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Utilising low‑cost, easy‑to‑use 
microscopy techniques for early 
peritonitis infection screening 
in peritoneal dialysis patients
Mark Buckup1,2,5*, Janelle M. Kaneda1,5, Alisha M. Birk1, Eleanor Glockner1, Ross Venook1, 
Aditya Jain3, Shuchita Sharma3, Cynthia Wong4 & Ken Sutha4

Peritoneal dialysis (PD) patients are at high risk for peritonitis, an infection of the peritoneum that 
affects 13% of PD users annually. Relying on subjective peritonitis symptoms results in delayed 
treatment, leading to high hospitalisation costs, peritoneal scarring, and premature transition 
to haemodialysis. We have developed and tested a low-cost, easy-to-use technology that uses 
microscopy and image analysis to screen for peritonitis across the effluent drain tube. Compared to 
other technologies, our prototype is made from off-the-shelf, low-cost materials. It can be set up 
quickly and key stakeholders believe it can improve the overall PD experience. We demonstrate that 
our prototype classifies infection-indicating and healthy white blood cell levels in clinically collected 
patient effluent with 94% accuracy. Integration of our technology into PD setups as a screening 
tool for peritonitis would enable earlier physician notification, allowing for prompt diagnosis and 
treatment to prevent hospitalisations, reduce scarring, and increase PD longevity. Our findings 
demonstrate the versatility of microscopy and image analysis for infection screening and are a proof of 
principle for their future applications in health care.

Dialysis is the artificial removal of waste products that kidneys usually filter from the blood, and peritoneal dialy-
sis (PD) is an at-home dialysis method that uses the patient’s peritoneum to filter out these toxins. Over 26,500 
patients in the U.S. and 195,000 patients worldwide use PD to manage their end-stage renal disease1. Although 
haemodialysis (HD) is more common, PD has several advantages, including a survival rate of ten years compared 
to five years with HD2, as well as a more frequent filtration process that frees patients from costly dialysis centre 
visits multiple times a week, providing significantly higher quality of life than HD2.

However, PD leads to a higher risk of peritoneal infection, called peritonitis, which affects nearly 13% of PD 
users annually and is the leading cause for approximately 16% of PD patient mortality3. Severe infection can 
lead to hospitalisations, which cost approximately $100 million annually in the U.S., or $3800 per PD patient 
per year1,4,5. If left untreated, peritonitis can lead to long-term peritoneal scarring3. Excessive scarring prevents 
the peritoneum from functioning as an exchange barrier, rendering PD impossible and requiring patients to 
switch to HD2–4,6. PD could optimally be utilised for up to ten years, but on average it is used for two to three 
years before patients prematurely switch to HD due to repeated episodes of infection3,7.

Currently, the only preventative measures for peritonitis are standard aseptic techniques, with responsibility 
falling heavily on patients and caretakers to mitigate risk. When a patient presents with peritonitis signs and 
symptoms such as cloudy effluent or abdominal pain, physicians collect an effluent fluid sample for a cell count 
and culture to confirm peritonitis diagnosis. If the white blood cell (WBC) count is > 100 cells/mm3 and 50% 
of those cells are responding neutrophils, antibiotics and antifungal prophylaxis are started immediately while 
waiting for results from a bacterial culture, antibiotic sensitivity test, and Gram stain3. However, reliance on 
patient-reported, subjective symptoms results in a delay from the onset of clinically meaningful infection to 
the treatment of peritonitis. One study demonstrated that by the time patients start antibiotics, their effluent 
WBC concentration is often 2250 cells/mm3, well beyond the 100 cells/mm3 benchmark8. This extended time 
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to diagnosis and treatment from initial infection increases peritoneal scarring. As the number of kidney disease 
patients rises around the world9, and with the push for home dialysis from the 2019 “Advancing American Kidney 
Health” executive order10, at-home dialysis methods like PD are critical areas for innovation.

With the increased versatility and ease of use of inexpensive microscopy systems along with the expanding 
frontier of image analysis technologies11–13, we created an in-line optical method for accurate WBC screening to 
address this problem, guided by three overall aims. First, the solution would need to be inexpensive enough to 
have clear economic value for at-home use. Then, it would need to be specific against solutes and debris found 
in effluent, such as red blood cells, salts, and triglycerides14,15, which could confound WBC predictions in a 
patient-specific way. Lastly, it would need to be user-compatible.

Our prototype, named OpticLine, uses microscopy and image analysis technology to detect peritonitis before 
patients notice symptoms. By serving as a screening device to notify patients as soon as their WBC count reaches 
levels indicative of infection, OpticLine allows nephrologists to provide treatment earlier, reducing acute hospi-
talisation costs and preventing peritoneal scarring to improve PD longevity. WBC quantification enables early 
detection of peritonitis from multiple causes, including fungal, viral, and bacterial infections. While haematology 
analysers have been proposed as a viable method for detecting WBCs in bodily fluids16,17, we demonstrate the 
first application of microscopy to screen for peritonitis. Our technology can be constructed from inexpensive, 
off-the-shelf components, offering an affordable way to prevent peritonitis progression and improve patient out-
comes from home. With OpticLine, we demonstrate accurate and consistent WBC quantification in benchtop and 
simulated continuous cycling PD setups for screening, while also accounting for potential solute confounders. 
Lastly, our market research and human factors studies demonstrate eagerness for routine incorporation, ease of 
use, and device favorability among key stakeholders.

Results
Inexpensive design and simple insertion into drain line.  OpticLine consists of two parts: (1) a reus-
able imaging unit that clamps over (2) a disposable fluid flow chamber that is inserted between the PD drain line 
and effluent fluid collection (Fig. 1a).

