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Abstract

Background: Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote
health and longevity. The pharmacological functions of which had been classified, including the activation of innate
immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma
lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of
GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on
microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of
this work was to quantitatively analyse the contributions of GLP on microglia.

Methods: The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid

betas, (AB4,) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the
microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology
and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain.

Results: Quantitative results revealed that GLP down-regulates LPS- or AB-induced pro-inflammatory cytokines
and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-
related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of
microglial behavioural responses were associated with MCP-1 and C1q expressions.

Conclusions: Overall, our study provides an insight into the GLP regulation of LPS- and AB-induced neuroinflammation
and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial
inflammatory and behavioural responses.
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Background

Ganoderma lucidum is a well-known herb used in the
traditional Chinese medicine to promote longevity and
is beneficial for general health [1, 2]. In recent years, the
extract of Ganoderma lucidum (GL) has been isolated
[3-5] and frequently used in medications as well as in
dietary supplements. The constituents of GL include
mainly ergosterol, triterpenoids, unsaturated fatty acids
and polysaccharides. Amongst all, polysaccharides are
the major pharmacologically active ingredient. The
effects of GL extracts had been related to the promoted
innate immune responses, suppression of cancer cell
migration, as well as modulations of cell proliferations
[6-8]. In recent years, studies have shown that GL
exhibited neuroprotective effect and significantly attenu-
ated amyloid beta (AP) peptide-induced neurotoxicity [9].
In addition, evidence showed that pre-administration of
GL spores to rat might also protect the hippocampus from
oxidative damages [10]. All of these provided positive
implications for GL in the treatment of Alzheimer’s
disease (AD). Nevertheless, there have not been sufficient
studies in the biochemical mechanism to which GLP
might target AD.

The aetiology of AD is of complex mechanisms and
not yet fully resolved. Two hallmarks characterising this
neurodegenerative disease are the aggregation of A
leading to senile plaques and the progressive cognitive
impairments [11]. In the central nervous system (CNS),
deposition of AP results into the activation of microglia,
the resident immune cells and thus neuroinflammation
[12]. Activated microglia release pro-inflammatory
cytokines and neurotoxic mediators with altered cell be-
haviours, which may be characterised by the microglial
morphology, migration and phagocytosis [13]. A positive
feedback from microglial phagocytosis is the removal of
dead neurones and neuronal debris, which in turn
contributes to the attenuation of inflammatory stress.
However, prolonged activation by Toll-like receptor
(TLR) agonists, such as lipopolysaccharides (LPS), Af
and lipoteichoic acid, may result into aberrant phagocyt-
osis process [14, 15]. Under such conditions, microglia
target on live neurones, neuronal progenitor cells (NPC)
and glioma cells, all of which leads to neuronal loss in
the CNS [14].

In the present study, we aimed to investigate the
effect of GLP on the LPS- and Ap-induced microglial
behavioural changes. Apart from the pro-inflammatory
mediators, chemokines such as MCP-1 also accumulate as
a result of neuroinflammation. MCP-1 over-expression
has been detected in many neurodegenerative diseases
[16-18]. In the AD brain, the function of MCP-1 is
related to cell movement and initiates monocyte accu-
mulation at the site of Ap deposition [19-21]. The up-
regulation of MCP-1 expression may contribute to the
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chronic inflammation [22]. Our results revealed that
GLP reduced the pro-inflammatory cytokines and
MCP-1 expressions with a tendency to promote anti-
inflammatory cytokine levels. We also demonstrated
that GLP modulation of microglial behavioural changes
in vitro was associated to MCP-1 expressions. Finally,
we confirmed the GLP-modulated microglial behavioural
changes in vivo.

Methods

Animals

The current study was conducted in strict accordance
with the guidelines of the Institute of Biochemistry and
Cell Biology, Chinese Academy of Sciences. All experi-
mental protocols in the study were approved and over-
seen by the Animal Care and Use Committee of the
Shanghai Institute of Biochemistry and Cell Biology,
Chinese Academy of Sciences. All mice (C57BL/6) were
maintained in the pathogen-free conditions.

Ganoderma lucidum polysaccharides

The GL polysaccharides were provided by Shanghai
Lugu Pharmaceuticals and were extracted from the dried
conidial powder of GL according to previous protocol
[23]. In brief, 1.35 kg of G. lucidum-dried conidial pow-
der was defatted with 95% EtOH for 1 week, followed by
5-h boiling water extraction procedure for six repeated
times. The supernatant was combined, concentrated and
centrifuged. To the concentrated supernatant, three
volumes of 95% EtOH were added to precipitate the
crude polysaccharides, CPW (28.2 g, 2%). CPW (7 g)
was then fractionated and eluted using distilled water to
obtain the water extracts (3.25 g). This water extracts
were further purified on a Sephacryl S-300 column
(2.6 cm x 100 cm) and eluted with 0.2 M NaCl to obtain
GLP. By high-performance gel permeation chromatog-
raphy (HPGPC) method, the relative molecular weight
of GLP was estimated at approximately 15 kDa. After
careful examinations by the Lowry method and
m-hydroxydiphenyl method, it was confirmed the poly-
saccharides contained no trace of protein and uronic
acid. One single preparation of GLP was performed for
all experiments.

A4, oligomer preparation

The AP4, oligomers were prepared based on protocols
by Stine [24]. In brief, the HFIP (hexafluoroisopropanol)-
treated APy, peptides (Anaspec) were resuspended in
dimethyl sulfoxide followed by dilution to 100 mM in
Ham’s F12. After incubation for 24 h at 4 °C, the
soluble AP4, oligomers were obtained and centrifuged
for 10 min at 14,000g. The integrity of AB,, oligomers
were previously validated by atomic force electromicro-
scopy and western blot [25]. In addition, dot blots were
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performed to confirmation the oligomeric and fibrillar
forms of APy, (Additional file 1: Figure S2).

Cell culture and treatment

BV2 cell lines were cultured and maintained in Dubelcco’s
Minimal Essential Medium (DMEM), with 10% fetal bo-
vine serum (FBS) supplement and 100 U/ml penicillin and
0.1 mg/ml streptomycin. Primary microglia were prepared
from wild-type C57BL/6 mice on postnatal day 1. In brief,
the mice’ cortices and hippocampi were dissected and the
meninges were carefully removed. The combined cortical
and hippocampal tissues were dissociated into single cells
by gentle scissoring and pipetting. The resultant suspen-
sion of cells was seeded to a T75 flask, cultured in DMEM
supplemented with 10% FBS and 100 U/ml penicillin
and 0.1 mg/ml streptomycin. After 7-10 days, micro-
glial cells were isolated from the astrocyte monolayer
sheet by shaking.

