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Background: Reduced heart rate (HR) increase (HRI), recovery (HRR), and higher
resting HR are associated with cardiovascular (CV) disease, but causal inferences have
not been deduced. We investigated causal effects of HRI, HRR, and resting HR on CV
risk, all-cause mortality (ACM), atrial fibrillation (AF), coronary artery disease (CAD), and
ischemic stroke (IS) using Mendelian Randomization.

Methods: 11 variants for HRI, 11 for HRR, and two sets of 46 and 414 variants for
resting HR were obtained from four genome-wide association studies (GWASs) on UK
Biobank. We performed a lookup on GWASs for CV risk and ACM in UK Biobank
(N = 375,367, 5.4% cases and N = 393,165, 4.4% cases, respectively). For CAD,
AF, and IS, we used publicly available summary statistics. We used a random-effects
inverse-variance weighted (IVW) method and sensitivity analyses to estimate causality.

Results: IVW showed a nominally significant effect of HRI on CV events (odds ratio
[OR] = 1.0012, P = 4.11 × 10−2) and on CAD and AF. Regarding HRR, IVW was
not significant for any outcome. The IVW method indicated statistically significant
associations of resting HR with AF (OR = 0.9825, P = 9.8 × 10−6), supported by
all sensitivity analyses, and a nominally significant association with IS (OR = 0.9926,
P = 9.82 × 10−3).

Conclusion: Our findings suggest no strong evidence of an association between HRI
and HRR and any outcome and confirm prior work reporting a highly significant effect
of resting HR on AF. Future research is required to explore HRI and HRR associations
further using more powerful predictors, when available.
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INTRODUCTION

Similar to high resting heart rate (HR), a reduced HR increase
(HRI) during exercise or a reduced HR recovery (HRR) after
exercise is associated with higher cardiovascular (CV) mortality
rates (Savonen et al., 2006; Fox et al., 2007; Myers et al., 2007;
Arena et al., 2010; Cooney et al., 2010; Zhang et al., 2016).
Previous observational studies have reported that a reduced HRI
or HRR is a strong predictor of CV events, with odds ratios (ORs)
of 1.20 (95% confidence interval [CI] of 1–1.43) and 1.13 (95%
CI 1.05–1.21) for each decrement of 10 beats per minute (bpm)
(Savonen et al., 2006; Qiu et al., 2017), respectively. However,
their causal implication remains to be determined.

Mendelian randomization (MR) is a methodology that uses
single-nucleotide variants (SNVs) as instruments to deduce the
magnitude and direction of the effect of a risk factor on an
outcome, while accounting for potential confounding (Burgess
and Thompson, 2015a). MR takes advantage of the fact that
alleles are randomly allocated to individuals during meiosis, thus
compensating for the effect of confounders on both the risk
factor and the outcome. MR studies have revealed that higher
resting HR decreases the risk of atrial fibrillation (AF) and
ischemic stroke (IS), while increasing all-cause mortality (ACM)
risk (Eppinga et al., 2016; Larsson et al., 2019). However, the
association between HRI and HRR and CV events has not been
evaluated before.

The primary objective of our study was to use two-sample
MR to investigate the effect of HRI, HRR, and resting HR on
CV events. We also tested their effect on ACM and a range of
common subtypes of CV disease, including AF, coronary artery
disease (CAD), and IS.

MATERIALS AND METHODS

Selection, Prioritization, and Weighting
of Instruments for HRI and HRR
We used 14 SNVs for HRI, and 18 for HRR, reported in
the largest published genome-wide association study (GWAS)
at P < 5 × 10−8, including 67,257 individuals from the
UK Biobank who participated in an exercise stress test (EST-
UKB cohort) (Ramírez et al., 2018) (Supplementary Figure 1).
These individuals comprised relatively even numbers of men
and women aged 40–69 years at recruitment with European
ancestry and no previous CV event (Ramírez et al., 2018).
We also included one independent variant for HRI and 3
for HRR from a second GWAS, also from UK Biobank
(Supplementary Figure 1) (Verweij et al., 2018). To prevent
erroneously inflated type-1 error rates, variants were clumped
on a pairwise R-squared of 0.1, both within each of the
two traits, and across both datasets. We used the identified
SNVs as potential instruments to investigate the causal
relationship between HRI and HRR, and CV events, ACM,
and CV subtypes. We weighted the instruments by their
effect sizes in their respective replication GWASs (Ramírez
et al., 2018), which did not include any participants or related
individual from the GWAS in which the SNVs were initially

discovered, thus avoiding any bias due to population overlap
(Supplementary Tables 1,2).