The imaging unit, or “clamp,” houses all circuitry and is clamped over the chamber to align the optical hard-
ware with the chamber’s viewing window. It is driven by a Raspberry Pi 4 (4 GB RAM), which runs a Raspbian 
Linux operating system and is powered by a 120–240 V AC supply. A printed circuit board was custom-designed 
using Fritzing and mounted directly on top of the Pi. This printed circuit board houses OpticLine’s electrical 
components and connects to the input/output pins of the Pi below it. Data is stored on the on-board SD card. A 
3.5″ Nextion touchscreen display communicates with the Pi through its serial ports, through which the patient 
interacts with. The clamp contains an 8 MP camera mounted to a 2 mm borosilicate glass ball lens in a plastic 
aperture, providing a refractive index of 1.51 and magnification of 140× with 2 μm resolution18. This allows 
OpticLine to capture a field of view of approximately 1000 × 1000 μm (Supplementary Fig. 1). The camera is 
connected via a 300 mm flex cable directly to the Pi. A hemispheric LED is positioned opposite of the chamber, 
camera, and ball lens, offset by 1 mm in x and y directions to cast shadows on cells flowing in the chamber for 
improving visualisation (Fig. 1b). The camera backlight is driven by the 5 V power supply and provides roughly 
6000 mcd of optical brightness approximately 20 mm above the disposable chamber. This design provides both 
direct and ambient light for better illumination when imaging the flowing effluent. A thermal sensor is connected 
in series with an N-MOSFET. The thermal sensor is used to detect the presence of flowing effluent, indicating 
that our device should begin capturing images. Photos are captured for the first 30–60 s of what is typically a 
5-min period of constant flow followed by 5–10 min of pulsatile flow. OpticLine captures images at a back focal 
distance of 0.56 mm within the viewing chamber18, through which WBCs in effluent flow after draining out of 
the patient’s peritoneal cavity. OpticLine’s camera has an exposure time of 10 μs to ensure images of fast-moving 
cells are in focus.

The disposable chamber is intended to be single-use and replaced every session to avoid potential loss of 
accuracy due to sediment buildup on the viewing window, although we confirmed no change in performance 
over ten days of continuous use (Supplementary Note 1 and Supplementary Fig. 2). Replicated male and female 
connector counterparts were designed to fit securely with the corresponding connectors in the native PD tubing 
(Fig. 1c). Two standard glass coverslips are attached on either side of the chamber, creating a viewing window 
that allows the camera to image the flowing effluent. The chamber’s inner channel maintains the same cross-
sectional area as the drain line tubing, preventing any backflow pressure and maintaining the effluent’s drainage 
speed as it leaves the peritoneal cavity. By using exclusively off-the-shelf processes and components, OpticLine 
and future devices utilising our imaging technology can be inexpensively created for approximately $240 USD 
(Supplementary Table 1, 2).

An alternative approach to implement our microscopy technology is to use a compound rather than a ball 
lens. Despite increased size and cost, preliminary experimentation has demonstrated that this lens can image 
directly across parts of PD tubing sets without an in-line disposable chamber (Supplementary Note 2 and Sup-
plementary Fig. 3).

Computational pipeline and dialysis workflow integration.  OpticLine captures images during each 
draining interval of the user’s PD session, excluding the priming drain step (Fig. 2a). The fluid detection module 
is triggered 5–10 s after flow begins, followed by 30–60 s of image capture, all within the 10–15 min of average 
drainage time19. One hundred images are captured in batches of five during each drainage interval, and each 
batch is then analysed by the microprocessor during the dwell periods (Supplementary Fig. 4).

A batch of five images is input into the image batch analysis algorithm, which outputs a cell count for each 
image (Fig. 2b, Supplementary Note 3, Supplementary Fig. 5, and Supplementary Fig. 6). Each image is cropped 
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to exclude blurry areas outside the focus of the lens, downscaled to reduce noise, and contrasted for maximal 
contour detection and optimal cell counting. The value of each pixel in the processed image is compared to the 
mean value of the pooled pixels at the same (x, y) coordinates in the other four images of the batch. If the differ-
ence is greater than a tunable batch difference threshold, the current pixel is marked positive in the cell mask. 
Potential moving cells are identified by detecting the variation across images in the batch. Gaussian blurs and 
size thresholds are used to denoise the mask and combine turbulence that is associated with each cell. Similarly, a 
mask for bubbles and artifacts is determined by downscaling the preprocessed image. A tunable batch difference 
threshold and size filters were optimised to capture bubbles and moving artifacts. Any cell centroids residing in 
areas deemed as bubbles or artifacts are removed. With this strategy, we can remove stagnant noise associated 

Figure 1.   Overview of OpticLine use and mechanical construction. (a) The OpticLine chamber is inserted 
in-line with the drainage tubing, between the drain line and effluent fluid collection, when the patient is setting 
up for their peritoneal dialysis (PD) session. The OpticLine clamp then clamps over the chamber and images 
effluent as it flows through the clamp during drain times. The user interacts with the device via a touchscreen 
on the top of the clamp, and presses “Start” when they begin their PD session. Created with Onshape.com. (b) 
As labelled on front and side views, the clamp is 125 mm long, 68 mm wide, and 68 mm tall. The top part of 
the clamp contains the microprocessor. The expanded view on the left shows the clamp’s optical components in 
relation to the viewing chamber. The top part of the clamp contains a hemispheric LED that provides backlight 
for the lens, and a thermal sensor that detects fluid flow through the chamber and signals to the microprocessor 
that the camera should begin capturing images. The bottom part of the clamp contains the camera, which is 
connected to the microprocessor, and a ball lens that magnifies the camera’s view 140×. Created with Onshape.
com and BioRender.com. (c) Photographs of an OpticLine prototype. The top photo shows the entire clamp 
with the chamber inserted. The bottom photo is a close-up of the clamp’s optical interface. The microscope lens 
is recessed in the square hole, and the four small rectangular divots mate with prongs on the chamber to prevent 
it from sliding during use.
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with the camera or setup, as well as moving bubbles and other solutes in the effluent fluid that are not consistent 
across the batch of five images.