In all in vitro assays, BV2 cells and primary microglia
were pre-treated with GLP at various concentrations for
2 h (1 ng/ml-1 pg/ml for BV2, 0.3 ng/ml-0.1 pg/ml for
primary microglia). At the end of pre-treatment, 1 ug/ml
LPS (055:B5, Sigma) or 10 uM APy, oligomer was added
for further 24 h.

Quantitative real-time reverse transcription polymerase
chain reaction (qRT-PCR)

To analysis the mRNA expression, BV2 cells were
seeded into 96-well plates and primary microglia into
12-well plates at appropriate densities. After the cell
treatment, total RNA was extracted using the TRI
Reagent® (Sigma) according to the manufacturer’s in-
structions. RNA purity and integrity were assessed with
NanoDrop 1000 Spectrophotometer (Thermo Scientific).
A two-step first-strand ¢cDNA synthesis reaction was
performed using TIANScript M-MLV kit (TIANGEN)
following the manufacturer’s protocols. Addition of
rRNasin® (Recombinant rRNasin® Ribonuclease Inhibitor,
Promega) was used in the synthesis. The expression of
mRNAs was determined by quantitative real-time PCR
using the 2x HotStart SYBR Green qRT-PCR Master
Mix kit (ExCell). In brief, the reaction consisted of 4 pl
of pre-diluted cDNA in a total volume of 25 pl supermix
containing 0.25 pM primers. The reaction parameters
were as follows: 95 °C for 10 min; 95 °C for 30 s, 40 cycle;
60 °C for 30 s; 72 °C for 30 s. An additional cycle was
performed for evaluation of primer’s dissociation curve:
95 °C for 1 min, 60 °C for 30 s and 95 °C for 30 s. Each
c¢cDNA sample was amplified in duplicates. Primer
sequences used in the experiments are listed in Table 1.

ELISA determination of IL-6
The supernatants from each treatment were collected for
ELISA assays. The supernatants were first centrifuged to
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Table 1 Primers used for gPCR
Gene Forward Reverse
IL-16 GTTGACGGACCCCAAAAGAT AAGGTCCACGGGAAAGACAC
IL-6 TAGTCCTTCCTACCCCAATTTCC  TTGGTCCTTAGCCACTCCTTC
iNOS CCCTTCAATGGTTGGTACATGG  ACATTGATCTCCGTGACAGCC
Argl GAACACGGCAGTGGCTTTAAC  TGCTTAGCTCTGTCTGCTTTGC
TGFB CACTGATACGCCTGAGTG GTGAGCGCTGAATCGAAA
MCP-1  ATGCAGGTCCCTGTCATGCTTC ~ TTCTGATCTCATTTGGTTCCGA
Clg GGCTGGAGCATCCAGTTTGA GTCATGGTCAGCACACAGGC

remove cellular debris. Concentrations of IL-6 were deter-
mined using mouse-specific pre-coated ELISA kits
(DAKEWE Biotech Company) according to the manufac-
turer’s instructions.

Immunocytochemistry

Cultured mouse microglia were fixed in 4% paraformal-
dehyde (PFA) in PBS at room temperature for 15 min.
Cells were then permeabilised and blocked non-specific
bindings (1% BSA and 0.1% Triton X-100 in PBS) for
30 min. At room temperature, primary antibody
anti-Ibal (1:1000, WAKO) was applied for 2 h followed
by secondary antibody Cy3-conjugated anti-rabbit IgG
(1:1000) for 1 h. The immunocytochemistry staining
images were captured using Olympus IX51 camera with
an inverted laser (X-Cite® series120) and a 20x/0.45
Olympus objective.

Scratch wound migration assay and morphological
characterisation

BV2 cells were grown in 48-well plates till 70-80% con-
fluent. The monolayer of cells was then wounded with a
sterile 200-ul pipette tip in a straight line along the
diameter of the well and washed three times with sterile
PBS. The cells were grown for further 24 h allowing mi-
gration into the open scratched area. Images of cells
were captured at 0 and 24 h after wounding, using a
Zeiss A-Plan 5x objective (0.12 PhO) and the Zeiss
Observer Z1 microscope. Only single distinct cell was
selected for morphological analysis. Dividing cells and
those attached to each other were excluded. The abso-
lute value of distance migrated by cells was quantified as
the change in the perpendicular distance between the
edge of the gap after 24 h. The value was then normal-
ised to the 0 h starting measurement which represents

. . Migration=Dist: b —Dist:
“mlgratlon” ( igration=Distance 54 hours—Distancey hour) ~ We used

Distanceq pour

the Fiji Image] software (Version 2.0.0) to quantitatively
characterise the morphology using the following parame-
ters: cell area, perimeter, Feret’s diameter (the longest
distance between any two points along the selection
boundary) and circularity (475282 ).

Perimeter?
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Phagocytosis assay

BV2 and primary microglia were plated into 24-well
plates at appropriate densities to ensure the cells conflu-
ent to approximately 30,000 per well at the time of
assay. Pre-treatment of GLP was carried out 2 h after
plating and followed by stimulation with LPS or Afg,.
Phagocytosis assay were performed based on the proto-
col previously described [26]. Cell medium were chan-
ged to DMEM alone and allowed incubation for 30 min
inside the 37 °C cell culture incubator. After this, the
media were replaced by DMEM supplemented with 5%
FBS under various treatment conditions for GLP and
stimuli. The fluorescent latex beads (1 uM, L2778
Sigma) were pre-opsonised in 50% FBS and PBS. The
pre-opsonised beads were loaded to the cells at concen-
trations of 50 beads per BV2 cell and 100 beads per
primary microglia and incubated at 37 °C for 2 and 3 h,
respectively. Negative controls were carried out with
pre-treatment of Cytochalasin D for 30 min at 37 °C in
order to prevent phagocytosis. At the end of incubation,
the remaining beads were gently washed off the cells
and fixed by 4% PFA at room temperature. Cells were
then stained with DAPI (4',6-diamidino-2-phenylindole)
at room temperature for 15 min, and images were
captured under Zeiss Observer Z1 inverted microscope.
For each well, DAPI, Cy3 and brightfield images were
collected (N=15-30) and analysis was done by Fiji
Image] software (Version 2.0.0).

Zebrafish and embryo maintenance

Zebrafish and embryo were raised in egg water in a 14-h
light and 10-h dark cycle at 28.5 °C as described [27]. To
inhibit pigmentation, 0.003% PTU was added to each
samples at 24 h postfertilisation (hpf). The double trans-
genic zebrafish line Tg(ApoE:GFP, Huc:mcherry) was as
previously described [28]. The =zebrafish embryonic
growth was first monitored in the presence of 1 pg/ml
GLP from 12 hpf to 5 days postfertilisation (dpf). No
developmental defects were observed (Fig. 4a—c). Subse-
quent experiments were performed pre-treating larva
with GLP from 4 dpf for 24 h.

