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Abstract
Rationale Animal models of mania lack genuine cognitive
parameters. The present gold standard of mania models,
amphetamine-induced hyperlocomotion, is rather unspecific
and does not necessarily target its cardinal symptoms.
Therefore, alternative behavioral markers that are sensitive
to stimulants are required.
Objectives In the present study, by combining the
psychostimulant-induced model of mania in rodents with the
recently developed ambiguous-cue interpretation (ACI) tests,
we investigated the effects of chronic administration of D-
amphetamine and cocaine on the cognitive judgment bias of
rats.
Methods To accomplish this goal, in two separate experi-
ments, previously trained animals received chronic, daily
injections of either D-amphetamine (2 mg/kg) or cocaine
(10 mg/kg) for 2 weeks and were subsequently tested with
the ACI procedure.
Results Chronic treatment with both psychostimulants did not
make rats more “optimistic.”
Conclusions The results are discussed in terms of behavioral
and pharmacological actions of the tested compounds and
their implications for modeling mania in animals.

Keywords Rat . Cognitive judgment bias . Ambiguous
cue . Amphetamine . Cocaine . Mania . Bipolar disor-
der . Behavioral . Animal model

Introduction

Mania is a debilitating psychiatric condition and a cardinal
feature of bipolar disorder (BD). Critical features of mania
include over-excitement, grand or extravagant style, expanded
self-esteem, pressured speech, reduced need for sleep, over-
indulgence in enjoyable activities, and over-optimistic judg-
ment bias leading to high-risk behaviors, such as extravagant
shopping, sexual adventures, or improbable commercial
schemes (Belmaker and Bersudsky 2004; Young et al.
2011a). Clinical studies have highlighted the importance of
excessive optimism in this disorder (Carver and Johnson
2009; Gamma et al. 2008; Giovanelli et al. 2013; Johnson
2005; Johnson and Jones 2009; Leahy 1999), and Beck and
Weishaar (1995) argued that “overly optimistic expectations
provide vast sources of energy and drive the manic individual
into continuous goal-directed activity.”

As BD affects 2 to 7 % (including subsyndromal manic
symptom group) of the population (Angst et al. 2003; Judd
and Akiskal 2003; Kessler et al. 2005; Merikangas et al. 2007;
Schaffer et al. 2006), this disease needs to be better under-
stood, and new treatment strategies need to be developed.
These goals can be achieved by establishing new, preclinical
animal models with translational validity.

Modeling BD mania in animals began with observational
evidence that psychostimulants (such as amphetamine) can
produce mania-like symptoms in normal healthy subjects
(Peet and Peters 1995) and exacerbate symptoms or induce a
manic episode in patients (Meyendorff et al. 1985). The
effects of psychostimulants on behavior have therefore been
widely used as an animal model of mania (Frey et al. 2006a, e;
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Kato et al. 2007). Because psychomotor agitation is common-
ly observed during mania and locomotor activity is easily
measured in rodents, amphetamine-induced hyperactivity be-
came the “gold-standard” rodent model of mania. The use of
this model does have however, multiple limitations, and the
two most important are the following: (i) amphetamine hy-
peractivity has been interpreted as a model for a number of
distinct disorders in addition to BD (including schizophrenia
and drug abuse) and (ii) mania is characterized by a broad set
of symptoms that may not always include motor hyperactivity
(Young et al. 2011a). In two recent studies, some aspects of
the cognitive deficits associated with mania have been inves-
tigated in the reverse-translated multivariate exploratory par-
adigm and Iowa gambling tasks in mice (van Enkhuizen et al.
2013a, b; Young et al. 2011b); however, apart from these
pioneering reports, the cognitive aspects of mania were rarely
studied in animal models.

A behavioral procedure that could be used to further vali-
date a psychostimulant-induced model of mania is the
ambiguous-cue interpretation test (Enkel et al. 2010), a be-
havioral assay that measures the cognitive judgment bias of
rats in an ambiguous situation. In this procedure, the rats are
trained to press a lever in an operant conditioning chamber to
receive a food reward that is contingent on lever pressing in
the presence of one tone and to press another lever in response
to a different tone to avoid punishment by mild electric foot
shock. The tones, which serve as discriminative stimuli, ac-
quire positive and negative valence, and the training continues
until the rats accomplish a stable, correct discrimination ratio.
After attaining stable discrimination performance, the animals
are ready to be tested. Ambiguous-cue testing comprises a
discrimination task, as described above, with the presentation
of additional tones that have a frequency that is intermediate
between positive and negative tones. The pattern of lever press
responses to this ambiguous cue is considered an indicator of
the rats’ expectation of a positive or negative event (as “opti-
mism” or “pessimism”, respectively) (for details, see Enkel
et al. 2010; Papciak et al. 2013; Rygula et al. 2012, 2013,
2014).

