
Understanding a tissue’s transcriptional response to 
injury is a helpful tool to understanding the pathology of any 
disease. Following optic nerve injury (ONI), transcriptional 
changes occur that effect the course of injury response and the 
level to which the tissue is functionally compromised [1,2]. 
Numerous studies have been performed to quantify transcrip-
tional changes that result from acute or chronic optic nerve 
injury (AONI and CONI, respectively) in a variety of animal 
models ranging from zebrafish to non-human primates. 
AONI models, like optic nerve crush and axotomy, damage 
the axons of the retinal ganglion cells (RGCs) by pinching or 

transecting the optic nerve behind the globe of the eye. This 
axonal damage leads to the rapid degeneration and apoptosis 
of the RGCs that begins within hours of damage, achieves a 
maximal rate of cell loss between 5 and 7 days and ends with 
near complete ablation of the RGC population by 21 days 
post-injury [3-5].

Among the CONI models used for transcriptome anal-
yses, the most commonly used are models of experimental 
or inherited glaucoma. Of these, the DBA/2J mouse has been 
widely studied and characterized. This mouse spontaneously 
develops elevated intraocular pressure, a risk factor for 
human glaucoma, as it ages, which leads to the degenera-
tion of the optic nerve and the loss of RGCs starting between 
6 and 8 months of age and completing in most animals by 
12 months of age [6]. While acute models achieve a highly 
synchronous loss of RGCs within a narrow time-frame, the 
DBA/2J chronic model presents with pathology that is more 
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Purpose: Injury to the central nervous system (CNS) leads to transcriptional changes that effect tissue function and 
govern the process of neurodegeneration. Numerous microarray and RNA-Seq studies have been performed to identify 
these transcriptional changes in the retina following optic nerve injury and elsewhere in the CNS following a variety of 
insults. We reasoned that conserved transcriptional changes between injury paradigms would be important contributors 
to the neurodegenerative process. Therefore, we compared the expression results from heterogeneous studies of optic 
nerve injury and neurodegenerative models.
Methods: Expression data was collected from the Gene Expression Omnibus. A uniform method for normalizing ex-
pression data and detecting differentially expressed (DE) genes was used to compare the transcriptomes from models of 
acute optic nerve injury (AONI), chronic optic nerve injury (CONI) and brain neurodegeneration. DE genes were split 
into genes that were more or less prevalent in the injured condition than the control condition (enriched and depleted, 
respectively) and transformed into their human orthologs so that transcriptomes from different species could be com-
pared. Biologic significance of shared genes was assessed by analyzing lists of shared genes for gene ontology (GO) 
term over-representation and for representation in KEGG pathways.
Results: There was significant overlap of enriched DE genes between transcriptomes of AONI, CONI and neurode-
generation studies even though the overall concordance between datasets was low. The depleted DE genes identified 
between AONI and CONI models were significantly overlapping, but this significance did not extend to comparisons 
between optic nerve injury models and neurodegeneration studies. The GO terms overrepresented among the enriched 
genes shared between AONI, CONI and neurodegeneration studies were related to innate immune processes like the 
complement system and interferon signaling. KEGG pathway analysis revealed that transcriptional alteration between 
JAK-STAT, PI3K-AKT and TNF signaling, among others, were conserved between all models that were analyzed.
Conclusions: There is a conserved transcriptional response to injury in the CNS. This transcriptional response is driven 
by the activation of the innate immune system and several regulatory pathways. Understanding the cellular origin of 
these pathways and the pathological consequences of their activation is essential for understanding and treating neuro-
degenerative disease.
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clinically similar to human disease, but that is highly variable 
from eye to eye and which occurs over a much longer period 
of time [6].

While optic nerve injury models result in RGC death, 
many other cell-types are also involved including retinal and 
optic nerve glia [7]. In analyses of whole tissues, changes in 
these other cell types are expected to contribute to the overall 
transcriptomic changes.

Results from microarray and RNA-Seq experiments 
are often confounding and yield results that are shockingly 
dissimilar [8]. A meta-analysis comparing the transcriptomic 
alterations observed in ONI studies is necessary to separate 
conserved transcriptional changes from artifactual ones that 
may occur randomly in a study. Biologic processes that are 
changed in multiple models and multiple species are less 
likely to be artifacts of a model and more likely to be impor-
tant global modifiers of disease etiology and progression. 
For this reason, we sought to compare data from studies of 
optic nerve injury and brain neurodegeneration that varied 
in multiple ways including species analyzed, mechanism of 
injury and method of quantification of transcript abundance.