The output image cell counts are filtered for outliers and converted to WBC concentrations for each drainage 
interval through the counts processing algorithm (Fig. 2c). This algorithm predicts effluent concentration from 
cell count using a trained linear regression model. At the end of the PD session, OpticLine averages all mean 
drainage concentrations to provide a screening result to the patient (Fig. 2d). An overall mean predicted con-
centration within 0–50 WBCs/mm3 is deemed “healthy,” recommending that the patient continue performing 
PD. A mean within 50–100 WBCs/mm3 is considered “intermediate,” recommending that the patient monitor 
symptoms closely and contact their care team if they remain in that range for more than a few days. A mean at or 
above 100 WBCs/mm3 is deemed “at risk,” and OpticLine recommends that the patient contact their care team 
as soon as possible for follow-up diagnostic testing.

Training and validation of computational pipeline.  OpticLine’s image batch analysis depends on 
multiple parameter values which can be tuned to optimise sensitivity and specificity (Fig. 3a). These parameters 
range from Gaussian blurring to eliminate pixelated noise to size thresholds to accurately discern cells from 
larger artifacts. To find the ideal combination of parameter values to achieve appropriate sensitivity and specific-
ity, we performed the image batch analysis algorithm with 96 combinations of parameter values to output cell 
counts for 347 images, spanning 6 spiked concentrations ranging from healthy baseline to 300 WBCs/mm3 in 
effluent from 3 patients. We chose the parameter combination set that produced the least significantly differ-
ent cell counts when compared to those manually counted by one rater (without cell staining), evaluated with 
Wilcoxon signed-rank tests (with continuity correction) and Pearson correlation coefficients. The manually-
counted images were also used to evaluate the performance of the image batch analysis algorithm for cell detec-
tion, using the ideal parameter set (Supplementary Note 4 and Supplementary Fig. 7). However, predicted WBC 
concentration, rather than image cell count, is used for infection screening. The ideal parameter combination 
set was used in training and testing for predicting WBC concentrations in subsequent experiments (Fig. 3b).

An ordinary least squares linear regression model was trained with k-fold (k = 10) cross validation to predict 
WBC concentrations (Fig. 3c). Using k-fold cross validation prevents overfitting and maximises data used to 
train and test a linear regression model20. One hundred images of each spiked concentration sample (0, 50, 80, 
100, 120, 150, 200, 250, and 300 WBCs/mm3) for each of eighteen patient effluent samples were input into the 
image batch analysis pipeline to obtain numerical cell counts. Image batch analysis counts of the same spiked 
concentration across multiple patient effluent samples were analysed in aggregate (n = 1800). To eliminate outli-
ers, interquartile ranges of the aggregate image batch analysis outputs at each spiked concentration sample were 
input into the linear regression model (n = 900). The WBC concentration predictions averaged across the k-fold 
iterations fall close to a y = x line (Fig. 3d). The mean R2, adjusted for heteroskedasticity, was 0.93 (s.d. = 0.0008). 
There was little variation in regression parameters (s.d. of coefficient = 0.004). Comparisons between algorithm 
outputs corresponding to 10, 50, and 100 WBCs/mm3 were statistically significantly different (p < 0.0001).

We also evaluated whether a nested cross-validation approach to train and validate our computational pipeline 
could improve prediction accuracy (Supplementary Note 5, Supplementary Fig. 8, and Supplementary Table 3). 
While this approach yielded promising results (R2 = 0.76), we used the current prediction model that had the 
best balance between sensitivity and specificity.

Screening classification with clinically collected effluent.  The trained linear regression model was 
used to predict WBC concentrations of 94 PD effluent samples and assess OpticLine’s binary classification. The 
threshold for infection concern (“positive”) was 50 WBCs/mm3. OpticLine warns users to start monitoring fluid 
closely at this level, while WBC concentration predictions below 50 WBCs/mm3 are “negative” for infection 
concern (Fig. 4a). Binary classification was evaluated using mean predicted WBC concentrations for each sam-
ple. OpticLine has 94% accuracy for infection caution screening. We evaluated the discrimination performance 

Figure 2.   Computational design. (a) During a peritoneal dialysis (PD) session, OpticLine captures 100 
images during each drain in batches of 5 spaced 100 ms apart, with a gap of 1 s between batches. Each batch is 
independently analysed and fed into the counts processing algorithm, which calculates the mean white blood 
cell (WBC) concentration for each drain. These mean drain concentrations are then averaged to a final mean PD 
session concentration. This concentration, along with a “healthy, caution, or risk” notification is reported to the 
patient at the end of their PD session. (b) The images in each batch are preprocessed with a series of filters and 
blurs. The value of each pixel in each batch image is evaluated against the average value of the pooled pixels at 
the same (x, y) coordinates in the other four images of the batch. If the difference between the value of one pixel 
in an image and the average value of the pooled pixels at that location in the other four images is greater than 
the defined batch difference threshold, that pixel is marked as positive in the cell mask. This mask is analysed to 
calculate the number of cells. (c) Our algorithm takes the interquartile range (IQR) of the cell counts for each set 
of 100 images to eliminate outliers, leaving 50 cell counts for each drain. These 50 counts are then converted to 
concentrations with the linear regression model developed during algorithm training. These 50 concentrations 
are then averaged to report the mean WBC concentration for the drain. (d) Example screen displays. At the end 
of a PD session, OpticLine displays a graph of the patient’s WBC concentration throughout the duration of the 
session; the average, maximum, and minimum WBC concentration for the session; and a notification reporting 
whether the session’s mean WBC concentration falls in the healthy, caution, or risk zone. If the concentration is 
healthy, no follow-up steps are required; if in the caution zone, patients are advised to monitor their symptoms; 
if in the high-risk zone, the patient is recommended to contact their care team immediately for further testing.