Selection, Prioritization, and Weighting
of Instruments for Resting HR
Three previous publications have reported genetic variants for
resting HR (Eppinga et al., 2016; Ramírez et al., 2018; Guo
et al., 2019). Eppinga et al. (2016) used a subset of UK
Biobank population and identified 64 SNVs reached genome-
wide significance (P < 5 × 10−8). Also using a subset of
the UK Biobank population, Ramírez et al. (2018) reported 2
genome-wide significant SNVs independent to these 64 SNVs
(Supplementary Figure 1). Finally, Guo et al. (2019) performed
a GWAS on resting HR using the available UK Biobank
population sample.

We used two different sets of instruments for resting HR
(Supplementary Figure 1). For testing with CV events and ACM,
we used 66 independent variants from Eppinga et al. (2016) and
Ramírez et al. (2018). These instruments were selected to ensure
no sample overlap from GWAS sample for CV events and ACM
(see below). We weighted the 64 SNVs from Eppinga et al.’s work
(Eppinga et al., 2016) by their effect sizes in their replication
GWAS, but the two from Ramírez et al. (2018) were weighted
by their discovery effect sizes, as there was no replication GWAS
(Supplementary Table 3).

For testing with CAD, IS, and AF, we used 458 independent
genome-wide significant variants for resting HR, which we
weighted by their corresponding effect sizes (Supplementary
Table 4). We performed our own GWAS in UK Biobank to
identify these variants using 388,237 individuals with pulse
rate measurement (as a proxy for heart rate, further details
are described in the Supplementary Methods, Supplementary
Figure 1), as Guo et al. (2019) did not report the effect sizes for
their genetic variants.

Genetic Associations With the Outcomes
The CV events cohort (Figure 1) consisted of 375,367
independent individuals (5.4% cases) from UK Biobank.
A CV event was defined as any death or hospital admission due
to ischemic heart disease, myocardial infarction, atherosclerosis,
cardiomyopathies, cardiovascular disease, coronary artery
disease, heart failure, ventricular arrhythmias, and stroke
occurring between enrolment in UK Biobank (2006–2008) and
March 2017. The specific ICD10 codes are I21, I22, I24, I25, I42,
I46–I51, I64, and I70 (detailed ICD10 codes are indicated in
Supplementary Table 5). We excluded related, non-European
individuals, and subjects with poor genotype and imputed
calling, sex discrepancies, and a previous history of a CV event.
We only considered incident events, as the participants in
the study did not have any underlying known cardiovascular
condition. For the definition of events, we used hospital episode
statistics and death registration data, both available in UK
Biobank. Primary care data was not included.

The ACM cohort consisted of 393,165 (4.4% cases, defined as
death from any cause – excluding unnatural causes – up to March
2017) unrelated, European individuals with good genotype and

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 12 | Article 569323

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-569323 February 18, 2021 Time: 11:43 # 3

Mensah-Kane et al. Causal Effect of Heart Rate

imputed calling, and no sex discrepancies from UKB. We also
excluded from both the CV and ACM cohorts any individual
who were part of the EST-UKB cohort and conducted our own
GWASs for the primary outcome, CV events, as well as for ACM.
Details of the GWAS methodology used for both outcomes can be
found in the Supplementary Methods. Population characteristics
for the individuals in the FULL-UKB cohort were determined,
and the Wilcoxon unpaired test (for continuous variables) and
Fisher test (for binary variables) were used to assess significant
differences in covariates between cases and controls.