Using the Gene Expression Omnibus (GEO), tran-
scriptional data was gathered from experiments analyzing 
transcriptional changes in models of AONI and CONI. We 
normalized the raw expression data and identified differ-
entially expressed (DE) genes that were either enriched or 
depleted in the injured/diseased condition relative to the 
control. To determine if there was a relationship between the 
expression patterns of each data set, hierarchical clustering 
of whole transcriptomes was performed on the expression 
data from mouse experiments that used Affymetrix chips. 
Lists of DE genes were compared between studies of AONI 
and CONI. We hypothesized that comparing transcriptional 
changes between heterogeneous models would reveal genes 
that were fundamental to the retinal response to injury. This 
analysis was extended to compare transcriptional changes 
from ONI models to mouse models of other neurodegen-
erative conditions. We use Gene Ontology (GO) term over-
representation analysis and KEGG pathways to identify 
biologic processes and pathways that are conserved in the 
transcriptional changes that follow injury to various areas of 
the central nervous system (CNS).

Here we report that comparing transcriptional changes 
resulting from diverse AONI, CONI and neurodegeneration 
data sets revealed great diversity of non-overlapping DE 
genes, but within these data sets there was a conserved 
transcriptional response between models. Lists of enriched 
DE genes significantly overlapped with one another regard-
less of species, injury, or tissue. Lists of depleted DE genes 

from studies examining the same tissue were significantly 
overlapping but inter-tissue comparisons did not signifi-
cantly overlap. GO terms associated with commonly 
occurring enriched genes were often related to the innate 
immune response, indicating that this response is conserved 
throughout the CNS response to a host of injuries.

METHODS

Summary of optic nerve injury studies: All expression and 
platform data used in analysis were retrieved from the GEO 
database. We sought to include as much data as possible 
while allowing the data manipulation to remain as uniform 
and simple as possible. For this reason, the majority of the 
included data are from Affymetrix array chips. The excep-
tions are data from a Sentrix chip and from studies that used 
RNA-Seq. These data were pre-normalized by the study 
authors and were easily mapped to their gene symbols. 
Syntactically, we defined a “study” as the collection of 
expression data published by a group for a particular experi-
ment. Each study contained one or more “datasets” which 
were comparisons of gene expression between a control 
condition and an experimental condition (i.e., a time after 
acute injury). Each study was identified by the name of the 
first author of the publication attributed to the data in GEO. In 
all, a total of 14 studies and 55 data sets were used for analysis 
Appendix 1 summarizes all the data sets used, including cita-
tion of the corresponding GEO reference numbers. Individual 
descriptions of the studies are:

(i) The Agudo study examined retinal gene expression 
changes in Rattus norvegicus following optic nerve crush or 
optic nerve axotomy [9]. This study used the Affymetrix Rat 
Genome 230 2.0 Array and compared expression changes 
from injured animals to a control group of naïve uninjured 
animals.

(ii) The Jiang study explored expression changes in 
Canis lupus familiaris by comparing retinal gene expression 
between dogs with inherited glaucoma and healthy dogs [10]. 
This study used the Affymetrix Canine Genome 2.0 Array 
and dogs of various breeds and ages.

(iii) The Howell study looked at gene expression changes 
in both the retina and optic nerve during increasing stages 
of optic nerve degeneration in the DBA/2J mouse (Mus 
musculus) model of inherited glaucoma [11]. The Affyme-
trix Mouse Genome 430 2.0 Array was used for this study 
and separate data sets were generated for the retina and 
optic nerve. Expression changes in diseased animals were 
compared with control animals that had the wild-type 
Gpnmb gene knocked in, which prevented elevated IOP and 
glaucoma.
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(iv) The Lukas study investigated gene expression 
changes in mouse (C57BL/6) population enriched for retinal 
ganglion cells 6 h after optic nerve crush [5]. A total of 6000 
cells were harvested from the ganglion cell layer by laser 
captured from frozen sections. RNA from captured cells 
was amplified as cDNA and screened using the Affymetrix 
Mouse Genome 430 2.0 Array. Cells from the contralateral 
eye were used as a control.

