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Abstract
As competition in the biopharmaceutical market gets keener due to the market entry of biosimilars, process analytical
technologies (PATs) play an important role for process automation and cost reduction. This article will give a general
overview and address the recent innovations and applications of spectroscopic methods as PAT tools in the downstream
processing of biologics. As data analysis strategies are a crucial part of PAT, the review discusses frequently used data
analysis techniques and addresses data fusion methodologies as the combination of several sensors is moving forward in the
field. The last chapter will give an outlook on the application of spectroscopic methods in combination with chemometrics
and model predictive control (MPC) for downstream processes.
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Introduction

The biopharmaceutical industry currently faces major
changes because of increasing competition in the field due
to the market entry of biosimilars and increasing costs
in research and development (R&D) of new drugs [1].
Since 1950, the number of approved drugs per billion US
dollars spent for R&D has halved approximately every
9 years. This behavior is termed ’Eroom’s Law’ as it
describes the opposite of ’Moore’s Law’ [2]. Not only
are the costs per approved drug increasing, but the sales
of off-patent blockbuster drugs are slowing down due to
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price competition from a variety of biosimilar products
[3]. More companies seek to capitalize on the rapidly
growing biologics market, which creates a competitive
climate driving innovations for cheaper production, faster
development, and improved quality of the biologics in order
to gain a competitive edge [3, 4].

Digital transformation has already proven to drive the
performance of companies in other industry sectors and has
started to be adapted by the rather conservative biopharma-
ceutical industry as key strategy for production improve-
ments as well [5, 6]. Part of the digital transformation of
production processes are the implementation of appropri-
ate measurement sensors and data analytics, i.e., process
analytical technology (PAT), as information input for pro-
cess control algorithms [6]. The achieved process control
allows for optimal production runs and improves process
robustness. The product quality may be improved by coping
with process variability. Process robustness also shortens the
development-to-market times, e.g., by facilitating scale-up,
resulting in a competitive advantage [7].

While PAT has been successfully implemented as a pillar
of process control for numerous small-molecule pharma-
ceuticals [8, 9], the high complexity of biopharmaceu-
tical proteins and the close chemical similarity of con-
taminants impose a challenge for finding suitable PAT
methods [10]. Ideally, a PAT method would be able
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to differentiate between product, process-related contami-
nants, and product-related contaminants in real-time. How-
ever, some product-related contaminants (such as subtle
structural differences in oxidation or deamidation of single
amino acids to the product) are detected by time-consuming
analytical methods [11] e.g., analytical high-performance
liquid chromatography (HPLC) methods, which typically
take 30 min or more [12]. Larger structural differences
(e.g., aggregation, misfolds, or PEGylated species) can be
detected by on-line HPLC within 4 min to 6 min [13, 14],
or by in-line spectroscopic methods in real-time [15, 16].
Here, spectroscopic methods offer several advantages over
on-line PAT methods, such as rapid and automated detection
with no sample preparation, conditioning, or destruction
at comparable equipment costs [17]. However, one optical
spectroscopic method alone offers a limited selectivity for
the structural integrity of proteins [13], but optical spectro-
scopic methods can be easily combined with other spec-
troscopic or non-spectroscopic sensors to measure a large
variety of attributes [18, 19]. Therefore, improved measura-
bility and accuracy can be achieved by multiple sensors as
compared to a single sensor [20, 21].

As the data complexity increases through the com-
bination of multiple, possibly multivariate, spectroscopic
sensors, advanced data analysis is required to extract infor-
mation from the multivariate data about critical process
parameters or critical quality attributes [22]. Data analysis
from chemical data itself is also referred to as chemometrics
[23]. Even though chemometrics generally covers the basic
analysis from multiple data sources, data fusion method-
ologies are applied to chemical data for classification and
prediction improvement [24]. As data analysis is often per-
formed by software, the combination of sensors and data
analysis for attribute estimation is often referred to as soft
sensor [25].

Following this line of arguments, the section below will
give a general overview and address the recent innovations
and applications of optical spectroscopic methods as PAT
tools in the downstream processing of biologics. This is
meant as an addition to the comprehensive review by
Rüdt et al. [13] in 2017. This review will focus only on
optical spectroscopy, because other tools have been review
in full elsewhere [26, 27]. As data analysis strategies are
a crucial part of PAT especially for the interpretation of
spectroscopic data, the third section will give a review about
frequently used data analysis techniques and address data
fusion methodologies as the combination of several sensors
is moving forward in the field. The last section will give
an outlook on the application of soft sensors (spectroscopic
methods in combination with chemometrics) and model
predictive control for downstream processes.

Improvements in spectroscopy
and applications

Spectroscopic methods and their applicability
to proteinmonitoring

The selection of appropriate techniques consisting of a
spectroscopic method as well as a measurement setup is
a key element in PAT [28]. The most important selection
criteria are sensitivity and selectivity to evaluate the
feasibility of the application. Other factors, like costs
or complexity of the instrument, have to be evaluated
for a successful process implementation in industry [17,
28]. In downstream processing of biologics, the dynamic
range and measurement speed are important factors for
the technology selection as well, because the concentration
ranges are generally the largest in production and the
feasible measurement times are the shortest.

The measurement environment (bulk solvent, tempera-
ture, pressure, etc.) greatly influences the sensitivity and
selectivity of different methods. As the solvent often con-
tributes the majority of molecules to the sample, it needs
special consideration [28]. For biopharmaceutical pro-
cesses, the solvent is in most cases water. Thus, high water
signals are a typical problem in protein measurements. In
Fig. 1, the bulk water absorption coefficients are depicted
with reference wavelength regions for various spectroscopy
types. Ultraviolet (UV) spectroscopy, intrinsic fluorescence,
and often also Raman spectroscopy take place in regions of
the electromagnetic spectrum with low water absorptivities.
Even though near-infrared (NIR) and mid-infrared (MIR)
measurements are generally thought of as selective and rel-
atively sensitive, when it comes to measuring in water, these
methods are impaired by the high water absorptivity caused
by the OH band. In the NIR and MIR region, the water
absorption spectrum dominates over the protein absorption
(cf. Table 1). Additionally, the temperature sensitivity of
the OH bands is a severe drawback for measuring aqueous
solution in NIR and MIR, which makes tempered sample
holders necessary [29].