Genetic associations with CAD, IS, and AF were obtained
from publicly available GWAS summary statistics from various
large consortia (Figure 1). Summary statistics for CAD were
obtained from a meta-analysis of 547,261 individuals (122,733
cases, 22.4%) from the Coronary Artery Disease Genome-
Wide Replication and Meta-Analysis plus The Coronary Artery
Disease Consortium (CARDIoGRAMplusC4D), as well as
296,525 individuals from UK Biobank (Figure 1) (Nelson et al.,
2017). The IS summary statistics were obtained from 521,612
individuals (67,162 cases, 12.9%) from the MEGASTROKE
consortium (Figure 1, IS) (Malik et al., 2018). AF summary
statistics combined results from N = 1,030,846 (60,620 cases,
5.9%) included in a meta-analysis of five different studies:
the HUNT cohort, a Norwegian population-based cohort

of ∼125,000 individuals; the deCODE study, comprised of
data from 10,269 European individuals aged from 30 to
89; the Montreal Heart Institute Biobank, a hospital-based
cohort currently comprised of ∼17,000 French-Canadians; the
DiscovEHR cohort of 50,726 adults of 95.5% European ancestry;
and the AF Genetics (AFGen) consortium (Figure 1) (Nielsen
et al., 2018). Details of the definitions for CAD, IS, and AF can be
found in their respective studies (Nelson et al., 2017; Malik et al.,
2018; Nielsen et al., 2018).

A lookup of all instruments for HRI, HRR, and resting HR
were conducted in the GWASs we performed for CV events and
ACM, as well as in the summary statistics for CAD, AF, and IS, to
retrieve genetic associations with the outcomes (Figure 2).

MR Analyses
We used a random-effects inverse-variance-weighted (IVW)
MR estimator1 to derive ORs for each outcome per bpm
increase in HRI, HRR, and resting HR (Figure 2). All analyses
were conducted in R version 3.5.1, using the R package
“TwoSampleMR,” which was used in the harmonization of
instruments to ensure consistency in the direction of association
(Hemani et al., 2018). One palindromic SNV for HRI, two

1https://www.rdocumentation.org/packages/meta/versions/4.9-6/topics/metagen

FIGURE 1 | Cohorts used to assess the causality of HRI, HRR, and resting HR on CV events, ACM, CAD, IS, and AF, with their sample sizes and case–control
ratios. A GWAS was performed in this project (highlighted in the blue box) for CV events (our primary outcome, highlighted in the dashed red box) and ACM, while
the summary statistics were downloaded for CAD (Nelson et al., 2017), IS (Malik et al., 2018), and AF (Nielsen et al., 2018).
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FIGURE 2 | MR study design. The genetic associations of the instruments for HRI, HRR, and resting HR were derived from the GWASs performed by Eppinga et al.
(2016), Ramírez et al. (2018), Verweij et al. (2018), and an internal GWAS on resting HR using the entire UK Biobank population, respectively (Step 1). A lookup of
these instruments was performed in GWASs for CV events and ACM conducted in the UK Biobank population, to find the genetic associations with these two
outcomes. The genetic associations of the instruments with CAD (Nelson et al., 2017), IS (Malik et al., 2018), and AF (Nielsen et al., 2018) were derived by
conducting a lookup of the SNVs in the respective GWAS summary statistics for each outcome (Step 2). Finally, MR analyses were conducted to estimate the causal
associations between HRI, HRR, and resting HR, and each of the outcomes using an IVW meta-analysis, as well as sensitivity analyses (Step 3). ACM, all-cause
mortality; AF, atrial fibrillation; CAD, coronary artery disease; Con-Mix, contamination mixture; CV, cardiovascular; GWAS, genome-wide association study; HR, heart
rate; HRI, heart rate increase; HRR, heart rate recovery; IS, ischemic stroke; IVW, inverse variance weighted; MR, Mendelian randomization; SNV, single-nucleotide
variant.

out of 66 from the first set of variants for resting HR, and
19 out of 458 from the second set of variants for resting
HR with intermediate frequencies (i.e., close to 0.5) were
excluded from the MR analyses to prevent harmonization errors
(Supplementary Tables 1, 3, 4).

The two most important assumptions in MR are that (i) the
instruments need to be truly associated with the corresponding
risk factor (HRI, HRR, or resting HR) and (ii) the effect of the
instruments on the corresponding outcome needs to be mediated
by the risk factor only. This means that weak and pleiotropic
instruments should be avoided as they can strongly bias the effect
sizes. We first assessed the strength of all instruments based on
the F statistics (calculated as F = β2