(v) The McCurley study explored expression changes in 
Danio rerio at different times following optic nerve crush 
[12]. The Affymetrix Zebrafish Genome Array was used 
and fish that had undergone a sham operation were used as 
a control.

(vi) The Qu study examined expression changes in the 
optic nerve of the mouse (C57BL/6) at various times following 
optic nerve crush [13]. The Affymetrix Mouse Genome 430A 
2.0 Array was used and contralateral eyes served as controls.

(vii) The Sharma study looked at expression changes in 
the retina and optic nerve of the mouse (BALB/c) at various 
times following optic nerve crush [14]. This study used the 
Affymetrix Mouse Gene 1.0 ST Array and used the contra-
lateral eye as a control.

(viii) The Steele study compared the retinal expression 
changes between 8 month old DBA/2J mice and 3 month old 
DBA/2J mice [15]. They used the Affymetrix Mouse Genome 
430 2.0 Array.

(ix) The Templeton study compared the retinal transcrip-
tional response to crush between C57BL/6J and DBA/2J mice 
[16]. This study used the Sentrix Mouse-6 Expression Bead-
Chip. Retinas from uncrushed animals served as controls.

(x) The Yasuda study used RNA-Seq to quantify gene 
expression changes in the mouse (C57BL/6) retina two days 
after optic nerve crush injury [17]. Mice that underwent a 
sham procedure were used as controls.

Summary of neurodegenerative studies: We collected data 
from four studies modeling three different neurodegenerative 
diseases of the CNS.

(xi) The Ferraiuolo study examined expression changes in 
laser-captured spinal cord neurons in SOD1 G93A C57BL/6J 
mice of different ages [18]. The SOD1 G93A mouse models 
Amyotrophic Lateral Sclerosis (ALS) by overexpressing a 
mutant human SOD1 protein in neurons which leads to age-
dependent, progressive phenotypic similarities between the 
mice and human ALS patients. This study used the Affyme-
trix Mouse Expression 430A Array and used non-transgenic 
littermates as a source for control spinal cord neurons.

(xii) The Gjoneska study examined expression changes 
in mouse hippocampus following accumulation of p25 
(C57BL/6J) [19]. Accumulation of p25 leads to a disease 
that models human Alzheimer disease [20]. This study used 
RNA-Seq to quantify transcriptional changes and used non-
transgenic littermates as controls.

(xiii) The Jonas study measured the expression changes 
in the mouse (C57BL/6) motor and sensory cortices following 
myelin oligodendrocyte glycoprotein (amino acids 35–55) 
induced experimental autoimmune encephalomyelitis (EAE). 
The EAE model is widely used to study multiple sclerosis 
[21]. This study used the Affymetrix Mouse Genome 430 
2.0 Array and used healthy sensory and motor cortices as 
controls.

(xiv) The Wakutani study used transgenic TgCRND8 
mice (C3H/B6) to explore the transcriptional changes asso-
ciated with the overexpression of amyloid precursor protein 
(APP) [22]. The TgCRND8 mouse is a transgenic strain that 
overexpresses mutant human APP which leads to the accu-
mulation of amyloid-β 40 and 42 as the mouse ages [23]. This 
study used the Affymetrix Mouse Genome 430 2.0 Array to 
measure gene expression in the forebrain of TgCRND8 mice 
at various ages. Non-transgenic mice of the same age were 
used as controls.

Data normalization and fold change calculation: Affymetrix 
CEL files were normalized using the RMA normalization 
method from the “affy” package in R version 2.15.0. For 
RNA-Seq studies, reads per kilobase of transcript per million 
mapped reads (RPKM) values provided by the authors were 
Log2 transformed and used to calculate fold change. For 
each data set, fold change for each gene was calculated by 
taking the difference between the Log2 expression value of 
the injured condition and the Log2 expression value of the 
uninjured control condition.

Differential expression analysis: We used the R (v2.15.0) 
limma package to identify DE genes [24]. To be considered 
differentially expressed, a gene needed to have a p value of 
less than 0.05, after adjusting for multiple tests using the 
Benjamini-Hochberg method. We split DE genes into two 
groups, enriched and depleted, based on a positive or a nega-
tive fold change, respectively.