To compare different spectroscopic methods based
on their sensitivity to proteins in water, the molecular
cross sections, extinction coefficients, and the water
absorption coefficients are listed in Table 1 for the different
methods. The listed protein values are representative
of an immunoglobulin G (IgG). Further information on
the calculations are given in Supplementary Material
Appendix A. Table 1 gives an overview on the sensitivity
of the different spectroscopic methods by comparing the
different scatter cross sections. However, it is important
to consider the surrounding solvent water. It is beneficial
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Fig. 1 Typical wavelength
ranges of UV, fluorescence, NIR,
MIR, and Raman spectroscopy
for the analysis of proteins are
depicted. Additionally, the bulk
water absorption coefficient is
plotted over the wavelength to
emphasize the effect of water on
the different techniques. The
visible spectrum is indicated for
orientation. The data for the
bulk absorption coefficient was
taken from Segelstein [146]

to achieve a high ratio of protein scatter cross section
to water absorption. Table 2 gives an overview which
protein structural elements are measurable with different
spectroscopic methods. Table 2 helps to evaluate, whether
the protein structure feature of interest can measured with
the selected spectroscopic method. Table 1 provides a lead
on the measurability of a certain protein concentration in
water with the selected spectroscopic method. Generally, it
is important to look at the protein and water absorption in
the wavelength range of a spectroscopic method to draw the
right conclusions.

In the NIR and MIR regions, proteins show high
absorption coefficients compared to the other methods due
to the strong absorption of the C=O bond [30]. However,
since water absorption in this region can be a 100-fold
higher for dilute concentration, NIR and MIR are not
well suited for quantifications down to 1 g l−1 [31],
which means that the quantification of contaminants in the

process will be challenging due to the low concentrations.
In contrast, UV and intrinsic fluorescence spectroscopy
show little water interference, but absorption and emission
coefficients comparable to those in the NIR and MIR
regions. Therefore, quantification of proteins in the mg l−1

range is possible with UV and fluorescence spectroscopy
[32]. Rarely, there are deviations from the Beer–Lambert
law due to, e.g., adsorption to the measurement cell walls,
which can impair the quantification limits [33]. Even though
intrinsic fluorescence spectroscopy can quantify proteins
to the mg l−1 range, it behaves only linearly at low
concentrations (absorbance below 0.05) due to the so-called
inner filtering effect. The inner filtering effect is caused
by light absorption in the sample and results in distorted
emission intensities and spectra, which cause a nonlinearity
between fluorescence intensity and protein concentration
[34, 35]. Consequently, UV spectroscopy typically offers a
greater linear range than fluorescence spectroscopy [36].

Table 1 Molecular cross sections and extinction coefficients (if applicable) of IgG measured with different spectroscopic techniques

Spectroscopic method Cross section σ as Absorption/emission coefficient Extinction coefficient water

− log(σ / (cm2 molecule)) /(l g −1 cm −1) /cm−1

UV (280 nm) 16 1.2 to 1.5 [143] 2.6 · 10−3

Fluorescence 17 0.16 to 0.2 [68] 1.3 · 10−3

NIR 16 1.2 [144] 25.6

MIR 15 12 1400

Raman (532 nm) 27 − 4.2 · 10−4

Resonance Raman (229 nm) 25 [38] − 6 · 10−3

Rayleigh (633 nm) 18-19 − 3 · 10−3
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Table 2 Structural elements of
proteins observed with different
spectroscopic methods

Spectroscopic method Relevant structural elements

UV Aromatic amino acids, peptide bonds, disulfide bridges, size (light scattering)

Fluorescence Aromatic amino acids

NIR and MIR Peptide bonds

Raman Aromatic amino acids, peptide bonds, disulfide bridges

Resonance Raman Excitation ≤ 220 nm: peptide bonds

Excitation ≥ 229 nm: aromatic amino acids

Rayleigh Protein weight and shape

The information was compiled from [35] and [145]

Like UV and intrinsic fluorescence spectroscopy, Raman
spectroscopy usually has very low water interference as
well [29] but, due to very small protein scattering cross-
sections (cf. Table 1), the water bands are dominant for
dilute protein solutions. Therefore, protein structure studies
often utilize the resonance enhancement effect in the UV
range [37] to increase the intensity of protein bands and
take advantage of the low water absorptivity in the UV.
The resonant effect of the Raman scattering in the UV
region, referred to as UV resonance Raman (UVRR),
is caused by the absorption of aromatic amino acids or
the polypeptide backbone of proteins. The Raman cross
section of the modes coupled to these resonant electronic
transitions can increase by a magnitude of five [38]. Besides
the enhancement advantages of UVRR, there are some
drawbacks like photodamage due to exposure to UV light
or a loss of linearity between the signal intensity and the
concentration of protein due to the reabsorption of photons
[31]. This effect is comparable to the inner filter effect
observed in fluorescence measurements [31].

Not only does the broad concentration range during
purification of biologics impose a challenge on the
linear range and sensitivity of analytical methods but the
complexity and chemical similarity of contaminants to the
respective product call for a high level of selectivity for
quantification as well [12, 39]. The International Union of
Pure and Applied Chemistry (IUPAC) defines selectivity as
“the quantitative characterization of a systematic error in the
measure of a signal caused by the presence of concomitants
in a sample” [40]. In other words, it is the accuracy of
quantifying an analyte in a mixture [41]. For spectroscopy,
this implies that the signal/bands of interferent and analyte
need to be distinguishable for a high selectivity [42].
UV spectroscopy observes the electronic state transitions.
The most prevalent chromophores in proteins are the
peptide backbone, the aromatic amino acids (tryptophan,
tyrosine, and phenylalanine), and disulfide bridges formed
by oxidation of two cysteine residues to cystine [35,
43]. Furthermore, UV spectra contain information on

protein folding (via wavelength shifts of the involved
chromophores) to aggregation (via light scattering), even
though these different energy states overlap to the broad
electronic absorption spectra usually observed in solution
[35]. This information can be used in combination with
multivariate data analysis tools, like partial least squares
(PLS) models, to deconvolute several species, which has
been shown in several case studies [15, 43–46].

In MIR, up to nine characteristic bands can be observed
for proteins, namely and in order of decreasing wavenumber
amide A, B, and I to VII [47]. The amide I band
(1610 cm−1 to 1700 cm−1, mostly C=O stretching) and
amide II (1480 cm−1 1575 cm−1 N-H bending and C-
N stretching) are most pronounced. These bonds are
influenced by the hydrogen bonds around them, formed by
the folding of secondary structure elements [48]. Aromatic
amino acids absorb as well, but mainly in the spectral
region of the amide I band from 1610 cm−1 1700 cm−1

[49]. Due to the overlapping absorptions, highly convoluted
and similar spectra are observed for proteins. However,
MIR spectroscopy can be used to distinguish between
proteins and other substances used by the biopharmaceutical
industry, like polyethylene glycol (PEG) or Triton-X [16,
50]. These measurements were carried out with fourier
transform infrared spectroscopy (FTIR), which is not
entirely suitable for processes due to moving parts and
vibrational sensitivity [51].

NIR spectroscopy has the advantage of having no moving
parts. However, the selectivity is generally low, due to the
superposition of different overtones and combination bands
in the NIR region [52].