In vivo time-lapse confocal imaging

1.5% low melting point agarose (Sigma) was prepared to
fix the 5-dpf larvae alive without anaesthetics. A dorsal
view of the optic tectum is placed. Living imagines were
carried out in 1 um/optical section (40—65 um in depth)
in a 5-min interval using Olympus FV1000 upright
confocal microscope (473 nm, 543 nm; Japan) with a
Zeiss 40xNA 0.80 water immersion.

Image analysis
Resting and activated state morphology dynamic was
analysed as previously described [28, 29]. The cell size,
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deformation speed and tip number of microglia were
measured by the Fiji Image] (version 2.0.0).

Cell viability assay

The proliferative potential of GLP was examined in the
presence or absence of LPS. The BV2 cell proliferation
was tested using the CellTiter-Glo luminescent cell
viability assay (Promega) following the manufacturer’s
instructions.

Statistics

Statistical analysis was performed using GraphPad Prism
6 software (Graphpad Software, La Jolla, CA, USA).
Results were analysed by unpaired two-tailed Student’s ¢
test to determine the significance of the treatment sets.
For comparisons between multiple groups, one-way
ANOVA analysis with Tukey’s multiple comparison test
was performed. All data were presented as mean + SEM.
p <0.05 is considered to have significant difference.

Results

GLP attenuates LPS- or AB-induced inflammatory
response in microglia

In the previous report, GLP by an alternative extraction
technique with different purity was shown to inhibit
microglial activation [30]. In order to verify the integrity
of the GLP used in the present study, we first examined
the cytotoxicity and proliferative potential of GLP for
24 h (Additional file 1: Figure S1A). Further long-term
(48, 72 and 96 h) incubations confirmed GLP did not
affect cell growth (Additional file 1: Figure S1B). We
then investigated the effect of GLP on the LPS-induced
microglial activation (Fig. la—e). BV2 cells were
pre-treated with GLP for 2 h followed by LPS stimula-
tion. We showed that GLP inhibited LPS-induced pro-
inflammatory cytokines IL-1B, IL-6 and inducible nitric
oxide synthase (iNOS) expressions in a concentration-
dependent manner (Fig. la—c). The LPS-induced IL-1B
and IL-6 expressions were effectively reduced by GLP at
0.1 and 1 pg/ml, and iNOS expression down-regulated
at 1 pg/ml. At lower concentrations (0.01 and 0.1 pg/ml),
the effect of GLP on iNOS was not statistically significant.
However, a concentration-dependent trend was observed.
In addition, GLP up-regulated the anti-inflammatory cyto-
kine TGEP expression in the presence of LPS. It also
revealed a tendency to increase Argl expression in the ab-
sence of LPS (Fig. 1d, e). In AD, the microglia-mediated
neuroinflammation is stimulated by AP. Therefore, in
this study, we used the soluble form of oligomeric AB4,
and examined the role of GLP in primary mouse micro-
glia (Fig. 1g—j, 1). The results showed that GLP signifi-
cantly inhibited the AP4y-induced pro-inflammatory
cytokines IL-1P, IL-6 and iNOS to approximate basal
levels. In addition, GLP exhibited tendencies to promote
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Fig. 1 GLP attenuates LPS- and AB-induced inflammatory response in microglia. BV2 (a-e, k) and primary mouse microglia (f-j, I) were pre-treated
with GLP for 2 h followed by LPS or AB stimulation for further 24 h. GLP inhibited the LPS- and AB-induced pro-inflammatory cytokine levels (IL-13,
IL-6 and iNOS) and promoted anti-inflammatory cytokine (TGF) mRNA expressions. The effect of GLP on IL-6 protein expression in BV2 (k) and primary
microglia (I) was determined by ELISA. The ICsq values for GLP were calculated from concentration-response curves in BV2 and primary microglia (m).
Values were expressed as mean + SEM for at least three independent experiments, each performed in duplicates. One-way ANOVA with Tukey's multiple
comparison test revealed difference from untreated control (*) and LPS- or AB-stimulated condition (#) (compared with control: *p <0.05,
*p <001, **p < 0005, and ***p < 0.0001; compared with LPS- or AB-stimulated condition: *p < 0.05, *'p < 0,01, #*p < 0,005, and **p < 0.0001)

anti-inflammatory cytokine expressions (Fig. 1i, j). Under
APy, activation, Argl expression was significantly reduced.
It seemed that pre-treatment of GLP might potentially
rescue its expression, but the effect was not significant.
On the other hand, GLP promoted TGEp expression in
Apgy-activated cells. We then confirmed these findings at
protein levels by measuring the IL-6 protein expressions
using ELISA (Fig. 1k, 1). The ICso values of GLP in both
BV2 and primary microglia were analysed from
concentration-response curves, the IL-1f expressions
were determined as representatives. These values were
calculated using GraphPad Prism software. The ICsq
values were 25 ng/ml (LogICsy=-1.598) and 2 ng/ml
(LoglCsp=-2.704) for BV2 and primary microglia,
respectively (Fig. 1m). Overall, GLP attenuated BV2 and
primary microglial activation by reducing the pro-
inflammatory cytokine expression and promoted the anti-
inflammatory cytokine levels.

GLP modulates LPS- and AB-induced microglial migration
and morphological changes

The expression of MCP-1 is associated with neuroin-
flammation and cell motility. We showed increased
levels of MCP-1 expressions in BV2 and primary
microglia as the results of LPS and A activations, re-
spectively. GLP inhibited such increase of MCP-1 ex-
pression (Fig. 2a, b). The reduction in the MCP-1
expression thus might correlate with the attenuated
microglial inflammation states and down-regulation of
pro-inflammatory cytokine levels. We examined whether
the decrease in MCP-1 level leads to changes in micro-
glial morphology and migration (Fig. 2c-j). Our results
revealed the LPS-stimulated BV2 migration towards the
scratched open area was suppressed by GLP treatment
(Fig. 2¢, d). Further investigation in BV2 cells observed
two major morphological phenotypes, the short-round
morphology and the stretched and elongated morphology,
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Fig. 2 GLP modulates LPS- and AB-induced microglial migration and morphological changes. GLP (1 ug/ml) down-regulated the LPS- (a) and
AB-induced (b) MCP-1 mRNA expressions in BV2 and primary microglia, respectively. The representative images (c) and the quantitative analysis
(d) illustrated the inhibitory effect of GLP on the LPS-induced BV2 migration. Two major morphological phenotypes were observed within BV2 cell
populations (e). The ratio of BV2 cell with “round” or “long” morphology was affected by LPS and GLP pre-treatment (f). GLP modulated LPS-induced
BV2 morphological change in area (f), perimeter (h), circularity (i) and Feret's diameter (j). The representative fluorescent images of primary microglial
morphological changes as the results of AB stimulation and GLP attenuation (k). GLP modulates the AB-induced primary microglial morphological
changes (I-0). Values reported were mean + SEM for at least three independent experiments. One-way ANOVA with Tukey's multiple comparison test