Using this procedure, we recently demonstrated that acute
administration of D-amphetamine induces optimism in rats
(Rygula et al. 2014). As the effects of chronic administration
of amphetamine have been widely used to model mania in
laboratory animals and because mania is often associated with
hyperoptimistic bias, the present study was designed to inves-
tigate how 2 weeks of chronic, daily administration of two
different psychostimulants would influence the valence of the
cognitive judgment bias of rats. To accomplish this goal, after
initial behavioral training, two different groups of animals
received daily injections of either amphetamine (2 mg/kg) or
cocaine (10 mg/kg), and they were subsequently tested on the
ambiguous-cue interpretation procedure. The effects of the
chronic treatment were evaluated after 2 weeks of daily

administration. We hypothesized that chronic amphetamine
and/or cocaine treatments would increase optimism bias in
rats, mimicking the behaviors observed in BD patients suffer-
ing from mania.

Experimental procedures

Ethics statement

These experiments were conducted in accordance with the
NIH Guide for the Care and Use of Laboratory Animals and
were approved by the Ethics Committee for Animal
Experiments at the Institute of Pharmacology Polish
Academy of Sciences.

Subjects and housing

In total, 64 (32 in the experiment with D-amphetamine and 32
in the experiment with cocaine) male Sprague Dawley rats
(Charles River, Germany) that weighed 175–200 g upon
arrival were used in this study. The rats were group-housed
(four rats per cage) in a temperature-controlled room (21±
1 °C) with 40–50% humidity under a 12/12-h light/dark cycle
(lights on at 0600 h). During all of the experiments, the rats
were mildly food-restricted to approximately 85 % of their
free-feeding weights. This goal was achieved by providing
15–20 g of food per rat per day (standard laboratory chow).
The food restriction started 1 week prior to training.Water was
freely available except during the test sessions. The behavioral
procedures and testing were performed during the light phase
of the light/dark cycle, following the protocol originally de-
scribed by Enkel et al. (2010) and our previous experiments
(Papciak et al. 2013; Rygula et al. 2012, 2013, 2014).

Apparatus

The behavioral tasks were performed in eight computer-
controlled operant conditioning chambers (Med Associates,
St Albans, VT, USA), in which each chamber was equipped
with a light, a speaker, a liquid dispenser (set to deliver 0.1 ml
of 5% sucrose solution), a grid floor through which scrambled
electric shocks (0.5 mA) could be delivered, and two retract-
able levers. The levers were located at opposite sides of the
feeder. All of the behavioral protocols, including the data
acquisition and recordings, were programed in the Med State
notation code (Med Associates). The experimental procedures
for the ACI test used in this study were modified versions of
the procedures previously described by Enkel and colleagues
(2010) and have been described elsewhere (Papciak et al.
2013; Rygula et al. 2012, 2013, 2014).
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Behavioral training

Positive tone training

During this phase, the rats were trained to press the lever
located on the left side of the feeder to receive the sucrose
solution when a tone (50 s, 2,000 Hz at 75 dB) signaled the
availability of a reward. Because of its association with a
palatable reward, this tone acquired a positive valence and
was referred to as the “positive tone,” and the associated lever
was referred to as the “positive lever.” A reliable active lever
pressing for the reward was achieved in three training steps:
(a) Presentation of the positive tone (lasting 50 s) co-occurred
with a constant (every 5 s for 5 s) delivery of the sucrose
solution and was followed by a 10-s intertrial interval (ITI),
(b) presentation of the positive tone co-occurred with a left
lever extension and was followed by a 10-s ITI (each lever
press during the tone was rewarded by sucrose solution deliv-
ery), and (c) this step was similar to (b) with the exception that
after the first lever press and reward delivery, the tone was
terminated and followed by a 10-s ITI. During the ITIs, the
levers retracted. Each training session lasted for 30 min, and
the training sessions continued until the animals attained a
stable performance on each of the training steps: more than
200 responses maintained over three consecutive training
sessions during step (b) and a minimum of 90 % successful
responses to the positive lever following a positive tone pre-
sentation maintained over three consecutive sessions during
step (c). Positive tone training was followed by negative tone
training.