As a complementary vibrational spectroscopic method
to MIR, Raman spectroscopy provides similar information
on the secondary structure of proteins. Similar to MIR, the
amide bands (especially amid I and III) are strong in Raman
spectra [35]. Additionally, Raman offers more structural
details on aromatic amino acids and disulfide bonds that
reflect the protein tertiary structure. These information can
be observed because some molecular groups in the protein
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side chains, such as C=C, C-C, S-S, C-S, S-H groups, have
large polarizabilities which results in large Raman activities
[17]. In contrast to MIR, these bands generally overlap less
with the amide bands [53] and, therefore, the selectivity
of Raman for proteins is generally higher. Furthermore, as
discussed above, the impact of the bulk water is smaller for
Raman spectroscopy.

The selectivity can be improved by chemometric
methods, also referred to as computational selectivity [41],
which will be further addressed in “Advanced data analysis
and machine learning”. The initial selectivity of a sensor
is, however, an important driver of the computational
selectivity [54]. This might be the reason why UV
spectroscopy in combination with chemometric methods
has successfully been applied to a wide variety of problems
in the last decade [13] as a result of its strong sensitivity
and decent selectivity. Raman spectroscopy is frequently
applied in upstream processing in research and industry
due to its high selectivity and low water interference [55]
despite the relatively long measurement times. Instrumental
innovations shorten measurement times and make Raman
spectroscopy more amendable for downstream processing
as well. New applications of UV, fluorescence, Raman,
and multimodal spectroscopy as PAT tools for downstream
processing will be addressed in the following subsections in
detail.

UV spectroscopy

A challenge of UV spectroscopy is the limited linear
range of the instruments [13]. The application of variable
pathlength (VP) UV spectroscopy allows for concentra-
tion measurements in an extended dynamic range. The
necessary equipment has been commercialized and is avail-
able under the brand names FlowVPE and SoloVPE [56,
57]. Recent applications of VP UV spectroscopy showed
the applicability to a monoclonal antibody (mAb) chro-
matography step from 0 g l−1 to 80 g l−1 [15] and to an
ultrafiltration/dialfiltration (UF/DF) process with a range
from 2.8 g l−1 to 120 g l−1 [58]. For most flow rates, the
FlowVPE can be used in-line. Due to the used monochro-
mator, the FlowVPE takes a significant amount of time
(typically ≥ 30 s) [15] to collect a full spectrum. Replacing
the monochromator with a polychromator and a diode array
detector could improve measurement time in the future and
reduce the number of moving parts in the VP spectroscopy
system.

Alternatively, the use of attenuated total reflection (ATR)
flow cells could be of interest for measuring UV spectra in
high concentration protein solutions. However, to the best
of our knowledge, no studies with a focus on biologics have
been published using UV ATR flow cells.

Fluorescence spectroscopy

Pathak et al. demonstrated that the fouling of Protein A resin
can be observed by diffuse transmission fluorescence spec-
troscopy [59]. While it is interesting that the fluorescence
increases due to protein fouling on the resin, a direct corre-
lation is difficult. Due to the setup path length of 1 cm, the
study is not directly applicable for industrial scale. Higher
path lengths might result in a more pronounced inner fil-
ter effect and nonlinearities. Additionally, Zhang et al. [60]
showed that the resin fouling is not homogeneous over the
column, which makes multiple measurements necessary to
provide a holistic picture over the column.

Raman spectroscopy

In general, Raman scattering is a weak effect because only
about 1 in 1010 photons undergoes Raman scattering in
aqueous protein solutions [61]. To set this into perspective
with absorption experiments where a mAb (ε = 14 l g−1

cm−1) will absorb around 90% of the incident photons
over 1 cm cuvette at a concentration of 0.7 g l−1 [61].
The low scattering cross section explains why the first
Raman scattering measurements took days [62]. Due
to the development of compact and high power lasers,
charge-coupled devices, fiber-optics probes, and further
optical component enhancements, measurements can be
realized in minutes today because of the increased photon
output and collection efficiency [63, 64]. With standard
Raman analyzers, measurement times of 12.5 min (785 nm
excitation, 75 s collection time with ten exposures) [65, 66]
are frequently applied to upstream processes. As upstream
processes can take a couple of weeks [67], a measurement
time of 12.5 min is sufficient. However, for downstream
process units with operation times of a few hours [67],
measurements need to be significantly faster. Usually, 30 s
is considered near real-time in downstream processing [15].

There are several factors influencing the strength of
the Raman signal and hence the measurement speed,
but all of them rely either on increasing the amount of
scattered photons or converting more scattered photons
to a signal. The Raman efficiency increases by a fourth-
order function as the laser frequency is decreased. Hence,
the shorter the laser wavelength, the more intense is the
Raman signal [63]. Unfortunately, a shorter wavelength
does not always result in a better Raman spectrum because
fluorescence can overshadow the Raman signal. At the
very least, a laser excitation wavelength and according
Raman scattering range outside the intrinsic fluorescence
range of proteins from 257 nm to 450 nm [68] should be
chosen for the downstream process to avoid fluorescence
overpowering the Raman signal. This is assuming that
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other potential fluorophores, like phenol red from the
cell culture medium [69], which fluorescence outside the
intrinsic protein fluorescence range, are not present. At
a laser excitation wavelength below the intrinsic protein
fluorescence range, e.g., 254 nm, there is no interference
from fluorescence. While it might be difficult to apply
standard laser emission wavelengths, like 532 nm or even
785 nm, to upstream processes due to fluorophores in cell
culture media, these wavelengths can usually be utilized for
downstream processing.

Besides lowering the excitation wavelength, the Raman
signal intensity can be enhanced by increasing the laser
power, increasing the interaction length between the laser
and the sample by multiple-pass arrangements [70], or
increasing the collected light through sample optics with
reduced photon losses in the spectrometer [71].

Feidl et al. [72] made a multi-pass flow cell by using
a concave mirror behind a cuvette to increase the signal
to monitor the breakthrough of a Protein-A column. Even
though this is the first application of Raman spectroscopy
to downstream processing, the publication shows that
advanced chemometrics and a significant computational
effort were necessary to reach a model that is comparable
to UV spectroscopy combined with a basic PLS model [73].
It is worth noting that the obtained Raman spectra were
dominated by water. Therefore, it might be possible that
the displacement of water due to an overall increase in
protein concentration may be important for the underlying
correlation.

Multimodal spectroscopy

As outlined by Rüdt et al. [13], one sensor alone will not
be able to measure every product quality attribute during
production. Even for measuring one quality attribute, the
combination of multiple sensors might be necessary. For
example, the real-time monitoring of the mean molecular
weight during a flow-through hydrophobic interaction
chromatography (HIC) step for a mAb has been realized by
static light scattering and concentration measurements by
UV spectroscopy [74]. Because the scattered-light intensity
is not only influenced by the molecular weight but by
the concentration as well, a concentration measurement
is necessary to calculate the molecular weight. Based
on the calculated mean molecular weight signal, the
flow-through step was terminated after a 1.5 % dimer
breakthrough. It should be mentioned that this setup is
limited to near-isocratic buffer conditions. For, e.g., cation
exchange chromatography (CEX) with high- and low-
salt conditions and therefore a changing refractive index,
additional sensors, like a refractometer, might be necessary
for accurate quantification.