revealed difference from untreated cells () and LPS- or AB-stimulated condition (#) (compared with control: *p < 0.05, **p < 0.01, ***p < 0.005, and
*0%n < 0.0001; compared with LPS- or AB-stimulated condition: *p < 0.05, #p < 0.01, #p < 0005, and **p < 0.0001)

here designated as “round” and “long” (Fig. 2e). The un-
treated BV2 existed mostly round, and under LPS activa-
tion, the number of long cells increased significantly.
However, pre-treatment with GLP restored the morpholo-
gies to round (Fig. 2f). We then carried out more detailed
morphological characterisation (Fig. 2g—j). The results
revealed that LPS induced increases in cell area,
perimeter and Feret’s diameter and a decrease in circu-
larity. These morphological modulations associated
with the LPS stimulation were inhibited by GLP pre-
treatment. These findings were confirmed in primary
microglia (Fig. 2k—o0). Activation by AP caused micro-
glial morphological changes from ramified to amoeboid
with increases in soma sizes. In the presence of GLP,
significant inhibitions in the cell area, perimeter and
Feret’s diameter measures were detected indicating the
modulations of microglial morphologies towards the
unstimulated state. It was not clear of the exact reason
that GLP treatment alone induced slight increase in the

cell area, perimeter and Feret’s diameter. Since no
change in the pro-inflammatory cytokine levels were
detected, it suggested such changes were unlikely due
to inflammatory responses.

GLP inhibited LPS- and AB-induced phagocytosis in
microglia

Further, we examined whether, under the same condi-
tions for the inhibited pro-inflammatory cytokines and
MCP-1 expressions, GLP modulated microglial phago-
cytosis. The experiment was conducted using 1-um
fluorescent latex beads in order to induce detectable
engulfment by microglia. We demonstrated that in both
BV2 and primary microglia, LPS and Af activation led
to increased number of phagocytic cells, whilst
pre-treatment with GLP (1 and 0.1 pg/ml for BV2 and
primary microglia, respectively) significantly reduced the
phagocytosis events (Fig. 3c, f). We also observed a ten-
dency of changes in the phagocytic capacity in both BV2
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using one-way ANOVA with Tukey's multiple comparison test, differences from untreated cells (¥) and LPS- or AB-stimulated condition (#)
were revealed (compared with control: **p < 0.01; compared with LPS- or AR-stimulated condition: “p < 0.05 and **p < 0.01)

and primary microglia (Fig. 3b, e), but the differences
were not statistically significant. Cytochalasin D pre-
treatment were used as the negative control experiment
to completely prevent phagocytosis. Beads attached to
the cell surfaces were washed off at the end the phago-
cytosis assay, and no fluorescent signal was detected
from Cytochalasin D pre-treated cells (data not shown).
Collectively, our results revealed GLP inhibited the LPS-
and Ap-promoted phagocytosis at 1 and 0.1 pg/ml
concentrations, respectively. Under these conditions, the
reductions in IL-1f, IL-6 and iNOS expressions were
previously observed. In addition, microglial comple-
ments are extensively related to phagocytosis and Ap

clearance [31]. In particular, Clq expression was re-
ported to associate to AB-induced synaptic loss [31]. We
thus examined the expression of complement Clq ex-
pression. The results showed an elevated level of Clq
expression by AP stimulation and reduction by GLP
(Fig. 3g). We did not detect significant C1q expression
in LPS-stimulated BV2 cells. Previous studies reported
that siglec receptors bound to a wide range of sialyloli-
gosaccharides are important regulators of innate
immunity [32]. SiglecE and H expressed in mouse
microglia were demonstrated to modulate phagocytosis
[33-35]. Therefore, we aimed to examine whether GLP
modulated phagocytosis in BV2 and primary microglia
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was through siglec receptors. However, we did not
detect expressions of siglecE or H in BV2 cells, which
implies that the GLP modulation of phagocytosis might
be independent of the siglec receptor mechanism.

GLP modulates microglial morphology and phagocytosis
in vivo

To confirm the results in vivo, further investigation in
the zebrafish brain was conducted in order to determine
the role of GLP in microglial behavioural modulations
including morphology and phagocytosis changes. A
double transgenic lines Tg(Apo-E:eGFP, HuC:mCherry)
[29] were used, with Apo-E:eGFP visualising microglia
in green and Huc:mcherry labelling neuron in red. The
time-lapse images were captured at 5-min intervals for
60 min as previously described [28]. The zebrafish
embryonic growth was monitored in the presence of
1 pg/ml GLP from 12 hpf to 5 dpf. No developmental
defects were observed (Fig. 4a—c). There are resting and
activated microglia in the optic tectum as classified by
different reactions in this region [36]. We first analysed
the resting microglial morphological dynamics (Fig. 4d-h).
Based on previous literature descriptions [37], resting
microglia in vivo have “immotile” cell body and many rela-
tively “motile” processes constantly branching out to scan
the microenvironment. Our data showed that GLP resulted
in a slight decrease in the cell sizes, but the changes in the
numbers of branching tips were not significant. The micro-
glial deformation speed, which is defined by difference in
cell area between two sequential processes projections, was
not affected. For activated microglia in vivo, the cell bodies
move fast in the tissue [37]. We analysed the effect of GLP
on the activated microglial cell size, tip number and phago-
cytic properties (Fig. 4i—m). The results showed that GLP
decreased activated microglial cell size and phagocytic
probability (Fig. 4m, j). However, the effect of GLP on
activated microglial tip number and phagocytosis
time-length was not significant (Fig. 41, k).