Rosetta Stone ortholog table: The Orthology Predictions 
Search tool on the Human Genome Organization Gene 
Nomenclature Committee (HGNC) database was used to 
construct a table that listed each human gene and each gene 
from different species that is an ortholog of that gene. We 
used this information to compare genes from mouse, rat, 
dog and zebrafish that had the same human ortholog(s). 
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This resource was termed the Rosetta Stone ortholog table. 
Mapping of orthologous genes was conducted using a script 
written in Python. An example of the process of translation 
of orthologs from rat and zebrafish data sets to the human 
designation is given in Figure 1. A URL providing access to 
the table and analysis script is shown below.

The Rosetta Stone ortholog table mapped genes from 
dog, mouse, rat and zebrafish that covered 91%, 93%, 88% 
and 76% of the human genes in the table, respectively. In 
all comparisons of data sets, regardless if they were cross-
species or intraspecies, the genes were first “translated” 
into the corresponding human orthologs. For dog, mouse, 
rat and zebrafish respectively, 27%, 34%, 31% and 53% of 
human genes had multiple orthologous genes in the given 
species. This potentially inflated numbers of DE genes in the 
Rosetta Stone relative to the number of DE genes detected 
for a data set by limma analysis. In figures and tables where 
the transcriptomes of data sets were compared, multiple 
orthologs originating from the Rosetta Stone analysis were 
not pruned from the lists of DE genes for each data set. This 
was accounted for in Monte Carlo Simulations to determine 
the statistical significance of overlapping DE genes from 
compared data sets (see below). Where GO or KEGG analyses 
were performed, and in the list of highly conserved genes, 
lists of genes were pruned to account for multiple orthologs. 
Pruning ensured that the number of human genes submitted 
for GO or KEGG analysis reflected the number of DE genes 
that were detected within the data sets.

Pairwise Monte Carlo simulations: To assess if the number of 
genes shared between two data sets was significantly greater 
than the expected number of shared genes due to random 
chance, we performed Monte Carlo simulations [25]. Each 
simulation compared two data sets, X and Y, for which the 
number of differentially expressed genes found were DEx and 
DEy, respectively. DEx genes were randomly selected from the 
genes present in data set X, and DEy genes were randomly 
selected among the genes present in data set Y. These genes 
were then translated into human orthologs using the Rosetta 
Stone. A total of 10,000 independent simulations were run for 
each pair of data sets. The proportion of simulations where 
the number of randomly shared genes was greater than the 
observed number of shared genes in the real data are reported 
as the p value (see example in Figure 2).

Hierarchical clustering of mouse data set transcriptomes: 
Hierarchical clustering was performed on mouse data sets 
that used the Affymetrix Mouse Genome 430 2.0 Array. 
The ComBat function from the sva R package was used to 
remove batch effects from the RMA normalized data sets. 
Limma was used to calculate fold changes for all genes on 
the microarray. The fold changes for genes found in all data 
sets, regardless of the significance of the change, were used to 
calculate Pearson’s correlation between all pairs of data sets. 
A dendrogram was created using Ward’s method to cluster 
data sets, with the distance metric calculated as one minus 
Pearson’s correlation.

Figure 1. Identifying Orthologous DE Genes Using the Rosetta Stone Ortholog Table. A: A list of DE genes from two rat and one zebrafish 
data sets being compared. The list has been shortened to facilitate this example of how the orthologs are identified by the common human 
ortholog. B: The Rosetta Stone Ortholog Table lists all of the orthologs of each human gene for each species in the table. It is important to note 
that an ortholog from a species may appear multiple times in the Rosetta Stone. If a species has no reported human ortholog, then that index 
in the table appears as “no orthologue.” C: The lists of DE genes from each data set shown in (A) are now translated into the corresponding 
human ortholog using an algorithm written in Python and then aligned to show common DE genes in each data set. This translation allows 
a direct comparison between data sets between species. In this table, nd refers genes that were not detected as DE genes in the data set.
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GO term and KEGG pathway analysis: Enriched GO terms 
were identified in gene lists using the Protein Analysis 
Through Evolutionary Relationships (PANTHER) tool 
Version 10. PANTHER uses an over-representation test to 
assess for the over-representation of GO terms associated 
with a group of genes. We used a p value of 0.05 as a cutoff 
for statistically over-represented GO terms. We identified 
biologic pathways association with lists of DE genes using 
the KEGG Mapper tool. For both analyses, pruned lists of 
human genes were submitted for analysis.