Another application of light scattering is the downstream
process of virus-like particles (VLPs). Rüdt et al. monitored
the diafiltration reassembly steps of three different VLP
constructs at different conditions with UV spectroscopy
and light scattering [46]. The scattered-light intensity was
correlated to the assembly progress and UV spectroscopy
provided information on the concentration of the VLPs as
well as the rate of the assembly due to changes in the local
environment of tyrosine residues.

Another approach, besides calculating the attributes
of interest from different sensors by physically founded
equations, is to fuse all data for statistical model building.
This approach was applied by Walch et al. [18], where
fusing data from seven sensors lead to a total of 15,725
input variables. These input variables were then used for
PLS model building to predict antibody concentration, high
molecular weight species (HMWS), deoxyribonucleic acid
(DNA), host cell protein (HCP), and monomer content
by PLS regression. It is important to note that such an
approach can lead to physically unrealistic results. In the
study, the pH was used in a PLS model to predict the
mAb concentration. PLS modeling is a linear regression
approach that can only handle nonlinearities to a point,
where a linear approximation of a nonlinear problem
is feasible. A logarithmic pH value might not be a
meaningful input for a linear regression model without
a variable transformation. Similarly, ratios, like HMWS,
DNA, or HCP content, as output values should be handled
with care as they are not linearly related to unscaled
spectroscopic data. In a small range, where the relationship
between the ratio and the spectral data can be linearly
approximated, the use of PLS models is feasible [75, 76].
For strong nonlinearities, nonlinear methods, like nonlinear
PLS models [77] or artificial neural networks (ANNs) [78],
should be considered. In our opinion, for the prediction
of ratios with values covering several orders of magnitude
(i.e., DNA content, and HCP content) nonlinear methods
should be used. Based on the data published by Walch et
al., it cannot be precluded either that the PLS models rather
correlate the DNA and HCP content to the inverse of the
protein concentration than being based on an actual causal
relationship. Therefore, these PLS models might only work
in a limited design space, where every run has the same
trends and the DNA and HCP concentration in the eluate is
constant. Then, the DNA and HCP concentrations per part
of mAb are only influenced by the mAb concentration and
could be well predicted to unrealistic concentration limits
for optical spectroscopy. Additionally, if a large number
of input variables and only a small number of samples is
available, spurious correlations between two data sets are
likely to occur when variable selection is done even while
using cross-validation (CV) [79].
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Sauer et al. [19] used the same experimental setup
as Walch et al. [18] but chose to use the statistical
framework of STructured Additive Regression (STAR),
which provides means to include a wide range of nonlinear
effects into model building, e.g., by including bivariate
interaction terms [80]. However, the authors chose to
exclude bivariate interaction terms for all spectroscopy
sensors due to the required computational power. Therefore,
it remains unclear how the model structure reflects the
nonlinear response of, e.g., the DNA and HCP to mAb
concentration. The additional degrees of freedom do not
only affect the computational demand during calibration;
during validation, it also becomes far more challenging to
assert that the model does not overfit compared to purely
linear models.

When using multiple sensors in a process stream, it is
important to account for dispersion between the detectors.
Especially for lab-scale chromatographic setups, the peak
will change its shape as the detectors are passed and time
alignment alone might not be sufficient to overlay the signal
of the different sensors. Here, proper data treatment and
analysis are important to draw the right conclusions which
will be discussed in the next chapter.

Advanced data analysis andmachine
learning

Machine learning refers to different algorithms to develop
models for pattern recognition, classification, and prediction
derived from existing data [81]. PLS models and its
variations are the most frequently used machine learning
methods for multivariate data analysis (MVDA) of spectral
data in bioprocesses [82, 83]. In Fig. 2, a general workflow
for model building is depicted with illustrations from
Raman spectral data for concentration determination as
example. Generally, model building starts by choosing
the design space for the model and recording spectral
data. Subsequently, spectra are preprocessed, outliers are
removed, and the data are pretreated to improve data quality.
Model building may include CV and model optimization
until the optimal model is found. Before productive use, it
is compulsory to evaluate the model performance with an
external data set as it has been shown that internal validation
is not sufficient [84]. All necessary steps to obtain a valid
model are discussed in more detail in the following section.

Sample selection

Generally, it is advisable to choose samples that are
representative of the purpose of the model [85]. Therefore,
known process variations should be included into the model.
This could be done, for example, by recording different runs

with variations in the normal operating ranges, like different
batches, upper and lower limits for buffer composition, and
load density of chromatography columns, etc. If there are no
restrictions on the compositions of the samples, the use of a
D-optimal design for a design of experiment (doe) approach
is applicable to the distribution of samples in the design
space [86]. Regarding the minimal sample size required for
PLS calibration, rough heuristic rules advocate at least five
or ten samples per adaptive parameter, i.e., latent variables
[87–89]. Generally, it is not possible to choose more latent
variables than calibration samples, as this is a restriction of
the algorithm. PLS models with as many latent variables
as samples will be without doubt over-fitted. Depending
on the data complexity, PLS models for spectroscopic data
can even have around ten latent variables without over-
fitting [90, 91]. The data set is split into calibration and
external validation test set at a ratio of 2/3 to 3/4 in terms
of calibration samples to the sample size of the data set
[86]. The exact ratio depends on the sample size of the
data set [86]. For smaller data sets with fewer samples,
a higher ratio of calibration samples to available samples
is chosen. To ensure a uniform distribution of calibration
and validation samples over the design space, a supervised
sample selection such as the Kennard–Stone algorithm, is
preferred compared to random sampling [92].

Preprocessing

The objective of the preprocessing of spectral data is to
remove extraneous variance, such that the data adheres
closer to the Beer–Lambert law [93]. Depending on
the spectroscopy method, different preprocessing steps
are required to reach this objective [94]. A review on
preprocessing for Raman and FTIR is given by Gautam et al.
[94]. For UV, 2D fluorescence, and light scattering usually
no extensive preprocessing, except for the background
correction, is necessary.

Often, the spectrometer software and correct calibration
of the instrument remove instrument- or method-specific
effects, such as detector nonlinearities, wavelength shifts,
or interfering signals. Especially for Raman spectrometers,
instrument calibration is necessary due to possible shifts
in the laser excitation wavelength. Therefore, Raman
spectrometers are generally calibrated with external light
sources and reference substances to calibrate x- and y-axis
and the laser wavelength [95]. Usually, cosmic rays are
already removed before preprocessing begins.

