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Abstract: Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely
addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice
displayed a higher aggressive behavior score than the aggressive group, implying the manifestation
of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab
for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal
striatum transcriptome of aggression experienced mice and AD species compared to controls using
RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights)
with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This
led to a profoundly shifted transcriptome expression profile relative to the control group, outlined
by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that
elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially
expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority
of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor
DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic
restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the
control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators
from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the
distinct transcription programs featuring AD group, partly retained from the aggressive encounters
and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously
as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive
reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal
effect in AD group. Along with reporting profound transcriptome alteration in A20 group and
gaining some insight on its specifics, we outline specific TF activator gene networks associated with
transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary
candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.

Keywords: dorsal striatum; nucleus accumbens; transcriptome; cAMP cascade; dopamine; addiction;
endogenous opioids; behavior; chronic social conflict

1. Introduction

An aggression-tackling program manifests one of the key issues in health services
due to the prevalence of aggression in societies across the world [1]. Consequently, studies
on the neurologic mechanisms of aggression attract major psychiatric attention, along
with depression stated. Notably, chronic aggression may manifest as an addiction-like
state [2–4].
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Currently, it is established that the dorsal striatum (DS) and nucleus accumbens (NAcc)
in the ventral part of the striatum manifest the coordinated regulation of motor activity
and stereotypical behaviors [5]. They are reported to be involved in a variety of cognitive,
reward and social hierarchy maintenance and learning processes [6]. In particular, the
dorsal striatum has been proven to supervise the consolidation of the new response upon
the learning process [6]. Hence, these brain regions are inherently involved in addictive,
depressive and aggressive behavior [7–9] when regularly exposed to a stressful environment
or substance abuse, thus leading to behavior pattern fixation.

The major neuron body of both brain regions (DS, NAcc) comprises GABAergic
medium spiny neurons (MSN), acting quite synchronously upon the response to phasic
dopamine firing [10]. In particular, using RNA-Seq transcriptome data sampled from the DS
of mice in a chronic social conflict experiment, we previously reported distinct coordinately
expressed gene cluster profiles corresponding to D1- and D2- MSNs in certain phases [11].
The major mechanism of MSN intracellular signal processing upon dopamine/glutamate
monoamine uptake is cAMP-mediated (de)phosphorylation signaling cascades, with multi-
ple phosphoproteins involved [7,8,12].

Notably, it is reported that dopamine metabolism correlates with endogenous opioid
synthesis in the striatum [13,14], implying the opioid-mediated alteration of synaptic
plasticity in affected MSNs. Multiple reports on opioid-mediated changes report particular
alterations in the structural and functional plasticity of dendritic spines on MSNs [15,16].
The morphological dendritic changes invoked by opioids are exemplified by the actin
cytoskeleton’s remodeling [17]. The actin cytoskeleton gene expression alteration is subject
to membrane dynamics such as cell motility and morphogenesis. In particular, dendritic
spine dynamics (formation and elimination) are supervised by the actin cytoskeleton.

Genes encoding for cytoskeleton regulatory proteins are affected by opioids. The
GTPases family, involved in regulating the actin cytoskeleton, is attenuated by opioid
administration [18]. Transcription factors such as AP-1/Fos account for the regulation of
approximately a quarter of the structural and synaptic genes, such as activity-regulated
cytoskeletal proteins and others [19]. Besides neurons themselves, astrocytes also take
part specifically in pruning synapses [20]. Thus, a great deal of changes upon opioid
administration take place specifically at the synaptic structural level in MSNs [21].

In each experiment, we tracked the behavior of all males, recording videos of their
behavior during agonistic interactions, which allowed us to identify the most aggressive
mice demonstrating the greatest daily number and duration of attacks, hyperactivity, the
number of behavioral stereotypes, etc. Those with the most eminent aggressive pheno-
types (long-lasting, pronounced aggression toward any losers each day) were selected
for transcriptome analysis. Winners demonstrated an increased aggression score after a
14-day period of deprivation (AD group) in comparison with the aggression level before
deprivation [2,3].

Notably, chronic aggression accompanied by a positive reward (win) inherently mani-
fests an addiction state upon positive fighting experience rounds in mice [2–4]. Namely,
signs of addiction behavior, similar to drug users, according to Robinson and Berridge,
2003 [22], were observed in mice with repeated experience of aggression supported by wins
in daily agonistic interactions [4,23]. In particular, we observed activation of the brain’s
dopaminergic and opioidergic systems and the development of tolerance or sensitization
to dopaminergic and opiodergic receptor antagonists or agonists after chronic aggression
experience [4]. Similar to the withdrawal effect among substance abusers, the experienced
winners demonstrated increased aggression after a period of fighting deprivation [3].

Using a chronic social conflict model of aggressive and aggression-deprived nurtured
mice, this study pursues the aim of elucidating the basic differentially expressed gene
network dynamics characterizing both affected groups.



Genes 2022, 13, 21 3 of 24

2. Materials and Methods
2.1. Animals

Adult male C57BL/6 mice were obtained from the Animal Breeding Facility of the
FRC Institute of Cytology and Genetics SB RAS (Novosibirsk, Russia). Animals were
housed under standard conditions (12:12 hr light/dark regime starting at 8:00 am, with
food in pellets and water available ad libitum). Mice were weaned at three weeks of age
and housed in groups of 8–10 in standard plastic cages (36 × 23 × 12 cm). Experiments
were performed with 10–12-week-old animals. All procedures were in compliance with the
European Communities Council Directive 210/63/EU on 22 September 2010. The study
was approved by Scientific Council N 9 of the Institute of Cytology and Genetics SB RAS of
24 March 2010, N 613 (Novosibirsk).