Discussion

In the present study, we aimed to investigate the effect
of GLP on microglia-mediated neuroinflammation. We
first showed that GLP inhibited the LPS-induced
pro-inflammatory cytokine expressions in BV2 cell lines.
The expressions of IL-1f, IL-6 and iNOS are associated
with neurodegenerative diseases. The IL-1f is a potent
neuroimmune mediator that takes effect on various cell
types including neurons and microglia [38]; iNOS
expression is elevated in activated microglia with its
synthetic product nitric oxide being one of the major
causes of neurodegenerative diseases [39]; and the
expression of IL-6 is also strongly linked to AD as an in-
flammatory mediator [40, 41]. These results thus provide
implications that GLP might exhibit neuroinflammation
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modulatory effects in neurodegenerative diseases such as
AD. Therefore, we confirmed this finding in primary
microglia in the presence and absence of Ap activation,
and the results were consistent with the responses in
BV2 cell. The analysis of IC5, values was based on the
expression of IL-1B as a representative. The results re-
vealed that GLP seemed to be a more potent inhibitor to
Ap activations in primary microglia compared to BV2
cells when stimulated by LPS. The differences in the
ICsy values may be attributed to dissimilarities between
a cell line and primary cultured microglia, although the
different inflammatory stimuli (AP and LPS) should also
be taken into account. Nevertheless, GLP inhibition of
these AB-induced inflammatory mediators implies that it
might be a potent modulator for AD-related neuroin-
flammation. In addition, we detected that GLP promoted
a significant rise in the anti-inflammatory cytokine TGEB
expression in both BV2 and primary microglia. TGEB
plays crucial role in the inhibition of microglia and
macrophage classic activations, the expression of which
also enhances the IL-4-induced microglial alternative
activation [42]. In combination with previous literature
evidence which demonstrated a TGFB1-dependent clear-
ance of AP in microglial cultures [43], our results thus
imply that GLP might ameliorate AD pathology. Mean-
while, we also analysed the expression of another anti-
inflammatory cytokine arginase-1 (Argl); we did not
detect changes in Argl expression. Recently, GLP has
been demonstrated to promote NPC proliferation and
improve cognitive functions in APP/PS1 transgenic
mice, with a significant effect on the AP clearance [44].
Therefore, GLP becomes a prominent “dual functional”
natural product in targeting AD, possibly via simultaneous
actions on both the anti-neuroinflammation and the
neurogenesis mechanisms.

As the results of microglial activation, cells display
remarkable characteristics in behavioural changes, such
as morphology, migration and phagocytosis. Increasing
amounts of researches have now focused on to elucidate
both the function and morphology of microglia in the
healthy and injured brains [45—47]. A recent example in
the analysis of microglial morphological and phagocytic
activity changes revealed that microglia being the “first
responder” after ischemic stroke and subsequent reper-
fusion process [48]. We observed the LPS-induced BV2
migration towards the open scratched area was signifi-
cantly blocked by 1 pug/ml GLP. At the same concentra-
tion, GLP also showed remarkable inhibitions to the
LPS-induced pro-inflammatory cytokine and MCP-1
expressions. In addition, we also recorded during LPS
activation BV2 cells elongated and extended from the
mostly short and compact morphology to a long shape.
This finding coincides with a previous report in which
BV2 cells were incubated in the conditioned medium
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Fig. 4 GLP modulates microglial morphology and phagocytosis in vivo. Zebrafish embryo (30 hpf) grown in GLP revealed no developmental
defect (a). Continued treatment with GLP during the embryonic developmental stage did not affect the larva body lengths (b, c). Dorsal view of
the optic tectum in a 5-dpf Tg(Apo-E:eGFP, HuCmCherry) zebrafish larvae. Time-lapse images of the dynamics of resting microglia pre-treated with
(e) or without (d) 1 pg/ml GLP. The time scales were in minutes. f-g The effects of GLP on resting microglial cell sizes, deformation speed and tip
numbers. h Time-lapse images showing the phagocytic process of microglia Tg(Apo-E:eGFP, HuC:mCherry) zebrafish larvae at 5 dpf. The effect of

1 pg/ml GLP on activated microglial phagocytosis (j, k) and morphology (I, m). Data normalised to control. N stands for numbers of zebrafish and
n for the number of cells. Statistical analysis was performed using unpaired two-tailed Student’s t test. Values expressed are mean + SEM. (*p < 0.05)

from spinal cord injury for 3-48 h [49]. We provided
quantitative descriptions for changes in morphology as
decreased cell circularity with increased Feret’s diameter
and confirmed that the changes ultimately led to the
augmented cell area and perimeter. On the other hand,
the quantitative descriptions for primary microglial mor-
phological changes did not entirely follow the observa-
tions for BV2. No significant difference was detected in
cell circularity under A stimulation, even though there
seemed to be an increasing trend. This might be due to
the more “irregular” shape of primary microglia. Despite
all, increased Feret’s diameter was recorded. As the
results of morphology changes, primary microglial cell
area and perimeter were remarkably enlarged, which is
consistent with BV2 cells. The variations in cell area and
perimeter thus seem to be the distinctive features
following BV2 and primary microglial activation. Further
investigation showed that the LPS- and Ap-induced
morphological changes were almost completely reversed
by 1 pg/ml of GLP. In addition, we also studied the
effect of GLP on microglial phagocytic behaviour using
1-um latex beads, since the process of phagocytosis
engulfs targets not less than 1 pm. Stimulations with
LPS or soluble AB oligomer may conceivably mimic the
early microglial phagoptosis events. As expected, GLP
treatment reduced the LPS- and AB-promoted phagocyt-
osis. Our results therefore illustrated GLP modulations
on microglial behaviour were associated to MCP-1 ex-
pressions. We further extended the investigations of
GLP modulations of microglial behaviour in vivo. The
zebrafish model used was a double transgenic line, with
ApoE:eGFP-labelled microglia in green and HuC:m
Cherry-labelled neurones in red. Transgenic lines of
both labelling were well established [50, 51]. It should be
noted that Apo-E was previously described as a zebrafish
microglial marker [52, 53]; the Tg(Apo-E:eGFP) line were
then raised in order to reveal zebrafish microglia in
green colour [50]. The specificity of this labelling was
proved with pUl morpholino injection, which led to a
complete disappearance of Apo-E-positive cells thus
confirming the myeloid origin of these labelled cells
[50]. In the zebrafish, the cell size, tip numbers and de-
formation speed are the characteristic features defining
resting microglial morphology. GLP reduced the resting

microglial cell sizes in vivo, with little impact on the tip
numbers and deformation speeds. In BV2, the unstimu-
lated cell morphologies remained unaltered in the presence
of GLP. Meanwhile, in the primary microglia, GLP resulted
in a slight increase in cell area. Since the pro-inflammatory
cytokine levels remained unchanged, it is unlikely that the
increase in cell area was resulted from microglial activa-
tion. The results of GLP inhibition of activated microglial
cell size and phagocytosis in zebrafish were consistent
with the findings in LPS- and AB-stimulated BV2 and pri-
mary microglia.