The most common preprocessing steps for UV, NIR,
MIR, fluorescence, and Raman spectroscopy include
smoothing as well as baseline, background, and scatter cor-
rection [96]. Background correction procedures minimize
the effect of a varying background caused by fluorescence,
if applicable, of the sample or thermal fluctuations on the
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detector [97] and the buffer contribution to the spectrum
for dissolved samples. Usually, if the background correc-
tion corrects for drifts of the spectrometer, no additional
baseline correction is necessary. However, if a baseline cor-
rection is necessary, de-trending, asymmetric least squares
smoothing (ALS), or derivations [96] could be used. De-
trending relies on fitting a polynomial to the spectrum
and subtracting it from the spectrum while ALS involves
an inert estimation of the background by an asymmetric
least-squares fit. First-order derivatives eliminate a constant
offset while second-order derivatives remove a constant off-
set and slope. Because derivatives make high-frequency
noise more pronounced, Savitzky–Golay filters are often
used to smooth and derive [93, 96]. However, Savitzky–
Golay derivations are also prone to high-frequency noise,
depending on the window width. High-frequency noise can
influence the model and cause overfitting [93]. Therefore,
(extended) multiplicative signal correction (MSC) is gen-
erally recommended as preprocessing technique [93, 96,
98]. In practice, derivatives are still frequently used due to
their simplicity and ease of use. For solely smoothing data,
Savitzky–Golay filters are still the most used smoothers due
to their superior preservation of peak shapes compared to
e.g., the moving average filter [99].

For scatter correction, the MSC algorithm was developed
by Martens et al. [100]. MSC uses a blank spectrum as
reference, if available, or a mean of all recorded spectra to
estimate correction coefficients for the spectra. Later on,
the MSC algorithm was expanded to include the wavelength
dependency of the scattering intensity and corrections for
known spectra, referred to as extended multiplicative signal
correction (EMSC). This caused the development of other
de-trending techniques, like orthogonal signal correction
(OSC), orthogonal PLS (O-PLS) [93]. The use of MSC or
related techniques can reduce the number of latent variables
in a PLS model and enhance the chemical information in
the spectra to facilitate interpretation [99]. Additionally, the
EMSC can normalize the spectra. However, normalization
of spectra removes absolute concentration information and
is therefore not recommended for concentration-dependent
applications.

Generally, it is worth to keep in mind that preprocessing
may also remove useful information (e.g., fine structures in
the spectra, informative scattering effects) [98]. Therefore,
it is sometimes beneficial to preprocess data less in order to
preserve most information.

Outlier detection

Proper handling of outliers is essential for data analysis
because outliers introduce large variance to the model which
can disturb the model [79]. Principal component analysis
(PCA) is a useful tool to look at the variance of the

data to evaluate whether it is an unusual variance in the
model plane or outside of the model plane. A common
way to remove outliers within the model plane is to look
whether samples lie outside of the 95% confidence limit
of the Hotelling’s T 2 ellipse in the PCA ti vs. tj �=i score
plots for each score to another [101]. The ellipse shows
the distance from the origin in the model plane with the
chosen confidence. Additionally, outliers outside the model
plane can be evaluated by calculating the distance of an
observation in the training set to the model hyperplane [91]
or by calculating the residuals of the observations [17].

As PCA reflects the main variations in the X-data,
the results of a PCA-based outlier detection might be
misleading if the main variations in the data is not correlated
to the Y -variables [85]. As the purpose of preprocessing is
to remove variance outside of the Beer–Lambert law, the
main variance in the X-data should be correlated to the Y -
variables. Outliers due to erroneous measurement should
be removed before variable selection. Outliers with a large
variance in the model should be either removed during
sample selection due to the irrelevance to the model or be
included as important process variance. However, outlier
detection was not included in the general workflow for PLS
model building depicted in Fig. 2, because it can be part
of sample selection with manual inspection of the spectra
for erroneous measurements or take place before model
optimization.

If in doubt whether to remove an outlier or not, it is
useful to compare the models before and after removal. If
the model changes dramatically, e.g., in the amount of latent
variables, scores, etc., the outlier removal is important.
Otherwise, the sample can be included [101].

Generally, outlier detection and removal can be
automized, but it is important to point out the risk of auto-
matic outlier removal. Outliers may carry valuable informa-
tion about the system and process. For instance, the ozone
hole could have been detected earlier if it had not been for
automatic outlier detection methods [102]. In context with
optical spectroscopy in processes, outliers indicate unusual
disturbances of the spectrum. Here, outliers could be used
to detect process failures, e.g., equipment failures or air
entrapment.

A more extensive overview of outlier removal is given by
Hadi et. al. [103].

Variable selection

PLS models and the corresponding conclusions can be
highly dependent on the included X-variables [85]. Even
though weighting of the X-variables according to the
information content for the prediction of a univariate y-
variable is an inherent property of the PLS algorithms,
the inclusion of irrelevant and noisy variables can increase
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Fig. 2 General workflow for
PLS model building. More
information on the different
steps of the workflow are
provided in “Advanced data
analysis and machine learning”

the prediction error of the PLS models [104]. Therefore,
areas in the spectrum with high variance, but little to no
correlation to the chemical properties of the sample, and
areas containing only noise should be left out of the model
to improve the prediction ability [79]. Further exclusion
of X-variables can still improve the prediction ability of
the model but the model robustness can decrease due to
the increased risk of over-fitting by choosing less causal
X-variables but with a higher correlation to y [79, 85].
Andersen et al. [79] showed that variable selection can lead
to a statistically significant correlation of random X-data
to a y-variable for more X-variables than samples even
when using CV. Therefore, a comparison between selected
variables and variables known for containing the desired
information on the chemical or physical behavior of the
system is important to prevent over-fitting and can give
more insight into the data. A review of variable selection
techniques would go beyond the scope of this manuscript.
However, reviews about various variable selection methods
for spectral data are given by Anderson et al. [79] or
Mehmoood et al. [104].

Pretreatment

Data pretreatment strategies focus on the relation between
different samples in one variables (i.e., column vectors), in
contrast to preprocessing, which focuses on the different
variables from one sample. Sometimes, pretreatment
techniques are also referred to as preprocessing. In our
opinion, distinct terms should be used to emphasize the
underlying differences. Next to the already-mentioned

difference regarding to which matrix dimension the methods
are applied (i.e., applied variable/block-wise versus in
the spectral direction), it is also worth noting that data
pretreatment is not limited to the X-data but can also be
applied to the Y -data. Importantly, the pretreated values will
change when samples are removed from the calibration set,
while the preprocessed values stay the same.

Centering, scaling, or variable transformations are used
as most common pretreatment techniques [105]. Mean-
centering is often applied to data that is obtained with a single
instrument, as all variables are defined with the same unit [91].
Centering may improve the numerical stability and inter-
pretability of the results, as the model is focused on explain-
ing data variance rather than data magnitude [105, 106].

Scaling methods divide each column vector by a different
factor, e.g., to give each column vector a unit variance
[91]. The goal of scaling is to reduce the influence of
large numeric values in order to focus on correlating the
X- to the Y -variables. Pretreatment is especially important
if variables are measured by different sensors, as this may
result in variables with different scales. Models, such as PLS
and PCA, often try to explain the largest covariance in data,
which is bias to variables with the largest numerical values
[91]. There are a plethora of different scaling techniques
to account for different effects [105], which is important
for handling multiple differently scaled variables. This topic
will be discussed further in “Data fusion”.