exposure
/
SE2

exposure
) (Kus et al.,

2020), which indicated that 3, 10, 18, and 25 instruments for
HRI, HRR, and both sets of resting HR instruments, respectively,
had F < 10 (Burgess et al., 2013) (Supplementary Tables 1–
4). This led to a total of 11 strong instruments for HRI, 11 for
HRR, and 46 and 414 for both sets of instruments for resting
HR used in the MR analyses, explaining a percentage variance of
1.12, 0.75, 2.63, and 9.10%, respectively (Burgess and Thompson,
2015b). We next addressed the second assumption by performing
sensitivity analyses. We compared the results obtained using the
IVW method with those from the weighted median (Bowden
et al., 2016), weighted mode (Hartwig et al., 2017), contamination
mixture (Con-Mix) (Burgess et al., 2020), and MR-PRESSO
(Verbanck et al., 2018), as these methods can provide valid MR
effect sizes under the presence of horizontal pleiotropy. For the
Con-Mix method, we used the default value of the psi parameter,

which was 0, corresponding to 1.5 times the standard deviation
of the ratio estimates.

For any significant associations between any of the risk factors
and any of the outcomes, we tested the reverse association
(i.e., from the outcome to the risk factor) using the same
methods described here. To test if HRR (HRI) was mediating
the association of HRI (HRR) with each outcome, we ran
multivariable MR (Burgess and Thompson, 2015b), which
provides an estimate of the direct effect of HRI (HRR) on each
outcome after adjusting for HRR (HRI) as a potential mediator
in the causal pathway. We then repeated multivariable MR by
further adjusting for resting HR. Finally, we investigated whether
any potential confounders might lie in the causal pathway by
running multivariable MR (Burgess and Thompson, 2015b) to
estimate the direct effect of resting HR on AF (which is the
only consistent association, as shown in section “Results”) after
adjusting for potential confounders. In particular, body mass
index (BMI) and diabetes are two important risk factors for AF
(Schnabel et al., 2009; Chamberlain et al., 2011), and previous
findings have reported on the genetic correlation between resting
HR and these risk factors (Guo et al., 2019; Munroe Patricia
et al., 2019), suggesting that there is a risk for pleiotropy.
We downloaded summary statistics for BMI and diabetes from
the GWAS catalog2 from two recent GWAS (Scott et al.,
2017; Pulit et al., 2019). We identified 325 and 40 sentinel
SNVs (P < 5 × 10−8) for each risk factor, respectively. After
excluding those that were within a 1-Mb window around the 458

2https://www.ebi.ac.uk/gwas/
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sentinel SNVs for resting HR and those in linkage disequilibrium
(r2 > 0.1), a total of 747 independent SNVs were used as
instrumental variables for the multivariable MR analyses.

To control for false-positive findings due to multiple testing,
we applied a conservative Bonferroni-corrected significance
threshold, adjusted for the number of risk factors and endpoints
(P = 0.05/(3× 5) = 3.3× 10−3). A P-value <0.05 was considered
evidence for nominal significance.

To estimate the power of our study, we used a non-centrality
parameter-based approach (Brion et al., 2012), implemented in a
publicly available mRnd web tool3. As all outcomes were binary,
we calculated minimal ORs of the outcome variable per SD of the
risk factor variable that was detectable (power = 0.8, α = 0.05)
in our study. The results of power calculations are provided in
Supplementary Table 6 and indicate that we would have 80%
power to detect strong effect sizes of HRI on CAD and AF, of HRR
on AF, and of resting HR on IS and AF, but more power would be
needed to detect smaller effects on the remaining outcomes.

RESULTS

CV and ACM GWAS Population
Characteristics
The baseline characteristics of the 375,367 individuals in the
CV events GWAS from the Full-UKB cohort are indicated in
3http://cnsgenomics.com/shiny/mRnd/

Table 1. The 393,165 individuals included in the GWAS for
ACM had similar characteristics, as they were also part of the
UK Biobank study. During the follow-up, 20,360 individuals
experienced a CV event, and 17,241 had ACM (Figure 1). All
the covariates that were significantly different across case and
control groups (Table 1) were used as covariates in our GWASs
for CV events and ACM.

Genetic Associations With Endpoints
Heritability estimations, after conversion to the liability scale,
were 6.8 and 2.74% for CV events and ACM respectively. QQ
plots and Manhattan plots for both GWASs are shown in
Supplementary Figures 2 and 3.

A lookup of all SNVs included as instruments for HRI, HRR,
and resting HR in our GWASs for CV events and ACM, and
in the summary statistics for CAD, AF, and IS can be found in
Supplementary Tables 1–3, respectively.