Negative tone training

During this stage, the rats were trained to press the lever
located on the right side of the feeder to avoid an electric shock
(0.5 mA, 10 s) when another tone (50 s, 9,000 Hz at 75 dB)
signaled a forthcoming punishment. Because of its association
with a concomitant punishment, this tone acquired a negative
valence and was referred to as the “negative tone.” The asso-
ciated lever was referred to as the “negative lever.” A reliable
active lever press avoidance response was achieved in two
training steps: (a) The presentation of the negative tone was
accompanied by electric shocks unless the rat pressed the right
(negative) lever, which terminated the shock and tone presen-
tation and (b) the presentation of the negative tone preceded the
occurrence of the electric shocks. The delay from the tone
onset to the electric shock was progressively increased from
1 to 40 s. Pressing the negative lever before the shock onset
terminated the tone and began a 10-s ITI, which was designat-
ed the “avoidance response.” Pressing the negative lever after
the shock onset terminated the tone and shock and was referred
to as the “escape response.” The maximum duration of the
tone/shock application was 50 s (i.e., 40 s of tone presentation

followed by 10 s of a tone/shock co-occurrence), and the tone
presentations were separated by 10-s ITIs. During the ITIs, the
levers retracted. Daily training sessions contained 40 tone
presentations and lasted 30 min. The animals had to accom-
plish at least 60 % correct avoidance responses maintained
over three consecutive training sessions before they were
allowed to proceed to the discrimination training.

Discrimination training

During this phase, the rats were trained to discriminate be-
tween positive and negative tones by responding to the appro-
priate levers (as learned in previous training stages) to maxi-
mize reward and minimize punishment delivery. The tones,
which were composed of 20 positive and 20 negative tones,
were presented in non-systematic order and separated by 10
ITIs, during which the levers retracted. Pressing the positive
lever during the positive tone presentation resulted in an
instant reward delivery and initiated the ITI. Pressing the
negative lever during the negative tone presentation resulted
in a negative tone termination and initiated the ITI. Pressing
the wrong lever (e.g., pressing the left lever instead of the right
lever in response to a negative tone presentation), as well as
escape responses or response omissions, were considered
failed trials. Each training session lasted 40 min, and animals
had to minimally achieve 70 % correct responses with each
lever to proceed to the ACI test.

Ambiguous-cue testing

The ACI testing session consisted of 20 positive, 20 negative,
and 10 intermediate (ambiguous) tone presentations. The fre-
quency of the intermediate tones was set to 5,000 Hz at 75 dB.
This frequency was selected based on the protocol described
by Enkel et al. (2010) and was confirmed to be intermediate in
terms of the response pattern in a pilot experiment (data not
shown). Each test lasted 50min. The tones were presented in a
non-systematic order and were separated by 10 ITIs, during
which the levers retracted. Any lever press during the ambig-
uous tone presentation terminated the tone but had no conse-
quences. If the rat did not respond within 50 s of the ambig-
uous tone presentation, the tone was terminated and a re-
sponse omission was scored.

To evaluate the effects of different pharmacological treat-
ments on the cognitive bias of animals, we measured the drug-
induced changes in the optimism index. This simplemeasure of
cognitive bias has been described elsewhere (Papciak et al.
2013; Rygula et al. 2012, 2013, 2014). To calculate the opti-
mism index, the proportion of negative responses to the am-
biguous cues was subtracted from the proportion of positive
responses, which resulted in values ranging between −1 and 1,
in which values above 0 indicated an overall positive judgment
and “optimistic” interpretation of the ambiguous cue.
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To evaluate whether the changes in the optimism index
resulted from increased/decreased “optimism”/“pessimism,”
the responses to each tone (positive, ambiguous, and negative)
duringACI testing were scored and analyzed as the proportion
of the overall number of responses to a given tone. Therefore,
the increased/decreased “optimism” was defined as an
increased/decreased proportion of the positive lever presses
following presentation of the ambiguous cue, and the
increased/decreased “pessimism” was defined as an
increased/decreased proportion of the negative lever presses
following presentation of the ambiguous cue. The proportion
of omissions was analyzed separately.