Transformations are necessary if the numeric values of
X-variables are not linearly correlated to the Y -variables
for linear modeling. This can be important to e.g., diffuse
reflectance intensities or pH values.

2055



L. Rolinger et al.

Model building andmodel optimization

An important point during model building is to select
the correct model type, when having multiple Y -variables.
For spectral data where the Y -data (e.g., concentrations
of multiple components) are not correlated, it is useful to
make a PLS model for each component, also referred to as
PLS1-models [99, 106].

During model building, it is essential to determine the
correct number of latent variables for the PLS model,
also referred to as model complexity. Due to numerous
and collinear X-variables, there is a substantial risk of
overfitting the model. Overfitting occurs, when added latent
variables only fit random noise, which results in a loss
of the predictive power. CV has proven to be a useful
tool for determining the influence of latent variables on
model performance and reducing the possibility of random
correlations [106, 107].

To perform CV, the data set is divided into multiple
subsets (between five to nine [108]), and PLS models are
formed for a given number of latent variables until every
subset has been left out once. Subsequently, the sum of
squared differences between experimental and predicted Y -
values is calculated for the left-out data for all computed
models to estimate the predictive ability, or goodness
of prediction Q2, of the model. The number of latent
variables is set to the lowest number where adding another
variable does not significantly increase the predictive ability
[91, 106].

Besides the number of latent variables, data preprocess-
ing and variable selection are other approaches that can
be optimized in order to obtain an improved PLS model
[109]. Preprocessing and variable selection usually rely on
experience and manual inspection of the samples, where a
certain preprocessing algorithm and windows of the spec-
tra are selected. While this improves the performance of the
PLS model, it is often not intuitive to find the best combina-
tion of all optimizable parameters [79]. Therefore, the use
of a parallel genetic algorithm (GA) can be useful to find
the optimal PLS model [110] to optimize the preprocess-
ing and variable selection in one algorithm. However, since
GA are prone to overfitting, it is important to use multiple
GA runs and set the optimization parameters, e.g., window
size, properly [111]. A comprehensible review on variable
selection techniques was published by Andersen et al. [79].

A different approach for model optimization is used by
Feidl et al. [72] and Narayanan et el. [112], where all
useful combinations of preprocessing, pretreatment, outlier
removal, smoothing, and variable selection were calculated
and the best preprocessing and pretreatment method was
chosen judged by the decrease in root mean-square error of
cross-validation (RMSECV) and root mean-square error of
prediction (RMSEP).

In this case, the RMSECV and RMSEP indicated the
same optimized preprocessing an pretreatment method.
Therefore the model optimization was not influenced by
the RMSEP. Nevertheless, it is important to note that
models must not be optimized by use of the RMSEP.
It is counterproductive to use the same key figure for
optimization and evaluation of the model, because the
model is then optimized to give the lowest RMSEP and not
to find an actual correlation.

Model validation

The goal of model validation is to ensure the quality of
the prediction in terms of a causal and robust correlation
[17]. There are several key figures to evaluate models [91,
99]. The root mean-square error (RMSE) is the predicted
residual error sum of squares (PRESS) divided by the
sample size n, see Eq. 2. For the calculation of the PRESS
with Eq. 1, yi is the measured value and ŷi is the predicted
value. The difference between RMSECV and RMSEP is the
used data to calculate the error. In case of the RMSECV, it is
the RMSE of the samples that were left out in the CV step,
also known as internal validation. In case of the RMSEP, the
samples from an external validation sets are used.

PRESS =
N∑

n=1

(yi − ŷi )
2, (1)

RMSE =
√

PRESS

n
=

√∑N
n=1(yi − ŷi )2

n
. (2)

Especially for small data sets, the RMSECV and RMSEP
depend heavily on the used samples. Therefore, when
comparing different PLS models with the same data set, the
same samples should be used for calibration and validation,
respectively. For comparison of different PLS models with
different data sets, it is useful to evaluate the model by
the coefficient of determination for the calibration R2 after
Eq. 3, where ȳ is the mean of y. The coefficient of
determination for the CV Q2 is calculated after Eq. 3 as well
for the left-out samples during CV. It should be noted that
the difference between R2 and Q2 are the samples used for
calculation. R2, also referred to as R2Y is the variation of
the Y -variables explained by the model. Q2, also referred
to as Q2Y , is the variation of the Y -variables predicted by
the model. It should be noted that as a replacement for the
RMSEP, the Q2

ext calculated with the external validation set
used for the RMSEP calculation can be used as well to give
a more representative key figure for the prediction ability on
an external validation set [91].

R2 = 1 − PRESS
∑N

n=1(yi − ȳ)2
=

∑N
n=1(yi − ŷi )

2

∑N
n=1(yi − ȳ)2

(3)
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While statistic methods try to establish a correlation
between X- and Y -variables, it is important to emphasize
that this correlation might not necessarily be a causal
relation [83, 85, 99]. Even if model building was successful,
a spurious correlation or an indirect correlation possibly
may have been found. Indirect correlations can sometimes
be used to quantify a component A, if, e.g., actually
component B is measured, but is converted into component
A at a fixed ratio [113]. Even in this case it is useful
to be aware of this indirect correlation to draw the
right conclusions from the model. Indirect and spurious
correlation have been widely discussed for quantitative
structure–activity relationship (QSAR) models, because
QSAR models can be prone to these kinds of correlation
due to the vast amount of X-variables, which make it
possible to almost always find some kind of correlation. For
verification of meaningful correlations, Wold et al. [108]
published a method consisting of originally four tools for
model validation of QSAR models that can be adapted for
spectral data resulting in three different tools.

Tool 1 is the permutation test (also referred to as
significance test or randomization test). The main idea is to
repetitively randomize a certain amount of the Y -variables
in the training set while the X-data stays intact. In each
cycle, the full data analysis is carried out on these scrambled
data and the R2 and Q2 values are recorded. If, in each case,
the scrambled data give much lower R2 and Q2 values than
the original data, it is likely that a real correlation was found.

Tool 2 is CV as explained above. It is a frequently
applied and useful approach to model validation. However,
CV results may also be misleading. If the validation groups
during CV are too small, the model selection is biased.
For example, if the number of groups is equal to the sam-
ple size, also referred to as leave-one-out, the permutation
during the CV is too small and the resulting Q2 values
will approach the R2 value [114]. In practice, 5–9 subsets
are recommended [108]. Additionally, CV might not work
for variable selection because only the variables with correla-
tion to the Y -data are chosen and this might lead to the selec-
tion of X-variables with spurious correlations to Y [115].

Tool 3 is related to appropriate sample selection and in
particular the external validation set. Ideally, an external
validation data set should span across the complete design
space in an evenly distributed manner. The validation set
can also include samples outside the calibrated range for the
Y -values to improve the confidence in the built model.