2.2. Experimental Procedures
Modeling Repeated Aggression in Male Mice

Repeated negative and positive social experiences in male mice were induced by daily
agonistic interactions with the use of a sensory contact model, which later was renamed
the “model of chronic social conflicts” [23,24]. Pairs of male mice were each placed in a
cage (28 × 14 × 10 cm) bisected by a perforated transparent partition allowing the animals
to hear, see and smell each other, but preventing physical contact. The animals were left
undisturbed for two days to adapt to the new housing conditions and for sensory acquain-
tance before they were exposed to agonistic interactions. Every afternoon (2:00–5:00 p.m.
local time), the cage cover was replaced with a transparent one, and 5 min later (the time it
took for mice to start reacting to a partner in a neighboring compartment), the partition
was removed for 10 min to encourage agonistic interactions. The superiority of one of the
mice was firmly established within two or three confrontations with the same opponent.
The superior mouse (winner) would be attacking, chasing and biting another, who would
be displaying only defensive behavior (withdrawal, sideways postures, upright postures,
freezing or lying on the back). As a rule, aggressive interactions between males were
discontinued by lowering the partition if the strong attacks lasted for 3 min (in some cases
less) to prevent injury to the defeated mice. Each defeated mouse (loser) was exposed to
the same winner for three days, while, afterwards, each loser was placed, once a day after
the agonistic interactions, in an unfamiliar cage with a previously unencountered winner
behind the partition. Each winning mouse (aggressive mouse, winner) remained in its
original cage. This procedure was performed for 20 days (once a day) and yielded an equal
number of losers and winners.

Three groups of animals (n = 6) were collected in this experiment: (1) controls—
mice without experience of agonistic interactions; (2) winners—groups of mice that were
repeatedly aggressive for 20 days (A20); (3) aggression-deprived mice (AD) that were
converted from winners after a period of fighting deprivation for 14 days in secluded cages
(Figure 1). The winners 24 h after the last agonistic interaction, the control animals and AD
were decapitated simultaneously. The dorsal striatum regions were dissected by the same
experimenter according to the map in the Allen Mouse Brain Atlas [25]. All samples were
deposited in RNAlater solution (Life Technologies, Carlsbad, CA, USA) and were stored at
−70 ◦C prior to the sequencing routine.
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Figure 1. Timescale of experiments. A20—mice with 20 days of consecutive wins in daily agonistic
interactions; AD—A20 mice after subsequent 14 days of fight deprivation; Control—mice without
agonistic interactions.

2.3. RNA-Seq Data Collection and Processing

The collected brain samples were delivered to JSC Genoanalytica (www.genoanalytica.ru,
accessed on 18 December 2021, Moscow, Russia) for RNA-Seq sequencing. mRNA was
extracted using a Dynabeads mRNA Purification Kit (Ambion, Thermo Fisher Scientific,
Waltham, MA, USA). cDNA libraries were created using the NEBNext mRNA Library
PrepReagent Set for Illumina (New England Biolabs, Ipswich, MA USA) according to the
manufacturer’s protocol. The Illumina HiSeq 2500 System was used for sequencing using
single (non-paired end) reads of 50 bp length. The target coverage was set to 20 Mio. reads
per sample.

The dorsal striatum regions were processed for each of 6 animals per group, separately,
without technical replicates. Three groups of animals were employed in the study.

The raw reads from RNA-Seq experiments were trimmed for quality (phred ≥ 20)
and length (bp ≥ 32) using Trimmomatic v. 3.2.2 [26]. Illumina adapters were trimmed.
The reads were then aligned against the GRCm38.p3 reference genome using the STAR
aligner [27]. The descriptive statistics of sample mapping are available in Table S1.

The Cuffnorm app of Cufflinks suite [28] was employed for expression rate assessment
in FPKM units. The Cuffdiff app from the same suite was used for elucidating differentially
expressed genes.

2.4. Statistical Analysis

Principal component analysis (PCA) was employed using the XLStat statistical package
(www.xlstat.com; accessed on 18 December 2021). Pearson product moment correlation
matrix for gene expression in samples was used as input data for PCA. An agglomerative
hierarchical clustering (AHC) routine was performed using the Pearson correlation matrix
with the same XLStat package.

For the analysis, we used DEGs given significant FDR < 0.05 with cuffdiff software.
We then employed the strategy of DEG analysis and annotation with the string-db.org
suite, selecting the following two key thresholds. (a) DEGs should be connected/associated
based on evidence provided by string-db. This guarantees the avoidance of random
spurious single DEG signals, since a coordinated functional shift is exponentially more
statistically robust. (b) The auxiliary evidence of the connected gene neighborhood should
be also supported by transcription co-variation in our data, corroborative to external
evidence provided by (a). We thus confined our attention/conclusions based primarily on
the connected gene neighborhood making most sense in the DEG functional elaboration
assisted by Gene Ontology (GO) annotation. If there were unconnected but evidently
important DEGs (such as the key transcription factor activators), we used the procedure
of string-db-mediated expansion of the corresponding DEG gene neighborhood, with
subsequent checking of consistent co-variation of the inferred network in our data.

www.genoanalytica.ru
www.xlstat.com
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3. Results
3.1. Detecting DEGs in Three Pairwise Comparisons

We performed three-way comparisons of control, A20 and AD expression data by
means of CuffDiff software [28]. The results yielded approximately 1000 DEGs for control
vs. A20 species, and only 62 for AD compared with controls (Table 1). This implies that the
dorsal striatum state of AD species is quite close to the control, while, in aggressive A20
species, there are a great deal of alterations.