One other distinguished observation in this study is
the complement Clq correlation with oligomeric A
stimulation in microglia. This finding is supported by
earlier researches [31]. Previously, Stevens et al. [31]
demonstrated that microglia is the main source of com-
plement Clq and the expressions of which are specific
to the hippocampus and frontal cortex regions in the
brain [54]. Clq expression is an essential requirement
for the oligomeric AP-induced synaptic loss in vivo
[55-57]. Deficit in C1lq results into an increased num-
ber of synapses and provides a neuroprotective func-
tion [31, 55]. Our results imply that GLP displayed
neuroprotective effect against AP oligomers as the
treatment with GLP significantly reduced the Clq ex-
pression. Furthermore, the neuroprotective effect of
GLP might be also achieved through the inhibition of
inflammation-induced phagocytosis. Microglial phago-
cytosis can be considered beneficial under various cir-
cumstances. The removal of dead neurones and debris
or even excessive live neurones and precursors during
adult neurogenesis maintains a homeostatic environment
[34, 35]. However, in situations where phagocytosis is
stimulated via inflammation, the consequence of which
can be detrimental. Although at early-stage phagocytosis
may reduce inflammation, excessive removal of pathogens,
dead or infected neurones and synapses may lead to pha-
goptosis of live neurones and synapses [58—60]. Phagocyt-
osis and aberrant phagoptosis are in fact associated with
many neurodegenerative diseases such as AD, Parkinson’s
disease and frontotemporal degenerations [59, 61, 62].
Mutations in various phagocytosis genes (TREM2,
complement receptor 1, CD33, APOE, etc.) were also
implicated as risk factors for neurodegenerative diseases
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[61, 63, 64]. Our in vitro study thus provides implication
that GLP may act at early stage of the disease to attenuate
inflammation and maintain a controlled phagocytosis
event.

Conclusions

In conclusion, our study provides an insight into the regu-
latory roles of GLP in LPS- and Ap-induced microglial be-
haviour and pro-inflammatory responses. The study
stresses the significance of investigation in microglial be-
havioural response to neuroinflammation. A particular
importance is the use of AP in order to mimic microglia-
mediated neuroinflammation in AD. The results indirectly
serve an indication that GLP exhibits a neuroprotective
function in the treatment of AD. In conjunction with the
neurogenesis effect [44], GLP represents a dual functional
cocktail-like natural product, which bares a great potential
in the early prevention and treatment of AD.

Additional file

Additional file 1: Figure S1. GLP exhibited no cytotoxicity and
proliferative effect to BV2 cells. (A) GLP effect on BV2 cell viability was
examined for 24 h in the presence and absence of LPS stimulation. No
cytotoxicity was detected. GLP long-term effect on cell growth was
investigated for 48, 72 and 96 h. Cell growth was estimated by total
cell count (B) and CellTiter-Glo assay (C). Cells were incubated in normal
DMEM culture medium with 10% FBS supplement. Both 1 and 0.01 pg/ml
showed no effect on cell growth compared to untreated control. Cells
grown in FBS-depleted medium (2% FBS) showed little cell growth, whereas
in the FBS-enriched medium (30% FBS), the cell growth exceeds normal
cultured medium. Figure S2. Confirmation on the integrity of prepared AR
oligomer. Four microliters of oligomers or fibril were loaded to the
nitrocellulose membrane. Dot blot was performed and the oligomer-(A11)
and Fibril-specific (ab126468) antibodies were used. In the prepared
oligomer (left lane), little fibril fractions were detected, whilst in the
prepared AR fibril (right lane), certain levels of oligomers were also detected.
Staining of 6E10 revealed the total AR content. (PDF 207 kb)

Abbreviations

AD: Alzheimer's disease; Arg1: Arginase 1; AR42: Amyloid beta,,; CNS: Central
nervous system; DMEM: Dubelcco’s Minimal Essential Medium;

DMSO: Dimethyl sulfoxide; dpf: Day postfertilisation; E. coli: Escherichia Coli;
ELISA: Enzyme-linked immunosorbent assay; FBS: Fetal bovine serum;

GLP: Ganoderma lucidum polysaccharides; HFIP: Hexafluoroisopropanol;

hpf: Hour postfertilisation; HPGPC: High-performance gel permeation
chromatography; IL-10: Interleukin-1 beta; IL-6: Interleukin-6; LB: Luria Bertani;
LPS: Lipopolysaccharides; MCP-1: Monocyte chemoattractant protein;

NPC: Neural progenitor cell; PBS: Phosphate-buffered saline;

gPCR: Quantitative polymerase chain reaction; Tg: Transgenic;

TGF: Transforming growth factor {; TLR: Toll-like receptor

Acknowledgements

We thank Dr. Qian Hu for optimising the image analysis method and for our

in vivo time-lapse imaging experiments on Olympus FV1000, Jerome Boulanger
for the ndsafir software, and Dr. Jiulin Du lab for providing all the zebrafish line.

Funding

This research was supported by the Ministry of Science and Technology
(2015CB964502) and Shanghai Municipal Commission for Science and
Technology (15JC1400202, 14DZ1900402).

Page 11 of 13

Availability of data and materials
The datasets during and/or analysed during the current study are available
from the corresponding author on reasonable request.

Authors’ contributions

GP substantially controlled the study conception and design, interpretation
of the data, and critical revision of the manuscripts for important intellectual
content. QC performed all the in vitro assays and data analysis. YL performed
the in vivo zebrafish experiments and data analysis. QC contributed to the
manuscript preparation. All the authors contributed to the manuscript
revision and read and approved the final article.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell
Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of
Sciences, 320 Yueyang Road, Shanghai 200031, China. “Graduate School,
University of Chinese Academy of Sciences, Chinese Academy of Sciences,
320 Yueyang Road, Shanghai 200031, China. *School of Life Science and
Technology, and the Collaborative Innovation Center for Brain Science,
Tongji University, Shanghai 200092, China.

Received: 9 October 2016 Accepted: 13 March 2017
Published online: 24 March 2017

References

1. Lin Z-B. Cellular and molecular mechanisms of immuno-modulation by
Ganoderma lucidum. J Pharmacol Sci. 2005;99:144-53. Japan.

2. Sliva D. Cellular and physiological effects of Ganoderma lucidum (Reishi).
Mini Rev Med Chem. 2004;4:873-9. Netherlands.

3. Wubshet SG, Johansen KT, Nyberg NT, Jaroszewski JW. Direct (13)C NMR
detection in HPLC hyphenation mode: analysis of Ganoderma lucidum
terpenoids. J Nat Prod. 2012;75:876-82. United States.

4. Pan K Jiang Q, Liu G, Miao X, Zhong D. Optimization extraction of
Ganoderma lucidum polysaccharides and its immunity and antioxidant
activities. Int J Biol Macromol. 2013;55:301-6. Netherlands.

5. Huang S-Q, Li J-W, Wang Z, Pan H-X, Chen J-X, Ning Z-X. Optimization of
alkaline extraction of polysaccharides from Ganoderma lucidum and their
effect on immune function in mice. Molecules. 2010;15:3694-708.
Switzerland.

6. Zhao H-B, Lin S-Q, Liu J-H, Lin Z-B. Polysaccharide extract isolated from
ganoderma lucidum protects rat cerebral cortical neurons from hypoxia/
reoxygenation injury. J Pharmacol Sci. 2004,95:294-8. Japan.

7. Cheung WM, Hui WS, Chu PW, Chiu SW, Ip NY. Ganoderma extract activates
MAP kinases and induces the neuronal differentiation of rat
pheochromocytoma PC12 cells. FEBS Lett. 2000;486:291-6. Netherlands.