We recommend the use all of these tools for model
validation to avoid spurious correlations, especially tool
1. When looking at the data published by Walch et al.
[18], tools 2 and 3 have been applied, but not tool 1. A
permutation test and inclusion of the mAb concentration as
X-variable could reveal in this example if the concentrations
of DNA, HCP, and HMWS were predicted from the

mAb concentration. For increasing mAb concentrations,
decreasing impurity levels were calculated and vice versa.
This may have little to do with actual concentration
measurements of these components because the amount
of impurities per mAb concentration is not constant for
every sample and batch. Especially when a large number of
X-variables from different sensors are available, extensive
variable selection can lead to spurious correlations [79].

Data fusion

When multiple or multimodal sensors are involved in
a measurement, different data fusion strategies can be
utilized for model building [116]. Data fusion is generally
categorized into low-level, mid-level, and high-level data
fusion [24, 117, 118]. A general overview is given in Fig. 3.
Here, each sensor provides a block of data, which needs to
be fused to all the other blocks for analysis. Low-level data
fusion concatenates the different raw or preprocessed data
blocks and applies an appropriate block-wise pretreatment
before model building. This is important because the
variables in the blocks typically have different scales.
Variables with a higher numeric value would otherwise
contribute more to the model. To overcome this problem,
unit variance scaling could be performed. Block scaling can
be used to multiply the block with an additionally scaling
weight to account for the importance of these variables for
the prediction of the Y -variable [91].

Mid-level data fusion applies variable selection before
concatenating the different data blocks to reduce the
influence of a large amount of unimportant variables. This
can be done by variable selection for the data blocks or by
hierarchical multiblock PLS. Hierarchical multiblock PLS
is based on the decomposition of the blocks into scores and
latent variables. The obtained block scores are subsequently
used for PLS model building on the upper level [119].
This increases the interpretability of the model because the
relations between the blocks are emphasized due to the
upper data level from which the model is built. An additional
benefit of hierarchical multi-block PLS is the improved
prediction of the block models as they are less sensitive to
mild scaling inaccuracies [119].

High-level data fusion is a fusion of the outcome of
a model. Therefore, it may rather be termed decision
fusion than data fusion [20]. This means that block-
scaling is unnecessary and the models can be separately
optimized. Methods for decision fusion include different
techniques like weighted decision methods, Bayesian
inference, Dempster–Shafer inference or fuzzy logic theory
[120]. Additionally, if a time dependency is available, state
estimation methods like Kalman filters can be used.

Recently, convolutional neural networks (CNNs)
have gained momentum in spectral analysis [121–123].
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Fig. 3 Methodology for model building in low-level, mid-level and high-level data fusion and, additionally, deep learning. Adapted
after [24]

Originally, CNNs were designed to cope with shift and
distortion variances for image recognition [124] or speech
recognition [125], which is desirable for spectral analysis as
well. CNNs are a variant of feed-forward ANNs with addi-
tionally convolutional layers to filter the data by weighting
the summation of the inputs in windows [126]. The kernels
in the convolutional layers are sparsely connected and share
weights. CNNs focus rather on local features, which makes
them easier to train and interpret, and less prone to overfit-
ting [122]. In higher structural data, pooling layers are used
to pool similar features and bring the data in 1D form. For
spectral data (already in 1D form), pooling layers are not
always used [122].

CNNs are the oldest form of deep learning architectures
[127] with multiple levels of nonlinear functions due to
many hidden layers. This architecture of CNNs results in a
filter ability. Therefore, CNNs can handle raw data, which
can make human interference for preprocessing the data
unnecessary [124]. However, it has been shown that CNNs
work better on preprocessed data similar to how PLS models
behave [122]. CNNs are highly flexible and can fit highly
nonlinear correlations. Nevertheless, for linear problems,
usually linear methods perform better [128].

Perspectives for the biopharmaceutical
downstream process

This final section of the review is intended to give a
more abstract view of the present and future of PAT in
downstream processing of biopharmaceutical proteins. A

special focus is set on different product- and process-related
impurities and on how the current approaches could be
further integrated towards holistic process monitoring.

In biopharmaceutical processes, relevant impurities and
the product need to be monitored and controlled in a
broad concentration range. Figure 4 illustrates this with
the typical concentrations occurring during manufacturing
of a mAb. Figure 4 also includes the typically maximum
allowed impurity concentrations in the drug product.
Information on the involved data analysis is provided in the
Supplementary Data. Considering the lowest and highest
relevant concentrations for both contaminants and mAb,
downstream processing is spanning more than seven orders
of magnitude of concentration values. Furthermore, each
species is a diverse group of substances. For example,
the term HCP refers to any protein produced by the
host cells in addition to the target product. Thus, HCPs
are a very diverse group of proteins which additionally
complicates detection or concentration measurements of
these contaminants [129, 130]. While the diversity for other
species in biopharmaceutical production may not be as
extreme as for HCPs, similar arguments hold for DNA,
aggregates, fragments, or other product isoforms. The broad
concentration ranges in combination with the diversity of
the relevant species in downstream processing pose a major
challenge for PAT.

In recent publications, implemented in-line soft sensors
(spectroscopic methods in combination with chemometrics)
achieved limits of detection for aggregate and fragment
levels below the concentration limits set by the regulatory
agencies for drug products [15, 45, 74]. On a lab scale,
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Fig. 4 In biopharmaceutical processes, different species need to be
monitored in a concentration range spanning many orders of mag-
nitudes. This is illustrated here by the example of mAb processes.
Each horizontal bar denotes concentration ranges for the major species
covered in biopharmaceutical processes. In green, the mAb con-
centration is shown. The boxes in light green correspond to the

monoclonal antibody concentrations of the marketed mAbs in US
for intravenous (iv) and subcutaneous (sc) administration. Product-
and process-related impurities are shown in blue and brown, respec-
tively. Impurity concentration limits as accepted by the regulatory
agencies are marked by black lines in the corresponding concentration
bars

the feasibility for measuring these important contaminants
with the necessary accuracy was thus demonstrated. Future
projects may work towards a closed-loop control of the
process steps of interest. Product-related isoforms occur
at similar concentrations as aggregates and fragments.
Spectroscopic PAT methods are likely to achieve similar
limits of detection as long as there is a measurable change in
the spectroscopic properties of the isoforms. It seems likely
that some processes may also use spectroscopic soft sensors
for controlling isoform profiles in the future. However, there
also remains a large fraction of isoforms that cannot be
distinguished from the product by optical spectroscopy. In
such cases, other sensors or control strategies should be
evaluated.