MR Analyses
The IVW showed evidence of a nominal association between
HRI and CV events (OR = 1.0012, P = 4.11 × 10−2, Figure 3,
Table 2), indicating that for each increment of 1 bpm in
HRI the risk for CV events increases by 0.2%. However,
sensitivity analyses suggested that there was no significant
effect after adjusting for horizontal pleiotropy (Table 2). Even
though the IVW, the weighted median, mode, or MR-PRESSO
did not indicate a significant effect of HRI on CAD or AF

TABLE 1 | Baseline characteristics of UKB individuals studied in the GWAS for CV risk.

Characteristic All Participants CV risk diagnosis No CV risk diagnosis P-value

(N = 375,367) (N = 20,360) (N = 355,007)

Male (%) 44.2 63.9 43 <2.2e-16

Age at recruitment (years) 56.6 (8.0) 61.1 (6.5) 56.3 (8.0) <2.2e-16

BMI (kg/m2 ) 27.4 (4.8) 28.9 (5.2) 27.3 (4.8) <2.2e-16

SBP (mmHg) 138.3 (18.9) 144.4 (19.5) 137.9 (18.8) <2.2e-16

Diabetes status (%) 4.4 11.9 4 <2.2e-16

Cholesterol Status (%) 11.3 22.8 10.6 <2.2e-16

FIGURE 3 | Associations of 1 genetically predicted increase in beats per minute of HRI with CV events. SNV, single-nucleotide polymorphism; OR, odds ratio; se,
standard error; CI, confidence interval; l2, heterogeneity statistic l2; τ2, between-SNV variance.
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(Supplementary Figures 4, 5 and Table 2), the Con-Mix method
showed a nominally significant association (OR = 0.9802,
P = 6.92 × 10−3 for CAD, and OR = 0.9608, P = 1.25 × 10−2,
Table 2). There was no evidence for causality between HRI and
ACM or IS (Supplementary Figures 6, 7 and Table 2).

We did not find evidence for an effect of HRR on CV events
(Figure 4), ACM, or any CV subtype (Supplementary Figures 8–
11 and Table 2). However, the Con-Mix method suggested a
nominally significant effect of HRR on CAD (OR = 0.9900,
P = 4.40 × 10−2), and on AF (OR = 0.9802, P = 4.29 × 10−2),
which was also supported by MR-PRESSO, but in an opposite
direction (OR = 1.0146, P = 3.21× 10−2, Table 2).

The IVW meta-analysis found a significant effect of resting
HR on AF (OR = 0.9825, P = 9.80 × 10−6, Supplementary
Figure 12 and Table 2), which was supported by all sensitivity
analyses (Table 2). In addition, the IVW indicated a nominally
significant association with IS (OR = 0.9926, P = 9.82 × 10−3,
Supplementary Figure 13), which was supported by the weighted
median (OR = 0.9906, P = 2.10 × 10−2) and MR-PRESSO
(OR = 0.9928, P = 7.32 × 10−3, Table 2). No association was
found for CV, ACM, or CAD (Supplementary Figures 14–16
and Table 2).

The association between resting HR and AF was the
only consistent significant association among all MR analyses
conducted; thus, we tested for any reverse effect by assessing the
effects of genetically predetermined AF risk on resting HR. For
this, we used 111 independent genetic variants associated with AF
at a genome-wide significant level (P < 5× 10−8) (Nielsen et al.,
2018). We found neither the IVW method nor any sensitivity MR
analysis showed significant estimates.

Multivariable MR suggested nominally significant direct
associations of HRI on CV events (OR = 1.0010, P = 4.78× 10−2)
and CAD (OR = 1.0101, P = 2.16 × 10−2) after adjusting
for HRR (Supplementary Table 7a). Similarly, there was a
nominally significant direct effect of HRR on CAD after adjusting
for HRI (OR = 1.0101, P = 2.05 × 10−2, Supplementary
Table 7a). When resting HR was also adjusted for in the
model as a mediator, no associations were statistically significant
(Supplementary Table 7b).

As association between resting HR and AF was the
only consistent significant association among all MR analyses
conducted, we ran multivariable MR to investigate the direct
effect after adjustment for BMI and diabetes. Results indicated
that a resting HR remains significantly (and inversely) associated
with AF (OR = 0.987, P = 8.38 × 10−5) after adjusting for both
BMI (OR = 1.301, P = 8.80 × 10−8) and diabetes (OR = 1.01,
P = 5.39× 10−1, Supplementary Table 7c).