8. Zhang J, Tang Q, Zhou C, Jia W, Da Silva L, Nguyen LD, et al. GLIS, a
bioactive proteoglycan fraction from Ganoderma lucidum, displays anti-
tumour activity by increasing both humoral and cellular immune response.
Life Sci. 2010,87:628-37. Netherlands.

9. Lai CS-W, Yu M-S, Yuen W-H, So K-F, Zee S-Y, Chang RC-C. Antagonizing
beta-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma
lucidum. Brain Res. 2008;1190:215-24. Netherlands.

10. ZhouY,Qu Z Zeng Y, Lin Y, Li Y, Chung P, et al. Neuroprotective effect of
preadministration with Ganoderma lucidum spore on rat hippocampus. Exp
Toxicol Pathol. 2012,64:673-80. Germany.

11, Selkoe DJ. Alzheimer’s disease: genotypes, phenotypes, and treatments.
Science. 1997;275:630-1. United States.

12. Heneka MT, O'Banion MK. Inflammatory processes in Alzheimer's disease.

J Neuroimmunol. 2007;184:69-91. Netherlands.

13. Perry VH, Nicoll JAR, Holmes C. Microglia in neurodegenerative disease. Nat
Rev Neurol. 2010;6:193-201. England.

14.  Brown GC, Neher JJ. Microglial phagocytosis of live neurons. Nat Rev
Neurosci. 2014;15:209-16. England.


dx.doi.org/10.1186/s12974-017-0839-0

Cai et al. Journal of Neuroinflammation (2017) 14:63

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Fu R, Shen Q, Xu P, Luo JJ, Tang Y. Phagocytosis of microglia in the central
nervous system diseases. Mol Neurobiol. 2014;49:1422-34. United States.
Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol. 2001;2:108-15.
United States.

Gao L, Tang H, Nie K, Wang L, Zhao J, Gan R, et al. MCP-1 and CCR2 gene
polymorphisms in Parkinson's disease in a Han Chinese cohort. Neurol Sci.
201536:571-6. Italy.

Nagata T, Nagano |, Shiote M, Narai H, Murakami T, Hayashi T, et al.
Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of
amyotrophic lateral sclerosis patients. Neurol Res. 2007;29:772-6. England.
El Khoury JB, Moore KJ, Means TK, Leung J, Terada K, Toft M, et al. CD36
mediates the innate host response to beta-amyloid. J Exp Med. 2003;197:
1657-66. United States.

Hickman SE, EI Khoury J. Mechanisms of mononuclear phagocyte
recruitment in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2010,9:
168-73. United Arab Emirates.

Selenica M-LB, Alvarez JA, Nash KR, Lee DC, Cao C, Lin X, et al. Diverse
activation of microglia by chemokine (C-C motif) ligand 2 overexpression in
brain. J Neuroinflammation. 2013;10:86. England.

Ishizuka K, Kimura T, Igata-yi R, Katsuragi S, Takamatsu J, Miyakawa T.
Identification of monocyte chemoattractant protein-1 in senile plagues and
reactive microglia of Alzheimer’s disease. Psychiatry Clin Neurosci.
1997,51:135-8. Australia.

Wang P, Liao W, Fang J, Liu Q, Yao J, Hu M, et al. A glucan isolated from
flowers of Lonicera japonica Thunb. inhibits aggregation and neurotoxicity
of Abeta42. Carbohydr Polym. 2014;110:142-7. England.

Stine WB, Jungbauer L, Yu C, LaDu MJ. Preparing synthetic Abeta in different
aggregation states. Methods Mol Biol. 2011,670:13-32. United States.

Hou Y, Wang Y, Zhao J, Li X, Cui J, Ding J, et al. Smart Soup, a traditional
Chinese medicine formula, ameliorates amyloid pathology and related
cognitive deficits. PLoS One. 2014;9:¢111215. United States.

Lucin KM, O'Brien CE, Bieri G, Czirr E, Mosher KI, Abbey RJ, et al. Microglial
beclin 1 regulates retromer trafficking and phagocytosis and is impaired in
Alzheimer's disease. Neuron. 2013;79:873-86. United States.

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of
embryonic development of the zebrafish. Dev Dyn. 1995;203:253-310.
UNITED STATES.

Li'Y, Du X, Pei G, Du J, Zhao J. beta-Arrestin1 regulates the morphology and
dynamics of microglia in zebrafish in vivo. Eur J Neurosci. 2016;43:131-8.
France.

Li'Y, Du X-F, Liu C-S, Wen Z-L, Du J-L. Reciprocal regulation between resting
microglial dynamics and neuronal activity in vivo. Dev Cell. 2012;23:1189-
202. United States.

Zhang R, Xu S, Cai Y, Zhou M, Zuo X, Chan P. Ganoderma lucidum protects
dopaminergic neuron degeneration through inhibition of microglial
activation. Evid Based Complement Alternat Med. 2011;2011:156810.
United States.

Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al.
Complement and microglia mediate early synapse loss in Alzheimer mouse
models. Science. 2016;352:712-6. United States.

Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of
immune cell function in disease. Nat Rev Immunol. 2014;14:653-66. Nature
Publishing Group, a division of Macmillan Publishers Limited. All Rights
Reserved. Available from: http://dx.doi.org/10.1038/nri3737.

Claude J, Linnartz-Gerlach B, Kudin AP, Kunz WS, Neumann H. Microglial
CD33-related siglec-E inhibits neurotoxicity by preventing the phagocytosis-
associated oxidative burst. J Neurosci. 2013;33:18270. LP - 18276. Available
from: http://www. jneurosci.org/content/33/46/18270.abstract.

Kopatz J, Beutner C, Welle K, Bodea LG, Reinhardt J, Claude J, et al. Siglec-h
on activated microglia for recognition and engulfment of glioma cells. Glia.
2013;61:1122-33. United States.

Neumann J, Sauerzweig S, Rénicke R, Gunzer F, Dinkel K, Ullrich O, et al.
Microglia cells protect neurons by direct engulfment of invading neutrophil
granulocytes: a new mechanism of CNS immune privilege. J Neurosci. 2008;
28:5965. LP - 5975. Available from: http//www.jneurosci.org/content/28/23/
5965.abstract.

Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly
dynamic surveillants of brain parenchyma in vivo. Science. 2005,308:1314-8.
United States.

Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. Physiology of microglia.

Physiol Rev. 2011;91:461-553. United States.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

Page 12 of 13

Rothwell N, Allan S, Toulmond S. The role of interleukin 1 in acute
neurodegeneration and stroke: pathophysiological and therapeutic
implications. J Clin Invest. 1997;100:2648-52.

Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial
cells. Antioxid Redox Signal. 2006;8:929-47. Available from: http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC1963415/.