◂
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of the binary classification using the area under the receiver operating characteristic (AUROC) for all possible 
infection concern thresholds (Fig. 4b). With a threshold of 50 WBCs/mm3, AUROC was 0.97.

To accurately measure effluent fluid concentrations and compare to OpticLine’s concentration predictions, we 
tested healthy effluent (n = 44) and simulated infected effluent (n = 33) on both a Cellometer Auto 2000 (Nexcelom 
Biosciences) and OpticLine (Fig. 4c). To simulate infected effluent, we spiked healthy effluent (0–10 WBCs/mm3) 
with peripheral blood mononuclear cells (PBMCs) to a concentration of 100 WBCs/mm3. The majority of our 
samples (n = 29) were spiked with freeze-thawed PBMCs, while the last four simulated samples were spiked with 
fresh PBMCs within four hours of isolation. We believe that OpticLine undercounted freeze-thawed samples 
because of the higher number of dead cells, which are smaller and harder to quantify in our setup. True infected 
effluent would be similar to our freshly-spiked samples, so we are confident that OpticLine is sensitive enough 
to quantify real-world samples.

We collected 17 effluent samples with naturally elevated WBC concentrations at baseline (> 10 WBCs/mm3) 
to further validate OpticLine’s cell counting abilities (Fig. 4d). Three of seventeen samples were confirmed 
peritonitis-positive, as determined by overall WBC (> 100 WBCs/mm3) and neutrophil (> 50% cells) counts, 
while fourteen of seventeen samples had elevated counts, likely due to recent PD catheter surgery or retrograde 
menstruation. All three peritonitis-positive samples were correctly predicted, suggesting clinical validity. Opti-
cLine counts of effluent samples collected over consecutive days for two different patients closely aligned with 
WBC concentrations both above and below 50 WBCs/mm3 determined by the Cellometer (Fig. 4e).

We tested the effects of four potential confounders on our imaging system: (1) high WBC concentrations, (2) 
whole blood (WB) in effluent, (3) different temperatures, and (4) different effluent flow rates through the device 
(Fig. 4f). High WBC concentrations (> 300 WBCs/mm3) are classified within the risk zone, appropriately alert-
ing the patient to contact their care team, although they were underpredicted because OpticLine was optimised 
for high sensitivity in the clinically relevant range of 0–300 WBCs/mm3. We spiked simulated-infected effluent 
(100 WBCs/mm3) with WB (0.001–1% in effluent) to determine the confounding effects of WB presence, which 
can occur from retrograde menstruation or ascites21. As expected, increased blood resulted in higher WBC pre-
dictions, because WB contains both WBCs and red blood cells. However, there was no statistically significant 
difference between WBC concentration predictions at baseline and 0.001% WB, so only significant amounts 
(0.01% and greater) would potentially confound OpticLine’s predictions.

To evaluate the effect of temperature and flow rate, we ran effluent samples with 0, 100, and 300 WBCs/mm3 at 
physiological temperatures of 25 and 35 °C and PD cycler flow speeds of 200, 250, and 300 mL/min22. We tested 
25 and 35 °C to mimic fluid temperature exiting the peritoneum cavity, which is around 37.5 °C, and to account 
for heat loss from effluent travelling through tubing before reaching OpticLine. Temperature did not confound 
concentration predictions at 0, 100, and 300 WBCs/mm3. As flow rate increased, mean WBC concentration 
prediction decreased slightly, as greater flow created more turbulence in the viewing window. However, there 
were no statistically significant differences between flow rates for WBC predictions of 100 and 300 WBCs/mm3 
(Fig. 4f and Supplementary Fig. 9).

User feedback in market research and human factors studies.  We administered an anonymous 
online market research questionnaire to past, present and prospective PD patients and caretakers, and PD pro-
fessionals (nephrologists, nurses, and researchers) to gather insight from key stakeholders and connect PD expe-
rience with device feedback (Fig. 5). We received 153 responses in total, including from 61 professionals, and 
50 current  and 29 past PD patients (Supplementary Table 4). Most respondents were 45 to 64 years old, female, 
and White, living across five geographic regions in the U.S. (Supplementary Table 5, 6). About 54% of current 
and past patients have been on PD for 2–5 years (Supplementary Table 7). About 65% and 81% of respondents 
said the questionnaire was very clear and easy to complete, respectively (Supplementary Fig. 10a).