Table 1. Three-way comparisons outline based on CuffDiff [26] DEG detection.

Number of DEGs (FDR < 0.05) Number of Non-Zero
Expressed Gene Pairs

Control vs. A20 1030 24,321

Control vs. AD 62 23,924

A20 vs. AD 1009 23,763

3.2. C_AD Comparison

We performed GO annotation of DEGs from C_AD comparison, which yielded a single
highly significant GO term annotation (process) “DNA-binding transcription activator
activity, RNA polymerase II-specific” (GO:0001228; 12 genes, FDR < 2.6 × 10−5).

To ascertain the 12 DEG set clustering mode outlined by GO annotation, we built a PCA
biplot based on the 12 gene expression profiles (Figure 2). We found that 12 DEGs assigned
as “transcription activators (Transcription Factors, TF)” underlined by the particular GO
term were quite antagonistically distributed (Figure 2). Note 3 species clusters therein:
control (green shaded), AD (Zic1, Zic2, Tcf7l2), and A20/AD (Zeb2, Foxi2, Pou2f2) clusters.

Figure 2. PCA biplot outlines distinct alteration of TF programs (3 DEG clusters) between AD (blue),
A20 (red) and control (green) groups. Green shaded area is control group.
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Consequent GO analysis underlined connected networks in two of three clusters, as
depicted in Figure 3.

Figure 3. GO annotation of 12 TFs split into three corresponding clusters (A–C) (Figure 2). Overall
PPI enrichment p-value (7 edges vs. 1 exp): 5.23 × 10−6. Green shaded area (A) is a control-group-
associated cluster (Figure 2). Color coding: yellow—KW-0010: activator, 7 genes; FDR < 2.4 × 10−6;
red—central nervous system projection neuron axonogenesis; 2 genes; FDR < 0.03; pink—GO:0035257;
nuclear hormone receptor binding; 3 genes; FDR < 0.015; blue—GO:0071376 cellular response to
corticotropin-releasing hormone stimulus; 2 genes; FDR < 0.0024; green—behavioral abnormalities of
Zic1 and Zic2 mutant mice; PMID: 11699604. The image was created with the string-db.org service.

In total, 145 publications referencing this particular 12 fold TF activator set are avail-
able, according to the “reference publications” term in the string-db.org resource. Three GO
categories are valid throughout the whole 12 fold set: (1) DNA-binding transcription activa-
tor activity, RNA polymerase II-specific (12 genes; FDR < 4 × 10−17); (2) sequence-specific
DNA binding (12 genes; FDR < 4.4 × 10−13); (3) nucleoplasm (12 genes; FDR < 2.7 × 10−7).

3.2.1. Expansion of TF Clusters by Co-Variation Analysis

To gain further insight into the 12 TF features, we employed expansion of the DEG
networks presented in Figure 3 by co-variation analysis of all gene profiles across 18-fold
samples, using as the seeds the genes from the target 12 TF list (Figure 3). Expression
profiles were assessed pairwise with the Kendall rank correlation coefficient.

We applied the algorithm of min/max optimization, aimed at elucidating the minimal
connected neighborhood with the maximum target genes. For this, we used the genes with
the highest correlation values with queries from the target list of six, three and three TF
clusters (Figure 3) with a threshold of Kendall correlation coefficient: r > 0.6 (p < 1 × 10−3).

3.2.2. Control Six-TF DEGs Assessment

As a result of the min/max algorithm, we efficiently expanded the “control” six-TF
DEG cluster (Figure 3A) and generated a connected subset (11 genes) spanning five DEGs,
as shown in Figure 4. We allowed the algorithm to include the genes from the same gene
families even if this did not lead to the inclusion of the DEGs. In this way, we, as a rule,
maintained a more robust gene network due to their regular relevance.

The majority were transcription factors related to the “regulation of neuronal synaptic
plasticity” and “nervous system development” GO terms. Seven TFs were reported to affect
behavior (Figure 4). All genes significantly correlated with the Fos TF, implying its priority
in the set. The set comprising Fosl2, Egr1, Etv5, Nr4a1 and Nr4a2 was related to the cellular
response to corticotropin-releasing hormone stimulus, cellular response to oxidative stress,
locomotory behavior and response to hypoxia according to GO annotation (Figure 4).
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Figure 4. Eleven connected co-varied genes spanning 5 DEGs (Egr1, Etv5, Fosl2, Nr4a1, Nr4a2)
presented in Figure 3A. GO color coding corresponds to the plot above (gene numbers attached to
bars). The DEGs in this set feature control group and are decreased in AD and A20 groups (Figure 2).