Su F, Bai F, Zhang Z. Inflammatory cytokines and Alzheimer’s disease: a
review from the perspective of genetic polymorphisms. Neurosci Bull.
2016;32:469-80. China.

Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N. A
meta-analysis of cytokines in Alzheimer's disease. Biol Psychiatry. 2010,68:
930-41. United States.

Zhou X, Spittau B, Krieglstein K. TGF signalling plays an important role in
IL4-induced alternative activation of microglia. J Neuroinflammation.
2012;9:210. Available from: http://dx.doi.org/10.1186/1742-2094-9-210.
Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-
betal promotes microglial amyloid-beta clearance and reduces plaque
burden in transgenic mice. Nat Med. 2001;7:612-8. United States.

Huang S, Mao J, Ding K, Zhou Y, Zeng X, Yang W, et al. Polysaccharides
from Ganoderma lucidum promote cognitive function and neural
progenitor proliferation in mouse model of Alzheimer’s disease. Stem Cell
Rep. 2017;8:34-94. United States.

Kurpius D, Nolley EP, Dailey ME. Purines induce directed migration and
rapid homing of microglia to injured pyramidal neurons in developing
hippocampus. Glia. 2007;55:873-84. United States.

Tremblay M-E, Lowery RL, Majewska AK. Microglial interactions with
synapses are modulated by visual experience. PLoS Biol. 2010;8. http://www.
ncbi.nlm.nih.gov/pmc/articles/PMC2970556/.

Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, et al.
Microglial morphology and dynamic behavior is regulated by ionotropic
glutamatergic and GABAergic neurotransmission. Block M, editor. PLoS One.
2011,6:215973. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3026789/.

Morrison HW, Filosa JA. A quantitative spatiotemporal analysis of microglia
morphology during ischemic stroke and reperfusion. J Neuroinflammation.
2013;10:4. England.

Cizkova D, Devaux S, Le Marrec-Croq F, Franck J, Slovinska L, Blasko J, et al.
Modulation properties of factors released by bone marrow stromal cells on
activated microglia: an in vitro study. Sci Rep. 2014;4:7514. England.

Peri F, NUsslein-Volhard C. Live imaging of neuronal degradation by
microglia reveals a role for vO-ATPase al in phagosomal fusion in vivo. Cell.
2008;133:916-27. Available from: http://www.sciencedirect.com/science/
article/pii/S0092867408006119.

Park H-C, Kim C-H, Bae Y-K, Yeo S-Y, Kim S-H, Hong S-K; et al. Analysis of
upstream elements in the HUC promoter leads to the establishment of
transgenic zebrafish with fluorescent neurons. Dev Biol. 2000,227:279-93.
Available from: http://www.sciencedirect.com/science/article/pii/
50012160600998981.

Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize
cephalic mesenchyme and developing brain, retina, and epidermis through
a M-CSF receptor-dependent invasive process. Dev Biol. 2001,238:274-88.
United States.

Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early
macrophages in the zebrafish embryo. Development. 1999;126:3735-45.
England.

Harris JA, Devidze N, Halabisky B, Lo I, Thwin MT, Yu G-Q, et al. Many
neuronal and behavioral impairments in transgenic mouse models of
Alzheimer’s disease are independent of caspase cleavage of the amyloid
precursor protein. J Neurosci. 2010;30:372-81. United States.

Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N,

et al. The classical complement cascade mediates CNS synapse elimination.
Cell. 2007;131:1164-78. United States.

Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R,
et al. Microglia sculpt postnatal neural circuits in an activity and complement-
dependent manner. Neuron. 2012;74:691-705. United States.

Stephan AH, Barres BA, Stevens B. The complement system: an unexpected
role in synaptic pruning during development and disease. Annu Rev
Neurosci. 2012,35:369-89. United States.

Neher JJ, Emmrich JV, Fricker M, Mander PK, Thery C, Brown GC.
Phagocytosis executes delayed neuronal death after focal brain ischemia.
Proc Natl Acad Sci U S A. 2013;110:E4098-107. United States.


http://dx.doi.org/10.1038/nri3737
http://www.jneurosci.org/content/33/46/18270.abstract
http://www.jneurosci.org/content/28/23/5965.abstract
http://www.jneurosci.org/content/28/23/5965.abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1963415/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1963415/
http://dx.doi.org/10.1186/1742-2094-9-210
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2970556/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2970556/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026789/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026789/
http://www.sciencedirect.com/science/article/pii/S0092867408006119
http://www.sciencedirect.com/science/article/pii/S0092867408006119
http://www.sciencedirect.com/science/article/pii/S0012160600998981
http://www.sciencedirect.com/science/article/pii/S0012160600998981

Cai et al. Journal of Neuroinflammation (2017) 14:63 Page 13 of 13

59.  Fricker M, Oliva-Martin MJ, Brown GC. Primary phagocytosis of viable neurons
by microglia activated with LPS or Abeta is dependent on calreticulin/LRP
phagocytic signalling. J Neuroinflammation. 2012,9:196. England.

60. Neniskyte U, Neher JJ, Brown GC. Neuronal death induced by nanomolar
amyloid beta is mediated by primary phagocytosis of neurons by microglia.
J Biol Chem. 2011;286:39904-13. United States.

61. Kao AW, Eisenhut RJ, Martens LH, Nakamura A, Huang A, Bagley JA, et al. A
neurodegenerative disease mutation that accelerates the clearance of
apoptotic cells. Proc Natl Acad Sci U S A. 2011;108:4441-6. United States.

62.  Marker DF, Puccini JM, Mockus TE, Barbieri J, Lu S-M, Gelbard HA. LRRK2
kinase inhibition prevents pathological microglial phagocytosis in response
to HIV-1 Tat protein. J Neuroinflammation. 2012;9:261. England.

63. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, et al.
TREM2 variants in Alzheimer's disease. N Engl J Med. 2013;368:117-27.
United States.

64. Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, et al.
Common variants at MS4A4/MS4AGE, CD2AP, CD33 and EPHAT are
associated with late-onset Alzheimer's disease. Nat Genet. 2011;43:436-41.
United States.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolVled Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Animals
	Ganoderma lucidum polysaccharides
	Aβ42 oligomer preparation
	Cell culture and treatment
	Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR)
	ELISA determination of IL-6
	Immunocytochemistry
	Scratch wound migration assay and morphological characterisation
	Phagocytosis assay
	Zebrafish and embryo maintenance
	In vivo time-lapse confocal imaging
	Image analysis
	Cell viability assay
	Statistics

	Results
	GLP attenuates LPS- or Aβ-induced inflammatory response in microglia
	GLP modulates LPS- and Aβ-induced microglial migration and morphological changes
	GLP inhibited LPS- and Aβ-induced phagocytosis in microglia
	GLP modulates microglial morphology and phagocytosis in vivo

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