Figure 3.   White blood cell counting algorithm training and validation. (a) White blood cell (WBC) counts 
from the image batch analysis algorithm were compared to manual counts from one rater across concentrations 
0, 10, 50, 100, 200, and 300 WBCs/mm3 to determine optimal parameters for maximising specificity and 
sensitivity using 347 images taken by OpticLine. No cell staining was used for manual counting. Parameter 
optimisation was iterative, and the final selected parameters produced algorithm cell counts that had the 
least significant difference with manual counts, evaluated with Wilcoxon signed-rank tests (with continuity 
correction) and Pearson correlation coefficients. Scale bar represents 200 μm. (b) Algorithm cell centroid 
outputs using optimal parameters for images of WBCs in patient effluent at concentrations of 0, 100, and 300 
WBCs/mm3. Raw images (top row) are masked (middle row) and cell centroids are plotted on the raw images 
(bottom row). Arrows highlight artifacts from the camera and moving effluent. Scale bar represents 200 μm. 
(c) Batches of images (n = 100) of each tested WBC concentration were run through the image batch analysis 
algorithm to output raw cell counts. To limit noise, raw counts were filtered by taking the interquartile range 
(IQR), only keeping the middle 50% of the counts. k-fold cross validation (k = 10) was performed on the filtered 
counts to train and test predictions for WBC concentrations. Within each iteration, 10% of the data was used 
for testing and the remaining 90% was used for training an ordinary least squares linear regression model. An 
average regression line, R2, and WBC concentration predictions per known concentrations are output. (d) Graph 
of the k-fold average test predictions across k = 10 iterations of the cross validation vs. actual concentrations of 
the effluent samples. Error bars are s.d. The predicted and actual WBC concentrations were similar, falling close 
to one-to-one correlation as represented by the y = x line (dotted line) with average R2 across the k = 10 iterations 
of 0.93.

◂
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Of the professional respondents who see patients (n = 58), about 52% worry about their patients doing PD 
and 35% think their patients feel worried, while only 31% of current and past patients report feeling worried 
(Fig. 5a). About 68% of professionals reported fear of potential infection (peritonitis) for their patients and 76% 
reported that they think their patients are afraid, while 51% of patients reported being afraid (Fig. 5a).

Most professionals estimate the time from infection to treatment as 1–5 days (Fig. 5b). About 73% of profes-
sionals tell their patients they should cheque their effluent for cloudiness and signs of infection after every PD ses-
sion, and 66% of current and past patients and caretakers report this frequency (Fig. 5c). Although there appears 
to be a standard for chequeing effluent for signs of infection, estimated time from infection to treatment varies.

We designed a human factors study recruiting paediatric caretakers to collect device setup times and user 
feedback for OpticLine. Participants engaged in a short introductory Zoom meeting either before their appoint-
ment or after clinical care with at least one study team member, where the participant was shown a short video 
demonstrating OpticLine’s setup, told a brief study background and motivation, and invited to ask any questions 
before deciding to participate. Informed consent and assent were then obtained at the dialysis clinic. The par-
ticipant could watch the setup video again, ask any questions, and practise as much as they liked before begin-
ning the setup trials. The prototype was 3D-printed, non-functioning, and the same weight as a fully functional 
device. Setup times were recorded for three trials, with timing beginning after the removal of the tubing caps 
and finishing when the clamp was securely fastened over the viewing chamber. Nine participants were timed for 
three device setup trials, and eight of the participants completed a six-item questionnaire.

Most of the caretakers’ patients were 10–18 years old and Hispanic. Two patients had at least one hospitalisa-
tion for peritonitis, and three had at least one hospitalisation for non-peritonitis PD complications (Supplemen-
tary Table 8). The mean setup time across all participants and trials was 15.6 s, with four of the intra-participant 
mean times falling below this value (Fig. 5d). Times tended to decrease across subsequent trials. OpticLine 
setup time is insignificant when considering an average PD setup time of 17.5 min (Fig. 5d and Supplementary 
Note 6). The participants who completed the follow-up questionnaire ranked the device as very easy to set up.

Over 90% of past, current, and prospective patients and caretakers in the market research study reported 
willingness to use OpticLine, and 77% thought OpticLine would be easy to set up, similar to the ranked difficulty 
of the PD setups for current and past users (Fig. 5e). Over half of all patients and caretakers reported that they 
think OpticLine would improve their experience with PD (Supplementary Fig. 10b). About 69% and 74% of all 
professionals believe OpticLine can significantly improve patient quality of life and their own quality of life as 
a professional working with PD, respectively (Fig. 5f). About 98% of all professionals would or would maybe 
be in favour of adopting the device into standard clinical practise for PD and recommend the device to their 
patients (Supplementary Fig. 10c).

Discussion
We have designed, built, and validated a technique that screens for peritonitis with high accuracy before percep-
tible infection symptoms by using in-house white blood cell quantification algorithms to analyse microscopic 
images of patient effluent. Although there are other devices currently on the market for peritonitis detection23,24, 
our application of microscopy is unique for its inexpensive construction, focus on white blood cell detection, and 
simplistic in-line design that monitors peritoneal dialysis sessions in real time, an advantage that will increase 
patient adoption as demonstrated by our user studies. Additionally, while our findings emphasise the impact of 
imaging modalities in dialysis, they also allude to a broader application of microscopy and its ability to impact 
interdisciplinary fields in medicine and health care.