3.2.3. Circadian Rhythm DEG Analysis

It appeared that the Arntl DEG (Figure 3A) was not related to other DEGs from the
control group and was implicated in the circadian rhythm gene network (Figure 5).
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Figure 5. Eight circadian rhythm genes subset expanded from Arntl DEG and annotated by string-db
suite (Figure 3A).

We underlined three repressive DEGs (Per1, Per2, Nr1d1) besides Arntl inferred from
C_AD, AD_A20, C_A20 comparisons when we built a PCA plot across all mice groups
based on eight gene expression profiles (Figure 6). Aggression-related genes repressive
to circadian rhythm genes Cry1, Cry2, Per1, Per2 were downturned in AD species, except
for Nr1d1, but the key circadian genes (Arntl, Clock, Npas2) had not yet recovered their
expression, implying an acute transition state in the AD group, featuring specifically high
expression of the antagonistic Nr1d1 DEG in the AD group (Figure 6). Notably, certain
circadian clock genes negatively regulate the glucocorticoid receptor pathway (GO plot,
top, Figure 5); thus, hormonal misbalance may take place given the shifted state of the gene
expression profile dynamics (Figure 6).

The disruption of the circadian clock apparently followed increased dopamine uptake
in aggressive mice, as underlined in [29].
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Figure 6. Circadian rhythm TF set (8 genes; Figure 5) PCA biplot featuring a control-group-associated
Arntl DEG (Figure 3A) along with experimentally confirmed (string-db) connected genes Npas2,
Clock (green shaded area) that are attenuated in affected species due to repressive action of cAMP-
associated Per1 expression in aggressive mice. H0: random distribution of species across plot’s 2
halves: p < 0.0024; binomial test. Each gene statistically significantly correlates with at least 2 other
genes (p < 0.05) except for Clock (Table 2). Curved arrow depicts group-related sequential gene
expression dynamics cycle: C->A20->AD->C. Underlined gene names indicate DEGs in any of the
3-way comparisons. Enlarged underlined genes feature differential expression in 2 comparisons:
Arntl (C_AD, C_A20); Per2 (AD_A20, C_A20).

Table 2. Pearson pairwise correlation matrix; df = 17.

Variables Nr1d1 Cry2 Per1 Npas2 Arntl Cry1 Clock Per2

Nr1d1 1 0.603 0.312 −0.247 −0.620 −0.288 −0.305 0.025
Cry2 0.603 1 0.656 −0.087 −0.392 0.179 −0.138 0.447
Per1 0.312 0.656 1 −0.226 −0.474 0.297 0.126 0.669

Npas2 −0.247 −0.087 −0.226 1 0.552 0.510 0.223 0.065
Arntl −0.620 −0.392 −0.474 0.552 1 0.325 0.369 −0.067
Cry1 −0.288 0.179 0.297 0.510 0.325 1 0.323 0.786
Clock −0.305 −0.138 0.126 0.223 0.369 0.323 1 0.274
Per2 0.025 0.447 0.669 0.065 –0.067 0.786 0.274 1

Values in bold are different from 0 with a significance level α = 0.05.
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3.2.4. Cluster Two Expansion

We assessed the expanded three-DEG set (Figure 3B) featuring the wnt signaling and
consequent attenuation of neural development (Figure 7). The Zic family of zinc finger
C2H2 proteins is annotated as transcriptional repressors (Zic1-Zic5). Zic1 is reported to
repress the Drd1 receptor, characteristic of AD species lacking dopamine. The Zic1, Zic2
genes are reported to be involved in behavioral abnormalities [30]. Overall, this cluster
comprises several TFs (Smo, Ctnnb1, Nr2f2, Zic2, Med12, Zic3) involved in sustaining
pluripotency (GO: WP1763; Figure 7), alongside transcription/development regulation,
as well as overlapping with carcinogenic marker genes (Ctnnb1, Fzd8, Fzd9) in various
tissues except for brain-related ones, as reported elsewhere. Figure 8 confirms these genes’
concordant expression in the AD mice subgroup. Notably, we recovered six more DEGs
(Calb2, Zic4, Prkcd, Nrp2, Nr2f2, Whrn; Figure 8) present in the connected network (Figure 7),
specifically in the A20_AD comparison, and the significance rate for all nine DEGs was
the highest possible (Table S2). This gene cluster was downturned in A20 relative to the
controls (see Whrn DEG twofold difference; Table S2). Overall, the C_AD comparison
yielded four associated DEGs (Prkcd, Calb2, Zic1, Zic2) augmented specifically due to AD4
and AD6 species (Figure 2; Table S2). Based on this fact, we may state that the emergence
of this particular cluster/network for AD4 and AD6 species (Figure 2) fundamentally
antagonizes/contradicts A20’s gene expression pattern (as well as that of the control group;
Figures 2 and 8), and may be the basic cause of acute phenotype manifestation. Whrn
DEG is associated with actin-based projection dynamics along with other genes (Figure 7),
implying that membrane structure remodeling may be employed during the process.

The Wnt pathway essentially relates to the embryonic development program, implying
high dynamics of transcription program evolvement in mature tissues as well [31]. It starts
with Wnt* gene(s) transcription, which causes an accumulation of Catenin β (Armadilio) in
the cytoplasm and its translocation to the nucleus, acting as a transcriptional coactivator of
transcription factors. Thus, overexpression of Ctnnb1 points to the exemplification of the
Wnt program in the cells.