Drug treatment

Drugs were purchased from Sigma-Aldrich (Poznan, Poland).
D-Amphetamine and cocaine were dissolved in physiological
saline and administered intraperitoneally (i.p.) in a dose vol-
ume of 1 ml/kg for a period of 2 weeks. Control animals
received corresponding volumes of physiological saline. The
drugs and saline were injected 15 min before the ACI test
sessions. The effects of drugs were tested in two separate
experiments using 32 (D-amphetamine) and 32 (cocaine)
animals.

Experimental design

After attaining a stable discrimination performance (more than
70 % correct responses to each tone over three consecutive
days), the rats were subjected to three ACI tests performed at
2-day intervals (baseline), and on the basis of these tests, each
cohort of 32 rats was divided into two experimental groups
(control and drug-treated) matched by the average optimism
index. Subsequently, drug-treated groups were subjected to
daily injections of either amphetamine (2 mg/kg i.p.) or co-
caine (10 mg/kg i.p.) for a period of 2 weeks, and control rats
were injected daily with physiological saline (1 ml/kg i.p.)
throughout the experiment. All of the drug doses used in this
study were similar to doses previously applied to model BD
mania in rodents (Antelman et al. 1998; Frey et al. 2006a, b).
To investigate the effects of psychostimulant treatments on
cognitive judgment bias, the animals were re-tested on the
14th day of treatment, 15 min after the last injection. This
timing has been chosen to avoid any possibly confounding
factors of drug withdrawal, which could act as a strong stress-
or and induce “pessimism.” The ACI tests were performed as
previously described.

Statistics

The data were analyzed using SPSS (version 20.0, SPSS Inc.,
Chicago, IL, USA). The effects of chronic administration of D-
amphetamine and cocaine on the optimism index were

investigated using two-way repeated measures ANOVAwith
the between-subject factor of treatment (two levels: control
and drug) and with within-subject factor of test (two levels:
baseline and test after 2 weeks of treatment). The effects of
chronic D-amphetamine and cocaine administration on pro-
cessing ambiguous cues and reference tones were investigated
using four-way repeated measures ANOVA with between-
subject factor of treatment (two levels: control and drug) and
with within-subject factors of test (two levels: baseline and
test after 2 weeks of treatment), lever (two levels: positive and
negative), and tone (three levels: positive, ambiguous, and
negative). For pair-wise comparisons, the values were adjust-
ed by using Sidak’s correction factor for multiple comparisons
(Howell 1997). All of the tests of significance were performed
at 0.05. For repeated-measures analyses, the sphericity was
verified by using Mauchly’s test. The data are presented as the
mean±SEM.

Results

The animals reached the criteria of positive tone, negative
tone, and discrimination trainings after 10±0.4, 10±0.2, and
25±1.1 days, respectively.

In both experiments (with D-amphetamine and cocaine),
the optimism index of untreated animals was significantly
lower than 0 indicating pessimistic cognitive judgment bias
(t(31)=2.864, p<0.05 and t(31)=3.911, p<0.05, respectively).

Effects of chronic administration of D-amphetamine
on the interpretation of the ambiguous cue by rats

As shown in Fig. 1, chronic D-amphetamine treatment
(2 mg/kg/day for 2 weeks) did not have significant effects
on the optimism index of rats (non-significant test × treatment
interaction).

Fig. 1 Chronic treatment with D-amphetamine (2mg/kg/day for 2weeks)
does not change the optimism index of rats in the ambiguous-cue inter-
pretation test. The mean±SEM optimism index of the control (open bars)
and amphetamine-treated (filled bars) rats before and after the treatment.
N=16 per group
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Further analysis of the lever responses after the presenta-
tion of ambiguous and reference tones revealed significant
differences in the pattern of responding between control and
amphetamine-treated groups after 2 weeks of treatment (test ×
lever × tone × group interaction (F(2,60)=23.77, p<0.001)).

As shown in Figs. 2a and b, after 2 weeks of amphetamine
treatment, the animals responded significantly (p<0.001) less

often to the positive lever and significantly (p<0.001) more
often to the negative lever in response to the positive reference
tone compared with controls and significantly (p<0.001) less
often to the positive lever and significantly (p<0.001) more
often to the negative lever in response to the positive reference
tone compared with the baseline. They also responded signif-
icantly (p=0.008) more often to the positive lever and

Fig. 2 Chronic treatment with

D-amphetamine (2 mg/kg/day for
2 weeks) makes rats unable to
discriminate between positive and
negative reference tones in the
ACI test. The mean±SEM
proportion of a positive, b
negative, and c omitted responses
to the trained and ambiguous
tones in the control (open circles)
and amphetamine-treated (filled
circles) rats. The asterisk indi-
cates significant (p<0.05) differ-
ences between the control and
amphetamine-treated animals.
N=16 per group
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significantly (p=0.033) less often to the negative lever in
response to the negative tone compared with their saline-
treated counterparts and significantly (p=0.01) more often to
the positive lever and significantly (p=0.022) less often to the
negative lever in response to the negative tone compared with
the baseline.