DISCUSSION

In this study, we tested, for the first time, for a potential
causal effect of HRI and HRR on CV events and ACM in
UK Biobank and three CV subtypes (AF, CAD, and IS) in
various different large GWAS consortia. We additionally tested
for potential causal effects between resting HR and the same
outcomes. Our main findings indicate there was no strong
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FIGURE 4 | Associations of 1 genetically predicted increase in beats per minute of HRR with CV events. SNV, single-nucleotide polymorphism; OR, odds ratio; se,
standard error; CI, confidence interval; l2, heterogeneity statistic l2; τ2, between-SNV variance.

evidence for a significant association between HRI, HRR, and
any outcome, but we identified a significant association between
lower resting HR and AF risk.

The IVW method indicated a nominally significant effect of
HRI on CV events, but this effect was much less extreme and
in an opposite direction than observational associations reported
in literature (Gulati et al., 2005; Savonen et al., 2006; Myers
et al., 2007), and also none of the sensitivity methods showed
significant results (Table 2). The observation that none of the
sensitivity analyses supported the IVW association indicates it is
biased by horizontal pleiotropy, i.e., there are other unaccounted
risk factors that are in the causal pathway between HRI and CV
risk. When adjusting for HRR as a mediator in multivariable
MR, HRI maintained a nominally significant association with
CV events (Supplementary Table 7a). However, this direct
association became non-significant after further adjusting for
resting HR in the multivariate model (Supplementary Table 7b).
Approximately 85% of the CV events in the CV GWAS were
CAD, so the MR analysis on CAD can be viewed as an external
validation for the interpretation of our results for CV events.
The CAD dataset (N = 547,261) was comprised of 22% cases
(Figure 1) and thus offered more power for the MR analyses
than UK Biobank, which had a lower sample size and only 5.42%
cases with CV events (Figure 1, Supplementary Table 6). The
results indicating HRI was not causally associated with CAD
(Supplementary Figure 4 and Table 2) further suggests that the
IVW association observed between HRI and CV events should be
interpreted with caution.

Regarding HRR, we did not observe a significant association
with any of the endpoints. Con-Mix and multivariable MR (when
adjusting for HRI) suggested a nominally significant association
between HRR and CAD, and Con-Mix and MR-PRESSO also
indicated a nominally significant association between HRR and
AF (Table 2 and Supplementary Tables 7a,b). However, the
direction of effect was inconsistent, the statistical significance of
the associations was weak (i.e., the P-value was only nominally

significant), and there was lack of support from other MR
methods, potentially indicating no strong evidence for an effect
of HRR on CV events, AF, CAD, IS, or ACM. However, although
we have used instruments from the largest available GWAS
on this risk factor, their percentage variance explained was
low (0.75%); therefore, our interpretation of results should be
taken with caution.

Although previous observational studies reported that both
HRI and HRR are significantly associated with CV events
(Savonen et al., 2006; Qiu et al., 2017), we did not find strong
evidence for any association. A possible explanation could
be that observational studies do not entirely account for all
potential confounders. For example, reduced cardiorespiratory
fitness, chronic inflammation, and insulin resistance can lead
to a reduced HRI, as well as to higher CV risk (Fletcher et al.,
2001; Stewart, 2004). In addition, individuals with reduced HRI
are also prone to suffer from metabolic risk factors, such as
obesity and dyslipidemia, and to engage in unhealthy lifestyle
behaviors like smoking.

The IVW and all four sensitivity analyses that account for
horizontal pleiotropy supported a significant inverse association
between resting HR and AF risk, supporting previous results by
Larsson et al. (2019). When comparing the IVW and weighted
median estimates, they reported ORs of 0.82 (P = 0.60 × 10−2)
and 0.73 (P = 2.9 × 10−7), respectively, per 10-bpm increase in
resting HR, whereas our estimates are 0.84 (P = 9.80 × 10−6)
and 0.75 (P = 1 × 10−8), respectively, indicating more
precise estimates. The main differences across both studies are
that they used the 64 SNVs in our first set of instruments
for resting HR (Eppinga et al., 2016) in their MR analysis,
whereas we used a much larger set of instruments (414),
explaining four times more percentage variance than the
64 SNVs (9.10% versus 2.64%). In addition, they used the
summary statistics from the Atrial Fibrillation Consortium
(N = 537,409) (Roselli et al., 2018), which included UK
Biobank, and we used summary statistics from the largest
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meta-analysis on AF, excluding UK Biobank (N = 1,030,846,
Figure 1).

