to articles concerning the process of constructing
models is necessary to write a review article on that
topic. Two literature reviews for ultrasound and PIV
models specifically have been published already.'>"!

CONCLUSION

This systematic review on in vitro flow studies aim-
ing at quantifying and visualizing flow parameters in
carotid bifurcation models shows important factors to
consider when designing a flow study. In contrast to
most other review articles on flow studies, this review is
not restricted to one imaging modality. Therefore, it
gives a complete overview of techniques for in vitro
flow studies.

Since the design of flow studies strongly depends on
the pertinent research question at hand, there is no
preferred imaging technique or design that can be se-
lected based on the information in this review. Three
important steps need to be considered while designing
in vitro flow studies: (1) selection of flow visualization
parameters, (2) selection of an imaging technique, (3)
model materials and design.

The selection of flow visualization parameters is
completely dependent on the aim and goal of the study
and independent of the selected imaging modality.
Flow parameters are classified into velocity, flow,
shear-related and turbulent/disordered flow-based
parameters. The selection of an imaging technique can
roughly be categorized in MRI, optical PIV and
ultrasound. Conclusions on accuracy and resolution of
the imaging systems cannot be made, since these
parameters are not consistently reported throughout
the literature. The selection of model materials and
design of the model depends on the imaging technique
and it strongly depends on the goal of the study.
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