Figure 4.   In vitro results using clinically collected patient effluent samples. (a) Confusion matrix for 94 
peritoneal dialysis patient effluent samples using a 50 white blood cells (WBCs)/mm3 threshold separating 
“positive” for infection caution (yellow, red zones) from “negative” for infection caution (green zone). Some of 
the healthy baseline samples (0–10 WBCs/mm3) were spiked to a concentration of 100 WBCs/mm3 (n = 33). 
(b) The receiver operating characteristic (ROC) curve, evaluated by varying the binary classification threshold 
from 0 WBCs/mm3 to the maximum WBC concentration prediction in the dataset. The area under the ROC 
(AUROC) was 0.97. The red marker denotes the threshold balancing sensitivity and specificity (50 WBCs/mm3). 
The dotted line represents the ROC of a random classifier for comparison. (c) Predicted WBC concentrations for 
effluent samples with healthy baseline concentrations (n = 44) (left) and those spiked to about 100 WBCs/mm3 
(n = 33) (right). Predicted concentrations were classified in the healthy zone if < 50 WBCs/mm3 (green), caution 
zone if between 50 WBCs/mm3 and 100 WBCs/mm3 (yellow), and in the risk zone if ≥ 100 WBCs/mm3 (red). 
False negatives are shown as purple markers. Error bars are s.d. (d) Predicted WBC concentrations of effluent 
samples with elevated baseline WBC concentrations above 10 WBCs/mm3 (n = 17) (circle markers), including 
three lab-confirmed peritonitis-positive samples (triangle markers). Most samples with concentration greater 
than 10 WBCs/mm3 are correctly classified; three false positives are shown as purple markers. (e) Comparison 
of predicted WBC concentrations in patient effluent collected over time from OpticLine (blue) and a lab-grade 
Cellometer (red). The dotted line represents the binary classification threshold of 50 WBCs/mm3. f, Predicted 
WBC concentrations across different sample levels for four potential confounders. High WBC concentrations 
were produced by spiking WBCs in patient effluent (left). Percent whole blood was added to effluent spiked to 
a concentration of 100 WBCs/mm3 (left, middle). Temperature (right, middle) and effluent flow rate (right) at 
sample measurement were also evaluated. For an actual concentration of 0 WBCs/mm3, OpticLine predicted 
concentrations of 0 WBCs/mm3 with no s.d. at both tested temperatures. Error bars are s.d. “n.s.” represents no 
statistically significant difference between the given samples.
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Although automated microscopy-based methods for counting WBCs in bodily fluids are known to over-
estimate WBC counts and have decreased accuracy at higher concentrations of WBCs16,17,25, we found that 
our method tended to underpredict WBC concentrations greater than baseline levels. Because OpticLine is a 
screening device, we set the infection classification threshold at 50 WBCs/mm3 to minimise false negative rates 
and prioritise sensitivity. Microscopy-based methods can also decrease in accuracy in the presence of lipids, red 
blood cells, protein, and cell debris25,26. Cloudy, infected effluent could thus pose a challenge for microscopy-
based screening tools. With our technology, we optimised a batch analysis process that can detect artifacts and 
cell centroids by determining variation among sequential images. We confirmed that fibrin, protein, and other 
debris do not confound our WBC predictions (Supplementary Note 1 and Supplementary Fig. 2). Although 
significant amounts of whole blood did confound our predictions, it also tints the effluent pink, alerting the 
patient to abnormal drainage.

While OpticLine’s unsupervised image analysis to detect turbulence successfully discerns baseline from 
infection-indicating PD effluent, more advanced, open-source computational methods can be used for better 
cell detection and segmentation—such as convolutional neural networks—although they must be adapted, since 
we image flowing fluid as opposed to static biomedical images27. More complex supervised learning approaches 
could be employed during the calibration of OpticLine (Supplementary Note 5, Supplementary Fig. 8, and 
Supplementary Table 3). Additionally, an extra affine or translational registration step to align the batch of five 
images can be added to ensure minimal noise during image capture and analysis28. While these extra steps may 
refine cell detection and increase accuracies, they require heavier computational resources and longer run-times. 
OpticLine uses an off-the-shelf Raspberry Pi microprocessor, and its mechanical design ensures minimal move-
ment between images, in addition to a series of blurs that account for any movement, which are sufficient for our 
current binary screening strategy (Supplementary Fig. 6). However, a custom-designed chip or GPU-optimised 
microprocessor29 can be utilised for deep learning techniques if our imaging technology is used in future diag-
nostic applications requiring higher cell detection accuracy.

Currently, many incoming dialysis patients are hesitant to use PD because of the risk of infection30. If widely 
adopted, OpticLine and its technology could increase the attractiveness of PD, which is crucial for fulfilling the 
2019 executive order that mandates 80% of new end-stage renal disease patients receive either at-home dialysis 
or a kidney transplant by 202531. PD is already the dominant dialysis method in many countries around the 
world32, with 95% of PD patients in developing countries1. Due to its low cost, screening accuracy, and ease of 
use, OpticLine is particularly valuable for increasing PD safety in these communities, where lack of standard 
infection prevention training leads to high peritonitis rates32.

Although designed for infection screening, this technology can be further validated in future studies that 
improve our current WBC detection algorithm by identifying any additional confounding effluent solutes, facili-
tating more complex concentration prediction model training (Supplementary Note 5, Supplementary Fig. 8, and 
Supplementary Table 3). With additional clinical validation evaluating trends in WBC concentration throughout 
a PD session, our application could become a diagnostic tool, expediting and clarifying the time from infection 
to treatment by allowing clinicians to prescribe definitive treatment (Supplementary Note 7). Patients would also 
need to visit the clinic less often, improving quality of life. In addition to adapting to other PD modalities, the 
technology could be used in tandem with other technologies that screen for infection, such as testing strips or 
spectrophotometry33 (Supplementary Note 8 and Supplementary Fig. 11). Multi-modal screening could allow for 
more specific at-home screening and diagnosis. With the incorporation of a more powerful lens that could image 
directly across PD tubing, our technology could be incorporated directly into the cycler as well, eliminating all 
burden on patients and caretakers (Supplementary Note 2 and Supplementary Fig. 3).