Also, in regard to this path, we observed Wnt9a, Wint10a as DEGs elevated in AD mice,
as featured in the AD_A20 comparisons with high confidence (FDR < 0.0014 for Wnt9a;
Table S2). The C_A20 comparison manifests four Wnt DEGs (Table S2), including the
abovementioned two in AD being highly depressed in A20, implying a transition activation
mode of these genes in AD evolving from A20 to control group.

While Tcf7l2 (Figure 3B) is not physically associated with the AD-related DEG cluster
depicted in Figures 7 and 8, Tcf7l2 manifests the broadest significant co-variation gene
volume among the 12 DEGs considered. Its primary known functional partner is wnt3.
The pair feature a carcinogenic tandem, as reported in many studies. Mostly glial genes’
expression profiles co-vary with Tcf7l2. After thorough analysis, we may state that it
represents gene clusters involved in the wnt signaling response related to gliogenesis and
myelination [31].
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Figure 7. Twenty-seven genes recovered by string-db.org as Zic1/2-associated TF network and
associated with AD subgroup (Figures 2 and 3B). Armadillo (Ctnnb1) gene (catenin β 1) is the most
connected gene in the center. GO color coding is assigned as in histogram plot above (number of
genes is attached as bar labels therein).
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Figure 8. PCA plot of 27 genes from Figure 7 gene network of AD-specific Wnt-associated (Ctnnb1,
Prkcd, Fzd8, Fzd9; [31]) TF program; see also Figures 2 and 3. Bold underlined gene names indicate 9
DEGs within this network.

3.2.5. Third Cluster Featuring Joint A20/AD Species

The three genes of A20-associated clusters are Zeb2, Pou2f2 and Foxj2. The latter two
are homeobox TF genes, while Zeb2 is essentially a member of the effective transcriptional
repression TF gene network related to sustaining a pluripotent state (Figure 9).

Thus, we may report that both affected species groups’ associated DEG TF clusters
(Figure 3B,C) feature transcription repression gene networks accompanied by the conse-
quent attenuation of positive development TFs featured in the control group (Figure 3A).



Genes 2022, 13, 21 13 of 24

Figure 9. Neighborhood recovery of Zeb2 neighborhood inferred by string-db.org resource (11 genes)
implies “repression of transcription” GO function of genes set. All but one (Arhgap) genes are
transcriptional repressors; 8 genes belong to nucleus compartment (TFs); 4 genes (Cdh1, Cdh2, Ctbp1,
Ctbp2) are associated with glutamatergic synapse.

3.3. A20 vs. AD Comparison

We observed 62 DEGs in the C_AD comparison, while more than 1000 DEGs were
featured in the A20 transcriptome against two others (Table 1; Table S2). Analysis of the
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C_AD DEGs comparison above implies that, except for 12 quite distinct and coordinated
master TF gene alterations elucidated above, there are no other alterations between the C
and AD groups subject to sensible results. Thus, we decided to limit our further analysis
to the A20_AD comparison only, not considering the C_A20 one, since DEG overlap was
quite dominant between C_A20 and AD_A20 (around 1000 DEGs). When appropriate, we
used three-way comparisons in further PCA plots featuring the group specifics in each
particular gene network.

3.3.1. Differentially Expressed Genes between Groups

We started with outlining that the A20 group attenuated its transcriptome in a major
part against the AD one, featuring 839 DEGs that decreased their expression, against 170
with increased expression profiles (Figure 10).

Figure 10. Total of 1009 DEGs across AD and A20 groups. A20 group maintained around 170
increased DEGs, while 839 DEGs featured attenuated expression in the A20 DS.

An overall breakdown of the GO categories in A20_vs_AD is presented in Table S3
in the graphical plots therein. In particular, there are 67 relevant pathways from KEGG,
including cAMP-mediated signaling, learning and glutamate receptor pathways (Table S3).
A total of 239 genes were involved in the annotated KEGG pathways from the DEG
gene list. The majority of the KEGG pathways (45 from 67) partially included the cAMP
signaling network. Both cellular component and biological process GO categories were
highly enriched (high FDR significance) with neuron-specific compartments/pathways
(Table S3). At least half of the DEGs (536) were phosphoproteins, implying regulation
complexity and the signal transduction type in medium spiny as well as other neurons.
Tissue type GO annotation unambiguously assigned most of its categories to brain tissues,
including relevant corpus striatum/neostriatum/striatal neuron types (Table S3). A total of
18 “negative regulation” GO terms were observed in the “Biological Process” GO category
(Table S3).

The primary analysis performed by clustering DEG by gene family (Table 3) revealed
a great deal of genes involved in synaptic plasticity, as previously reported. In particular,
we observed 8 Rho GTPAses (Arh), 10 collagens, the Kif family (6DEGs), regulators of G
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protein signaling (5 DEGs), etc. (Table 3). From 192 DEGs in the families with DEGs > 4 in
Table 3, only 24 DEGs increased their expression in the A20 group.

Table 3. Abbreviated gene families and #DEGs per family. The majority represent synaptic-associated
genes and ion transporters (Slc). (See Table S4 for expanded info.) q_value = 1.35 × 10−3 is the
minimal value throughout the transcriptome of 23 thousand genes signifying the maximal accuracy
threshold (virtually zero) defined by a multiple-comparisons correction value.