Analysis of the proportion of the trials in which the animals
did not respond to the ambiguous and unambiguous tones
revealed no significant differences between experimental
groups (Fig. 2c, not significant, test × tone × group
interaction).

Effects of chronic administration of cocaine
on the interpretation of the ambiguous cue by rats

As shown in Fig. 3, chronic treatment with cocaine (10 mg/kg/
day for 2 weeks) also did not have significant effects on the
optimism index of rats (not significant test × treatment
interaction).

Analysis of the lever responding after the presentation of
ambiguous and reference tones revealed significant differ-
ences in the pattern of responding between control and
cocaine-treated groups after 2 weeks of treatment (test × lever
× tone × group interaction (F(2,60)=11.65, p<0.001)).

As shown in Figs. 4a and b, after 2 weeks of cocaine
treatment, the animals responded significantly (p<0.021) less
often to the positive lever and significantly (p<0.001) more
often to the negative lever in response to the positive reference
tone compared with controls and significantly (p<0.001) less
often to the positive lever and significantly (p<0.001) more
often to the negative lever in response to the positive reference
tone compared with the baseline. They also responded signif-
icantly (p=0.034) more often to the positive lever in response
to the negative tone compared with controls and significantly
(p=0.023) more often to the positive lever in response to the
negative tone compared with the baseline.

Analysis of the proportion of the trials in which the animals
did not respond to the ambiguous and unambiguous tones
revealed no significant differences between experimental
groups (Fig. 4c, not significant, test × tone × group
interaction).

Discussion

The present study was designed to investigate the cognitive
judgment bias of rats in the psychostimulant-inducedmodel of
mania. Our study demonstrates that chronic administration of
two potent psychostimulants, D-amphetamine and cocaine (a
widely used model of mania in rodents), does not produce
over-optimistic, manic-like judgment bias in rats, as measured
in the ambiguous-cue interpretation test.

Instead, 2 weeks of the treatment with both drugs made
animals almost completely unable to discriminate between
and/or react to the positive and negative reference tones.
Treated groups had a significantly decreased proportion of
positive lever responses and a significantly increased propor-
tion of negative lever responses to the unambiguous positive
tone. In response to the unambiguous negative tone, the
treated groups had a decreased proportion of negative lever
responses and an increased proportion of positive lever re-
sponses. As the proportion of omissions made by both groups
of treated animals remained unchanged, these effects of chron-
ic psychostimulant treatments do not indicate motivational
deficits. Instead, they might suggest that both treatments af-
fected cognitive processes linkedwith attention, memory, and/
or decision making.

Although recent studies revealed that pharmacological en-
hancement of DA function by acute administration of
dopamine-mimetic drugs, such as L-DOPA and amphetamine,
increases the optimism bias in humans (Sharot et al. 2012) and
animals (Rygula et al. 2014), respectively, other studies that
investigated chronic effects of psychostimulants suggested
that amphetamine and cocaine can produce cognitive deficits
similar to those observed after prefrontal cortex (PFC) or
striatal damage. In fact, reduced postmortem levels of dopa-
mine in the striatum and serotonin in the orbitofrontal cortex
were observed in human methamphetamine and cocaine
abusers (Wilson et al. 1996a, b), and chronic administration
of methamphetamine has been shown to induce enduring
changes in monoamine levels in the striatum and PFC of
non-human primates and rats and even neurotoxic effects,
including permanent axonal or nerve terminal damage
(Hotchkiss and Gibb 1980; Melega et al. 1996; Ricaurte and
McCann 1992; Ricaurte et al. 2005; Seiden et al. 1976, 1993;
Villemagne et al. 1998). Chronic administration of D-amphet-
amine, in a treatment regime similar to the one used in the

Fig. 3 Chronic treatment with cocaine (10 mg/kg/day for 2 weeks) does
not change the optimism index of rats in the ambiguous-cue interpretation
test. The mean±SEM optimism index of the control (open bars) and
cocaine-treated (filled bars) rats before and after the treatment. N=16 per
group
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present study, revealed that its neurotoxic effects were associ-
ated with oxidative stress (Frey et al. 2006c, d).