The versatility of our imaging application can be used to manage disease progression and screen for infec-
tion in other bodily fluids as well. For hospitalised or at-home patients with indwelling urinary catheters34,35 and 
hydrocephalus patients using external ventricular drains, infection is a common complication that is currently 

Figure 5.   Market research and human factors study results. Percentage of respondents shown on the x-axis (a, 
e, f) or y-axis (b, c) and number of respondents (n) shown on the right y-axis (a, e, f) or above each response 
bar (b, c). (a) Seven-point Likert scale results comparing opinions from professionals and current and past 
patients and caretakers on worry about peritoneal dialysis (PD) (top three), and fear of peritonitis (bottom 
three). Professionals were asked if they feel worried about patients and if they think patients feel worried right 
before, during, or right after a PD session. Similarly, professionals were asked if they are afraid for their patients 
and if they think their patients are afraid of potential infection when they set up or do PD. (b) Professional 
respondents who see patients selected time bins (x-axis) for estimated duration of a five-step process from 
peritoneal infection to treatment. Dark to light grey bars (left to right) represent shortest to longest time options, 
respectively. (c) Reported recommendation for frequency of chequeing effluent from professionals who see 
patients versus frequency reported by current and past patients and caretakers from both studies. Dark to light 
grey sections (top to bottom) represent highest to lowest frequency, respectively. (d) Device setup times (s) from 
the human factors study for nine participants. Black circles represent three individual trial times per participant. 
Red “x” markers represent mean setup time among trials for each participant. Mean setup time across all trials 
and participants (15.6 s) shown with bottom dotted line; grey bar represents ± s.d. (5.9 s). This compares to 
the average PD setup time of 1050 s or 17.5 min (top dotted line). (e) Seven-point Likert scale responses from 
past, current, and prospective patients and caretakers on willingness to use OpticLine (top bar), how difficult 
they think it would be to set up OpticLine (middle bar), and for current and past patients and caretakers, the 
difficulty of their PD setup (bottom bar). (f) Professional respondents ranked on a five-point Likert scale for 
thinking the device could significantly improve PD patients’ quality of life and their own quality of life.
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predicted by cell count36,37 and could potentially be detected with our technology. We hope that our technology’s 
simplicity and novelty of its microscopy-based image analysis will not only improve the lives of PD patients, 
caretakers, and physicians, but also highlight and advance imaging-based screening tools in medical care.

Methods
Mechanical construction.  The clamp body was designed in Onshape and 3D-printed via fused deposi-
tion modelling with neodymium magnets added on either side of a compressible gasket to create a positive lock 
mechanism that fits securely around the chamber. The clamp is 125 mm long, 68 mm wide, 68 mm high, and 
weighs approximately 300 g. The 2 mm glass ball lens was acquired from a Foldscope18 and mounted onto the 
V2 Raspberry Pi camera via epoxy. The disposable chamber was designed in Onshape and printed via stereo-
lithography. It is made with Accura 60 plastic and has dimensions 77 mm (length) by 28 mm (width) by 12 mm 
(height). It attaches to the effluent drain line’s existing male and female connectors. The coverslips are standard 
glass microscopy coverslips, 484 mm2 and 0.16 mm thick, which are attached to either side of the printed piece 
with two-part epoxy.

Electronics.  All electronics are housed inside the clamp. Computational analysis occurs onboard rather than 
over the cloud because a large percentage of the U.S. PD population resides in rural communities, where fast 
internet access may be inaccessible38.

Effluent sample collection and image batch analysis training.  To develop our computational pipe-
line, we collaborated with the Nephrology Department at the Icahn Institute of Medicine at Mount Sinai to 
acquire effluent samples from multiple patients over multiple PD sessions. These samples were collected from 
PD patients who performed their dialysis either inside or outside of the hospital. All experimental protocols and 
experiments were approved by the Institutional Review Board of The Mount Sinai School of Medicine (IRB-20-
04268) and were performed in accordance with the relevant guidelines and regulations. After informed consent 
was obtained, all samples were collected 0–8 h after the end of the patient’s PD session from the patient’s effluent 
drainage bag. We measured the baseline cell count of each sample with both a haemocytometer and a Cellometer 
Auto 2000 (Nexcelom Biosciences) cell counter. If the sample was deemed “healthy,” containing a baseline cell 
count of 0–10 WBCs/mm3, we took images of that sample. If the sample had a cell count over 10 WBCs/mm3, 
we took baseline images and noted that it was not healthy. Because it was difficult to acquire many peritonitis-
positive samples from the hospital, we simulated infected samples. By spiking variable WBC concentrations (50, 
80, 100, 120, 150, 200, 250, and 300 WBCs/mm3) in effluent, we were able to train and validate our cell counter 
algorithm; samples spiked with concentrations of 100 WBCs/mm3 and above were considered “infected.” Using 
our prototype device, we captured 100 images of each spiked concentration sample as it flowed through our 
disposable chamber, using a peristaltic pump to simulate the cycler. These cell counts are then converted to 
concentrations via our counts processing algorithm.

Image analysis and image processing.  All computations for detecting fluid flow, image capture, and 
image analysis were performed locally on OpticLine’s Raspberry Pi 4 microprocessor, which runs on Raspberry 
Pi OS 2021. Once OpticLine detects fluid and takes images, these images are then analysed by a custom Python 
3.7 script. Cell count outputs are saved locally on its SD storage.