Family Min (q_Value) Max (q_Value) Stddev (q_Value) # DEGs per Family

Slc 1.35 × 10−3 3.63 × 10−2 1.05 × 10−2 29
Kcn 1.35 × 10−3 4.92 × 10−2 1.31 × 10−2 22
Tme 1.35 × 10−3 4.88 × 10−2 1.50 × 10−2 17
Zfp 1.35 × 10−3 4.97 × 10−2 1.38 × 10−2 15
Col 1.35 × 10−3 4.39 × 10−2 1.28 × 10−2 10
Arh 1.35 × 10−3 4.88 × 10−2 1.66 × 10−2 8
Ptp 1.35 × 10−3 2.59 × 10−2 1.04 × 10−2 7

Map 1.35 × 10−3 2.31 × 10−2 7.40 × 10−3 7
Gpr 1.35 × 10−3 2.10 × 10−2 7.21 × 10−3 7
Kif 1.35 × 10−3 2.24 × 10−2 7.86 × 10−3 6
Cac 1.35 × 10−3 4.56 × 10−2 1.89 × 10−2 6
Tri 1.35 × 10−3 3.10 × 10−2 1.30 × 10−2 6

Ank 1.35 × 10−3 4.56 × 10−2 1.51 × 10−2 6
Fam 1.35 × 10−3 1.37 × 10−2 4.58 × 10−3 6
Cdk 1.35 × 10−3 4.45 × 10−2 1.72 × 10−2 5
Rgs 1.35 × 10−3 4.67 × 10−2 1.57 × 10−2 5
Prr 1.35 × 10−3 3.76 × 10−2 1.38 × 10−2 5
Aka 1.35 × 10−3 2.51 × 10−2 9.33 × 10−3 5
Ple 1.35 × 10−3 4.78 × 10−2 1.94 × 10−2 5
Cep 1.35 × 10−3 4.63 × 10−3 1.28 × 10−3 5
Adc 1.35 × 10−3 4.63 × 10−3 1.39 × 10−3 5
Doc 1.35 × 10−3 9.39 × 10−3 3.13 × 10−3 5

3.3.2. Elaborating on A20-Associated Positive DEG Cluster

We selected 170 DEGs elevated in the A20 group (Figure 10) to assess the functional
specifics of the DEGs located within. Upon the clustering routine, we observed virtually
a single cluster of 149 DEGs manifesting the cAMP-dependent signaling cascade and
associated DEGs, while 21 other DEGs presented non-specific singletons/small clusters.
According to GO annotation, we observed a large set of “negative regulation of cellular pro-
cess” GO enrichment DEGs (58 genes; FDR = 2.3 × 10−4). The “semaphorin-plexin signaling
pathway involved in axon guidance” repression pathway (Sema3a, Pxnd1, Klk6, Plxnb3
DEGs; FDR < 0.0146) was featured in the A20 group (Figure 11a). The dopamine-mediated
JAK/STAT pathway gene network reported to be evoked in Parkinson disease [32] also
proved to be elevated specifically in the A20 group (Jak22, Irs1 DEGs; Figure 11b). Explicit
GO annotation of other GO-enriched categories of the positively regulated 149 DEG cluster
in the A20 group is available in Table S5.
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Figure 11. (a) “Semaphorin-plexin signaling” GO DEG set (4 genes); H0: random distribution of
samples across 2 plot halves, p-value < 0.00065 (binomial test); (b) JAK/STAT gene projection inferred
from string-db.org seeded by Jak2, Irs1 DEGs; H0: random distribution of samples across 2 plot halves,
p-value < 0.0045 (binomial test). Underlined gene names signify DEGs. Encircled is A20 group.

Notably, the cAMP cluster conveyed some facts that are worth noting. First, synaptic
scaffold genes PSD95 (Dlg4) and Homer1 increased their expression in the DS of aggressive
species due to the impact of the cAMP-mediated cascade (and, hence, opioid exposure),
contrary to what was reported in [18] for the NAcc region. We should state that Dlg4
performs a specific role in glutamate/dopamine receptor switching in MSNs, as reported
in [33–35]. Homer1 was reported to be increased in the amygdala of opioid users [36]. It
should be stated, though, that the increase was not prominent (not significant in Dlg4
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and minimally significant in Homer1 (FDR=0.041; see Table S3)). No significantly different
expression of these genes in the C_A20 comparison was observed since the control group
featured more active dopamine uptake in the DS (Table S3). Nonetheless, one should bear
in mind that we dealt with a relatively mild endogenous opioid synthesis impact in the
A20 group.

Circadian entrainment genes were among the non-randomly enriched DEGs in the
A20_AD comparison associated with the cAMP cascade as well (mmu04713; Gucy1b3,
Rps6ka5, Gucy1a3, Per2, Gnb5, Cacna1h; FDR < 0.024). The “negatively regulated circadian
rhythm” GO enrichment contained DEGs (Cry1, Drd1, Per2, Drd2), implying a connection of
circadian clock genes Cry1, Per2 with the cAMP-dependent cascade. Indeed, we observed
the repression of positive circadian rhythm genes’ expression Npas2, Arntl by Cry1, Per2 in
A20 and AD species (Figure 6).