Studies using behavioral procedures, such as latent inhibi-
tion, suggested that amphetamine administration increases
attentional resources to irrelevant stimuli and conscious pro-
cessing of irrelevant stimuli in short-term memory (Gray et al.
1992; Solomon et al. 1981; Weiner et al. 1984, 1997). D-

Amphetamine has also been shown, even after single admin-
istration, to disrupt the sensory gating of auditory information
(Adler et al. 1986; Stevens et al. 1991), which has been
interpreted as disruption of the preattentive filtering of irrele-
vant sensory information. A similar effect was observed after
subchronic cocaine administration (Boutros et al. 1994, 1997;
Salamy et al. 1997). Given that Iowa gambling task deficits of

Fig. 4 Chronic treatment with
cocaine (10 mg/kg/day for
2 weeks) decreases the ability of
rats to discriminate between
positive and negative reference
tones in the ACI test. The mean±
SEM proportion of a positive, b
negative, and c omitted responses
to the trained and ambiguous
tones in the control (open circles)
and cocaine-treated (filled circles)
rats. The asterisk indicates signif-
icant (p<0.05) differences be-
tween the control and cocaine-
treated animals. N=16 per group
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patients with schizophrenia are associated with non-specific
learning impairment (Adida et al. 2011) and that chronic
psychostimulant administration has been suggested to model
cognitive disruption in this disorder (Gambill and Kornetsky
1976; Tenn et al. 2003), our results could also model some
aspects of schizophrenia.

Based on these reasons, the lack of effects of chronic
psychostimulant treatment on the ambiguous-cue interpreta-
tion might have resulted from more general cognitive deficit
and therefore must be interpreted with care. Without proper
discrimination and reaction to the reference positive and neg-
ative tones, measurements of the cognitive judgment bias
based on the ambiguous-cue interpretation may not be
reliable.

As observed during the baseline tests, the animals used in
the present study were generally pessimistic (negative basal
optimism index). Because we have shown recently that the
valence of the cognitive judgment bias in rats, similar to
humans, has both enduring trait and transient state compo-
nents (Rygula et al. 2013) and that rats displaying the “pessi-
mistic” trait were more prone to develop stress-induced anhe-
donia compared to their “optimistic” conspecifics, we cannot
exclude the possibility that this initial pessimism also
interacted with the effects of psychostimulants and perhaps
abolished them. Clearly, further studies investigating how
individual differences in the interpretation of the ambiguous
cue interact with pharmacological treatments are required to
test this hypothesis.

As discussed elsewhere (Rygula et al. 2012), contrary to
previous studies (Enkel et al. 2010; Harding et al. 2004), we
did not investigate different degrees of ambiguity. The exper-
imental design with only one ambiguous tone allowed us to
apply a reasonably high (10) number of these stimuli in only
one testing session, and the 50 discriminations per session
provided a broad and precise scale for the valence of
responding.

Finally, as we tested the animals only 15 min after the last
drug injection, it is likely that their behavior was affected by
some non-specific drug actions such as hyperactivity or ste-
reotypies. Indeed, previous studies, using a treatment regime
similar to the one applied in the present study, indicated
psychostimulant-induced sensitization in the locomotor activ-
ity (Frey et al. 2006a, c). This, however, adds to the validity of
the test, as psychostimulant-induced hyperactivity is consid-
ered one of the main behavioral correlates of mania in rodents
(Young et al. 2011a).

Conclusion

Whereas animal models of other psychiatric disorders, such as
depression, have proved already to be a vital tool in preclinical
research, the development of new models of mania remains a

challenging task. As with all animal models of psychiatric
conditions, inferring affective states in rodents that mirror the
variety of clinical symptoms and cognitive deficits that char-
acterize this human psychopathology is difficult.

In the present study, we assumed the challenge of modeling
cognitive aspects of mania in animals. Although our study
clear ly shows tha t chronic t rea tment wi th two
psychostimulant drugs (amphetamine and cocaine) do not
produce manic-like, over-optimistic cognitive judgment bias
in rats, the results might have been obscured by a variety of
non-specific effects of chronic psychostimulant treatment.
Further studies using a combination of the ACI test with
genetic models of dopaminergic hyperactivity will help to
avoid those non-specific effects and may allow investigation
of the cognitive judgment bias associated with mania in
animals.
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