Counts processing algorithm cross validation training, testing, and summary statistics.  The 
interquartile range data at each spiked concentration was split into k = 10 groups for the k-fold cross validation, 
in which one group is the test dataset for the regression model, and the other nine groups are the training data-
sets for the regression model. Within each training and testing group, concentration labels and algorithm counts 
were used to train and test the regression model. For a given k-fold, the linear regression parameters and pre-
dicted WBC concentrations were output. If a predicted WBC concentration was below zero, the prediction was 
set equal to zero, to normalise against any negative WBC concentration predictions. The score (R2) of the linear 
regression of the training data was also calculated. The data was heteroskedastic: the residuals of the regression 
model did not have constant variance and the image batch analysis outputs had varied ranges, with variability 
increasing as concentration increased. R2 was adjusted for heteroskedasticity via weighting by the conditional 
variance of the WBC predictions. This process was repeated for each k-fold. After the k-fold cross validation was 
complete, the average and standard deviation of regression parameters, R2, and WBC concentration predictions 
were calculated. The final regression model with parameters averaged over all k-fold iterations was then used to 
predict the concentration of image batch analysis count outputs from other clinically collected samples.

Cell counting calibration and validation via manual counting.  Using an image annotation tool39, 
one independent rater manually counted 347 images for visible cells. The rater started from the top left corner 
and scanned each image horizontally, finishing at the bottom right corner. The rater deemed darker circular or 
line-like shapes smaller than background artifacts and with distinct outlines to be cells. The tool presented a 
variable number of images per concentrations of 0, 10, 50, 100, 200, and 300 WBCs/mm3 to the rater. The rater’s 
counts were compared to algorithm counts to optimise sensitivity and specificity of the image batch analysis 
algorithm.

Spiked effluent sample preparation.  The simulated peritonitis samples (effluent samples with baseline 
WBC concentrations of ≤ 10 WBCs/mm3 and spiked final concentrations of approximately 100 WBCs/mm3) 
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were created by determining the amount of isolated PBMCs to add to a given volume of the effluent sample. A 
baseline measurement of the effluent was first determined by a standard lab cell counter, the Cellometer Auto 
2000 (Nexcelom Biosciences). Then, we drew blood from informed and consented healthy volunteers and iso-
lated PBMCs using a Ficoll gradient density centrifugation40. We resuspended a counted number of PBMCs in 
a known volume of healthy patient effluent to produce concentrations of WBCs in effluent. We spiked multiple 
concentrations to train our algorithm.

Confounder experiments sample preparation.  Healthy effluent was placed in a 37 °C water bath. Ali-
quots were cooled to respective temperatures verified with a lab-grade infrared temperature gun. PBMCs were 
added to the aliquots and run through one metre of standard PD tubing and the OpticLine viewing chamber 
(our benchtop setup), in which they were imaged by the OpticLine clamp. Fluid flow was powered by a peristal-
tic pump, with flow rates mimicking those of a standard Baxter PD cycler.

Statistical hypothesis testing.  Wilcoxon signed-rank tests (with continuity correction), in addition to 
Pearson correlation coefficients, were used to identify least statistically significant differences between algorithm 
and manual counts by comparing p-values for image batch analysis parameter optimisation. To directly evaluate 
the measurements from our image batch analysis algorithm using the counts processing algorithm training data, 
Welch’s t-tests (with Bonferroni correction) were used to compare normal (10, 50 WBCs/mm3) and infection-
indicating (100 WBCs/mm3) algorithm outputs (α = .05). A Kruskal–Wallis test and post-hoc Dunn’s test with 
Bonferroni correction was used to evaluate statistically significant differences among groups of WBC concen-
tration predictions for high concentration, added whole blood, and fluid flow confounder experiments, and a 
Mann–Whitney U test was used for temperature comparisons (α = .05). Shapiro–Wilk tests were used to test for 
normality before performing non-parametric tests (α = .05).

Development of market research and human factors user studies.  We conducted a 3–6 month 
revision process on a pilot usability study (Supplementary Note 5) to create two distinct “market research” and 
“human factors” studies using Qualtrics questionnaires. We conducted a literature review on best practices41–43, 
medical device adoption44, questionnaire readability45, demographics46,47, and patient-reported outcome meas-
ures as well as dialysis-focused questionnaire studies48,49. Both studies were approved by the Institutional Review 
Board of Stanford University (IRB-53127, IRB-60390) and were performed in accordance with the relevant 
guidelines and regulations. Our market research study was an anonymous online 10-min questionnaire admin-
istered from April to June 2021 to past, present, and prospective PD patients and caretakers, and also nephrolo-
gists, nurses, and researchers working with PD. We adapted PROMIS® (Patient-Reported Outcomes Measure-
ment Information System) questions to further centre around the experiences of key stakeholders, modifying 
questions from PROMIS® Item Bank v.1.0 – General Life Satisfaction and PROMIS® Parent Proxy Item Bank 
v2.0 – Anxiety50 to ask specifically about PD experience and feelings. The questionnaire began with questions 
on OpticLine followed by PD patient history and care background questions. We gathered optional standard 
demographics information. We collected consent and assent without documentation to uphold anonymity. 
Participants completed a five-item feedback questionnaire after the main questionnaire. Recruitment meth-
ods included distribution through the National Kidney Foundation, displaying a QR code to the questionnaire 
on conference presentations and our website, as well as word-of-mouth. Our human factors study recruited 
paediatric caretakers from Lucile Packard Children’s Hospital to collect device setup times and user feedback. 
Study recruitment occurred between February–December 2021. Those with treating relationships with patients 
approached potential participants at or before dialysis clinic or at telehealth appointments with recruitment 
materials approved by the Institutional Review Board of Stanford University. Study team members obtained 
informed consent and assent at the dialysis clinic. Before or after the patient’s appointment, a chart review was 
conducted to collect relevant patient history.

Data availability
The main data supporting the findings of this study are available within the Article and its Supplementary 
Information. The raw data generated in this study are available from the corresponding author upon reasonable 
request, and pending licensing and patent status.

Code availability
All source code for image analysis is available from the corresponding author upon reasonable request, and 
pending licensing and patent status.
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