Finally, we report a subcluster of highly correlated RNA-binding proteins (Cnot6,
Ddx3y, Ireb2, Mbnl1, Mbnl2, Per2, Rbm15, Xpo1, Ythdf3), depicted in Figure 12. Three of
them (Mbnl1, Mbnl2, Rbm15) represent splicing factors. Overall, the cluster manifests
negative regulation of transcription. In particular, Rbm15 is reported to facilitate m6a
posttranscriptional methylation of mRNA [37]. To the best of our knowledge, we are the
first to report such DEGs in regard to DS cAMP signaling.

Figure 12. RNA-binding DEG subcluster within 149 cAMP-mediated positive A20 DEG cluster
(Figure 10). Drd1 included, underlining significant correlation with these DEGs. Per2, Rbm15 are
known transcriptional repressors (see the text). H0: random distribution of samples across 2 plot
halves, p-value < 0.0045 (binomial test). Underlined gene names signify DEGs.

3.3.3. Dopamine-Mediated cAMP Signaling Cascade Balanced Gene Projection in A20 vs.
AD Comparison

We underlined two basic interconnected gene groups relevant to the aggression man-
ifestation we consider keystone according to previous publications on behavioral genet-
ics [7], which are the cAMP-mediated gene network and associated endogenous opioid
expression. We assessed samples based on the cAMP-mediated dopamine turnover bal-
anced genes set comprising 33 genes introduced in our previous work [11]. The PCA plot
underlines high MSN dopamine uptake accompanied by endogenous opioid synthesis
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in aggressive species (Figure 13). Oppositely, based on Drd1, Drd2 DEGs and Ppp1r1b
(Darpp-32) location we infer profound dopamine uptake depression in AD species, along
with the abrogation of opioid synthesis.

Figure 13. PCA plot based on 33 specific cAMP-mediated balanced gene subset compiled in (Babenko
et al., 2020) featuring A20 and AD groups. Marker gene set is shown in bold. Blue-shaded arrow
signifies dopamine vs. glutamate uptake gradient. Yellow-shaded arrow signifies D1 passive/active
states phasing [11]. Blue-shaded oval underlines opioid synthesis (Penk, Pdyn). H0: random distri-
bution of 5-fold AD sample with only 1 alien species in a plot; left half is p-value < 0.016 (binomial
distribution). Blue dots are AD samples; dark blue dots are aggressive samples. Underlined gene
names indicate DEGs.

4. Discussion

We report that the majority of DEGs in the AD_A20 comparison are attributed to
synaptic remodeling (GO terms: neuron development, etc.; Table S3) and the attenuation
of major development/metabolic processes, leading to the overall downregulation of
839 DEGs from 1009 (Figure 10).

Analysis of DEGs cluster (170 entries) with increased expression in aggressive mice
outlined the major role of the cAMP-mediated response in the dopamine uptake gene
network and several associated ones, including multiple repressive TFs networks.

To gain further insight into the dopamine–opioid interactions, we inferred that the
most expressed striatum neuron-specific genes observed in our samples were Darpp-32 (avg.
exp. 1000 FPKM) and Penk (800 FPKM) reported elsewhere. We added dopamine-specific
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gene Drd1/2 and opioid-associated Penk and Pdyn genes for comparison, as presented in
Figure 14. Both Darpp-32 (Ppp1r1b) and Penk are the highest expressed DS coding neuron
specific genes attributed to MSN.

Figure 14. FPKM values of 5 dopamine- and opioid-specific genes across 18 samples.

We utilized the balanced dopamine cAMP mediated signaling gene network depicted
in Figure 13 elucidating an expression projection of this cascade implicitly reflecting the
signaling intensity specifics. It is worth noting that incorporated Darpp-32, the ‘heart’
of dopamine mediated signaling cascade assures high confidence of elevated dopamine
uptake by its expression shift (Figure 13) supported by coordinated Drd1, 2 DEGs expression.
At the same time, it’s hard to ever expect it being DEG due to a high variation (Figure 14)
and given enormous expression rate.

One of the basic observations supporting the validity of our analysis is the observed
high co-variation of striatum-specific dopamine and opioid genes, outlined in Table 4
and based on data from Figure 14. We found the five genes considered co-vary non-
randomly with p-value < 1 × 10−7. Pdyn is less coordinated (p < 1 × 10−5; Table 4),
less expressed than others (30 FPKM avg.; Figure 14) and is not strictly striatum-specific
(hypothalamus, some other regions). Nonetheless, due to its rather stable expression mode
it is the most significant DEG among the cAMP set, along with Drd2 (DEG significance for
both: FDR < 0.00135, the maximum possible; Table S2).

Table 4. Pearson pairwise correlation coefficients of key DS-specific genes’ expression profiles across
samples (df = 17).

Variables Darpp-32 Penk Drd2 Drd1 Pdyn

Darpp-32 1 0.858 0.914 0.863 0.723
Penk 0.858 1 0.925 0.838 0.867
Drd2 0.914 0.925 1 0.886 0.777
Drd1 0.863 0.838 0.886 1 0.717
Pdyn 0.723 0.867 0.777 0.717 1

Values in bold are different from 0 with a significance level α = 1 × 10−7.

The reason for such a high correlation rate is that all genes considered are subject to
cAMP-mediated activation, including Penk [38]. We thus reconfirm the inherent opioid
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synthesis upon dopamine uptake reported elsewhere [13,14], and, based on our analysis,
we considered these coordinated networks to be the most causal ones.