For the process-related impurities HCPs and DNA,
in-line monitoring may be achievable for early steps
in downstream processing, such as capture steps, where
the process-related impurity concentrations are still high.
During further polishing steps, process-related impurity
concentrations are typically by a factor of 105 to 1010

lower than the product concentration. To further complicate
detection, HCPs are polypeptides and therefore chemically
highly similar to the product. DNA is more distinct from
the product, but typically also occurs at the lower end of the
concentration scale. Based on regulatory guidelines, DNA
must be depleted to concentrations approximately 107 times
lower than the product concentration. The quantification
of HCPs and DNA by optical spectroscopic PAT methods
towards the end of the downstream process seems very
challenging and probably not achievable in the near future.
Furthermore, at the current state of research, a purely
measurement-driven approach does not seem practical for
monitoring and controlling all critical quality attributes
(CQA) in downstream processing in real-time.

Fortunately, there are alternative approaches to moni-
toring and controlling production processes. For example,

model-based predictions of CQAs from observed pro-
cess parameters have reached an impressive accuracy in a
number of studies [131–133]. These studies showed that
statistical models can capture a significant amount of the
hidden process dynamics and the effects on the CQA of the
product while neglecting the actual time evolution of the
system. In a next step, it would be interesting to also obtain
time-dependent predictions of the process trajectory. Here,
mechanistic, hybrid, or empirical models could be applied
to predict the underlying system dynamics. As soon as a fast
dynamic process model for different CQAs is available, the
model could also be leveraged for process control.

While different approaches to process control exist,
model predictive control (MPC) is regarded as one of
the most important tools in advanced process control
[134, 135]. MPC is well established in various industries
including refining, petro-chemical, and food applications
[136]. MPC is founded on a mathematical model of
the process dynamics, i.e., a model which describes the
time evolution of the investigated system. To control the
process, the model is leveraged by taking current and future
process dynamics into account. Based on the model and
an objective function, MPC aims to optimize the process
performance over a given time frame into the future (the so-
called receding horizon) by calculating a number of control
actions. At each time step, an optimization is performed to
find the optimal control actions. Then, the first calculated
control action is applied to the system and the optimization
is repeated with the receding horizon reaching one time
step further into the future. This approach allows to neglect
the future of the process beyond the receding horizon, thus
simplifying the control problem. Among the benefits of the
MPC framework is also its high flexibility. MPC provides
means for accepting input variables, maintains an estimate
of the current system state, and predicts the current and
future plant outputs. Due to the model-based foundation

2059



L. Rolinger et al.

of MPC, it is particularly well aligned with the motive of
quality by design (QbD) of building the quality into the
product through product and process understanding (see
[137] for an extended discussion).

MPC was already investigated for a number of appli-
cations in biopharmaceutical manufacturing. For upstream
processing, a number of different MPC schemes have been
applied and reviewed [137, 138]. For downstream process-
ing, research focused on the control of continuous chro-
matography. MPC for multi-column solvent-gradient purifi-
cation (MCSGP) was developed and advanced in a variety
of publications [139–141]. The application of MPC allowed
for improved process performance and robust control of the
purification processes as demonstrated by in silico stud-
ies. The need for reliable PAT was pointed out multiple
times to provide feedback to the model. Initial research
also exists towards coupling upstream and downstream
unit operations in silico for an overall advanced process
control [142].

Regarding process- and product-related impurities, MPC
and its underlying model could build the basis for
controlling CQAs based on inferred sensing of different
species. In such a scenario, inferred state variables may
track CQAs (e.g., HCP and DNA concentration) within the
process which are not directly available from measurements
[17, 135]. Based on an in-depth understanding ingrained
into a model, MPC provides the ability to control impurities
throughout the process, building a so-called Digital Twin
of the production. An additional key advantage of MPC
is its capability to respect constraints. Thus, the objective
function can be adjusted to fulfill the predefined quality
metrics. Based on such an approach, manufacturing can be
tailored towards real-time release (RTR) [57].
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Appendix: Calculations of molecular cross
sections and absorption coefficients

Equation 2 from Singh et al. [147] was used to convert molar
absorption coefficients εmolar in l mol−1 cm−1 to molecular
cross sections σ in cm−2 Molecule−1.

σ

cm2
= 3823 · 10−24 εmolar

l mol−1cm−1
(4)

The molar absorption coefficient εmolar was calculated
from the absorption coefficient ε in l g−1 cm−1 and the
molar mass M in g mol−1 according to Eq. 5.

εmolar = ε

M
(5)

A.1 Fluorescence

Tryptophan is the most dominant aromatic amino acid in
the UV spectrum regarding the absorption coefficient. Its
quantum yield is 0.13 [68]. This information was used to
convert the absorption coefficient at 280 nm to an emission
coefficient.

A.2 MIR

Typically, mAbs consist mainly of β-sheet secondary
structure elements [148]. The extinction coefficient of
C=O stretch in the amid I band at 1619 cm−1 for β-
sheet structures is 980 l mol−1 cm−1 [149, 150]. For the
calculations, it was assumed that mAbs have roughly 1500
peptide bonds.

A.3 NIR

NIR band intensities are much weaker than their corre-
sponding MIR fundamentals by a factor of 10 to 100
depending on the order of the overtone [52].

A.4 Raman

The Raman scatter cross section was calculated from
recorded data through comparison of the amid I band with
the scattering area of water. The Raman scatter cross section
of water 5 × 10−30 cm−1 and a molar concentration of water
of 55.5 mol l−1 were used for the calculation [151].

A.5 Rayleigh scatter

11 nm was used as hydrodynamic diameter of a standard
antibody [152, 153]. The Rayleigh scatter cross section was
calculated after Cox et al. [154].
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50. Sanden A, Suhm S, Rüdt M., Hubbuch J. Fourier-transform
infrared spectroscopy as a process analytical technology for
near real time in-line estimation of the degree of PEGylation in
chromatography. J Chromatogr A. 2019;410:460.

51. Smith BC. Fundamentals of Fourier transform infrared spec-
troscopy. Boca Raton: CRC Press; 2011.

52. Burns DA, Ciurczak EW. Handbook of near-infrared analysis.
Boca Raton: CRC Press; 2007.

53. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk
M, Baranska M. Raman spectroscopy of proteins: A review. J
Raman Spectrosc. 2013;44(8):1061–1076.

54. Hirschfeld T, Callis J, Kowalski B. Chemical sensing in process
analysis. Science. 1984;226(4672):312–318.

55. ClaSSen J, Aupert F, Reardon KF, Solle D, Scheper
T. Spectroscopic sensors for in-line bioprocess monitoring in
research and pharmaceutical industrial application. Anal Bioanal
Chem. 2017;409(3):651–666.

56. Huffman S, Soni K, Ferraiolo J. UV-Vis based determination
of protein concentration: Validating and implementing slope
measurements using variable pathlength technology. Bioprocess
Int. 2014;12(8):66–72.

57. Jiang M, Severson KA, Love JC, Madden H, Swann P, Zang
L, Braatz RD. Opportunities and challenges of real-time release
testing in biopharmaceutical manufacturing. Biotechnol Bioeng.
2017;114(11):2445–2456.
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