Larsson et al. (2019) also reported an inverse association
between resting HR and IS using the IVW method, but it became
non-significant when using sensitivity analyses that account
for horizontal pleiotropy. In our study, we found nominally
significant results from the IVW, weighted median, and MR-
PRESSO methods, but the weak significance could confirm the
presence of horizontal pleiotropy. Finally, our findings of no
effect of resting HR on CAD are consistent with results by
Larsson et al. (2019). Regarding ACM, our results indicating
no effect were consistent with those reported by Eppinga et al.
(2016), in which they reported a non-significant association when
only genome-wide significant variants were considered (using
the same instruments as we did) in their IVW meta-analysis.
Of note, when they included SNVs that were not genome-wide
significant, their association between resting HR and ACM was
significant. Whether our results would change if we had included
non-genome-wide significant SNVs remains unclear, but it is out
of the scope of this manuscript.

Major strengths of our investigation include the large sample
sizes used, for example, in the single UK Biobank cohort, 375,367
individuals were studied for CV events and 393,165 for ACM
(Figure 1). Also, by incorporating summary-level genetic data
from various large consortia, including more than 1 million
individuals in the AF study, over half a million individuals in
the CAD study, and just under half a million individuals in
the IS study (Figure 1), our analyses used the largest and most
recent meta-analyses. For instruments, we combined SNVs from
the only two studies that have shown genome-wide significance
with HRI and HRR and thus used the largest number of SNVs
available for these risk factors in GWAS literature (Ramírez
et al., 2018; Verweij et al., 2018). Regarding resting HR, we
used the best possible instruments for each outcome to avoid
sample overlap. In addition, we strived to satisfy the main MR
assumptions by excluding SNVs with F < 10 (Burgess et al., 2013)
and by performing sensitivity analyses that account for potential
horizontal pleiotropy.

There were some limitations in our study. Although we used
results from the largest available GWAS for all risk factors
and outcomes, more power would be needed to identify small
effects on CV risk and ACM (Supplementary Table 6), so our
findings need to be interpreted with caution and validated after
they can be repeated when additional data becomes available.
Although we avoided any bias due to population overlap in our
analyses with CV events and ACM, there was population overlap
in our CAD analysis, as the CAD cohort included individuals
from UKB (N = 296,525, Figure 1), which is likely to overlap
with individuals in the EST-UKB cohort, leading to bias in the
causal effect sizes towards the null hypothesis. We also restricted
our samples to European, middle-aged to elderly, relatively
healthy individuals with no previous history of a CV event;
therefore, the results in other ethnic groups remain unclear.
Moreover, for the instruments for HRI and HRR, effect sizes
for the SNVs reported by Ramírez et al. (2018) were derived
from their replication sample, thus avoiding population bias,
but the same approach could not be applied for Ramirez et al.

resting HR instruments, as this GWAS did not have a validation
dataset for a replication GWAS. Also, the participants in the
risk factor GWASs were healthier than those in the outcome
GWASs; in particular, participants in the IS and AF GWASs were
older and therefore the association results could be affected by
selection bias (Gkatzionis and Burgess, 2018). Finally, it should be
noted that both HRI and HRR were measured from submaximal
workloads in the UK Biobank GWAS (Ramírez et al., 2018;
Verweij et al., 2018), while maximal workloads have shown to
be superior in predicting CV events and ACM (Qiu et al., 2017).
Therefore, participants did not reach their maximum HR during
exercise, limiting the quantitative range of HRI and HRR, the
number of potentially associated variants, and the explained
variance. Future studies assessing the genetic contribution of
both HRI and HRR using maximal workloads are needed to
confirm our findings.

CONCLUSION

In conclusion, we found nominal evidence for an effect of HRI
on CV events, although the estimation was much lower, and in
an opposite direction, than that from observational studies. We
found no evidence for an effect of HRR on CV events, ACM, or
any CV subtype. We also confirm prior work supporting resting
HR to be inversely associated with AF risk.
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