After elucidation of the core DEG networks, we conclude that high dopamine uptake
accompanied by endogenous opioid synthesis in A20 results in profound alteration of
the dorsal striatum transcriptome, leading to more than 1000 DEGs in A20 compared to
other groups, and more than 540 (though highly overlapping) GO processes’ enrichment
(Table S3). These changes feature many gene circuits/processes outlined for AD_A20
GO annotation (Table S3). We specifically underline dopamine-mediated cAMP signaling
featuring an increase in the opioidergic network (Figure 13; blue oval). From 63 KEGG
networks’ enrichment, 45 overlap with the cAMP cascade (Table S3; KEGG spreadsheet).

Two weeks of aggressive species fight deprivation led to significant restoration of the
normal transcriptome in AD (Table 1). A lack of opioid and dopamine uptake in the AD
dorsal striatum followed profound GABA reuptake, indicated by a high Slc6a11 expression
increase in AD vs. A20 (q < 0.00135; Table S3), implying that MSN GABAergic signaling
stalls in AD species.

Previous studies underline the profound alteration of opioid-induced synaptic plas-
ticity in MSNs, including structural, transcriptional and epigenetically invoked compo-
nents [21]. We report distinct structural synaptic remodeling dynamics, observing “actin
filament-based movement”, “actin-mediated cell contraction”, “actin filament-based pro-
cess” (50 DEGs) and “regulation of actin filament-based process” (23 DEGs) GO enrichment
significantly shifted in A20 from the AD/control. In particular, we report 41 DEGs of
“actin cytoskeleton organization” enrichment (Table S3; “Process” sheet; s.669; FDR < 0.007;
GO:0030036), corresponding with the earlier connection with the synaptic membrane [39].
Virtually all of the DEG networks mentioned in the GO enrichment (Table S3) were down-
regulated in the A20 group.

Regarding C_AD DEGs, we report three clusters of TF activators (Figure 3), two
featuring repressors augmented in A20/AD species, with a corresponding attenuation of
the control TF activators DEG cluster. It is worth noting that we elucidate circadian rhythm
network disruption in all three transcriptome comparisons, which was significant in both
the aggressive and aggression-deprived groups (Figure 6). Previous studies underlined
the withdrawal effect of the Per2 gene [40], as well as its dopamine-associated expression
pattern [41], featuring abrogation of the withdrawal effect while knocking Per2 out [42].
Notably, we observed a significant downturn in Per2 in AD mice (Figure 6), implying a
transition to a normal state. We point out the Nr1d1 DEG as the most antagonistic one in the
AD group relative to the control group within the circadian clock gene network (Figure 6).
Overall, three repressive DEGs (Per1, Per2, Nr1d1) manifest the greatest discrepancy with
control group circadian genes in affected species, as reported in [43]. The effects on
circadian clock genes upon chronic opioid exposure were also reported in a series of recent
publications [44–46].

We performed RNA-Seq analysis of aggressive (A20), aggression-deprived (AD) and
control groups, evaluating their relationships. We present our major results in the relation
diagram in Figure 15, elucidated by DEG analysis. Therein, the red arrow underlines a high
expression discrepancy (more than 1000 DEGs; Table 1). The blue arrow indicates quite few
DEGs (given C_AD comparison; Table 1), but they were quite empowered TF activators
(Figure 3), producing a non-significant distribution but a considerable effect on the key
neurogenetic networks related to withdrawal syndrome after opioid addiction. Notably,
a downturn in opioid synthesis in aggressive mice was reported in [47], but the authors
examined the whole brain tissue. The current study links dopamine-mediated increased
opioid expression with the DS in aggressive mice (Figures 13 and 14), as also confirmed in
our previous studies [2–4].
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Figure 15. Flowchart of DEG inferred events from aggressive to control groups.

5. Conclusions

We report high overall attenuation of the DS transcriptome expression rate (170 out
of 1009 DEGs are upregulated in A20) upon aggression-related stress, featuring high
dopamine uptake and endogenous opioid synthesis. Strikingly, we observed quite rapid
(14-day period) recovery of the major body of transcriptome gene expression profiles
upon fighting round abrogation, with the unique elevation of 12 TF activators’ expression
profiles. Most of these DEG TFs refer to the repression of neuron development, which, in
particular, implies synaptic scaffold rearrangement. We assume, given the contraction of
the postsynaptic density architecture [18,19], along with the alteration of synaptic gene
expression upon opioid exposure, that it takes considerable time to restore the intact
synapse plasticity transcription program along with the circadian rhythm, in this way
leading to the withdrawal symptoms.

Concerning the A20 group, we report that the cAMP-mediated gene cascade displays
significant elevation following the disruption of the circadian clock, increased opioid
synthesis, the evocation of Wnt signaling in the DS and a downturn in overall neurogenesis
and glial development. We underline the similarity of the DS and NAcc brain regions
based on neuron content (MSNs as majority; [10]), thus manifesting similar mechanisms
within this core, including maintaining dopaminergic projections from VTA and employing
cAMP-mediated intracellular signal cascades within them.

As group-wise specific features, we report neuroinflammation related Semaphorin-
plexin and JAK/STAT signaling instantiations in A20 group (Figure 11), and wnt cascade
being robustly manifested in part of AD group (Figure 8), possibly linked to synaptic
plasticity restoration including dendritic spines and axon projections architecture lost upon
endogenous opioid exposure [21].
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