Scripts used for analysis: The scripts used to normalize data, 
identify DE genes and run comparative analysis used Python 
or R and can be found on GitHub. This URL also contains the 
Rosetta Stone Ortholog table.

RESULTS

Normalization of data and detection of differentially 
expressed (DE) genes: Before conducting a meta-analysis 
of independent studies, it was first necessary to transform 
raw data from these data sets using a common normalization 
protocol, and then apply a uniform method for determining 
sets of DE genes. This manipulation of raw data yielded DE 
gene sets that varied from the DE gene sets reported in the 
literature using the same data (Appendix 1). Notably, some 

data sets (i.e., the Sharma study) produced a very small 
number of DE genes using the limma protocol and compari-
sons involving these data sets were rarely significant.

Hierarchical clustering of mouse data sets: To assess the 
fidelity of data sets generated by different groups, hierar-
chical clustering was performed using the fold changes of 
every gene in the transcriptome. To conduct this analysis, a 
gene must be present in all data sets. Therefore, we limited 
our analysis to data sets that were created using data from the 
Affymetrix Mouse Genome 430 2.0 Array. The resulting tree 
exhibited two main branches (Figure 3). On the upper branch, 
the optic nerve head data sets tended to cluster together, while 
the data sets from the retina tended to cluster on the lower 
branch. Data sets from other regions of the CNS clustered 
across both branches. Thus, data sets generated by different 
groups provided enough similarities to accurately cluster 
according to origin of tissue when assessing the ONH and 
retina.

Comparison of the transcriptional responses of AONI and 
CONI: The optic nerve crush and axotomy models are 
commonly used to study degeneration of the optic nerve 
following acute damage [26]. We tested the hypothesis that 
the expression changes in AONI models mimic the expression 
changes observed in studies of CONI. Significant overlap in 

Figure 2. Monte Carlo analysis of 
a pair-wise comparison of two data 
sets. The frequency distribution of 
outcomes from 10,000 Monte Carlo 
simulations comparing the overlap 
of genes between two data sets 
(Agudo 48 h crush enriched genes 
and McCurley 4 day crush enriched 
genes) observed by random chance 
(red bars). The number of genes 
shared by the two data sets in the 
empirical data are actually 79. The 
p value is the proportion of simula-
tions that produce several randomly 
shared genes that is greater than, or 
equal to, the empirically observed 
number. In this comparison, the 
number of overlapping genes deter-
mined empirically between the 
two compared data sets is signifi-
cantly greater than what would be 
expected by random chance, and 
we declare this to be a significant 

overlap for these data. Had the empirical data revealed 56 overlapping genes, then we would have declared no significant overlap of the data 
sets (p>0.05).
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the transcriptomic changes was observed between AONI 
studies (Appendix 2) and between CONI studies (Appendix 
3). While significant overlap did occur, the numbers of 
overlapping genes was surprisingly lower than anticipated. 
For example, when comparing two relatively similar experi-
mental paradigms, the enriched genes in the Agudo 7 day 
axotomy rat retinal data set to the Templeton 5 day crush 
DBA/2J mouse retinal data set (Appendix 2), only 10.4% of 
the DE genes overlapped from the Agudo study and 8.1% of 
the DE genes overlapped from the Templeton study. Since 
we performed a common normalization and declaration of 
DE genes analyses of both these data sets, the lack of greater 
numbers of overlapping genes potentially underscores tech-
nical variations that have originated from each group, or a 
limitation in the sensitivity of the microarray technology to 
detect quantitative changes in gene expression, especially 
when comparing data from different platforms.

For intercomparisons between AONI and CONI data 
sets, all data sets that contained a non-zero number of DE 
genes were included. A comparison of enriched genes among 
retinal data sets revealed significant overlap of DE genes 
between several AONI and CONI data sets (Figure 4A). 
Interestingly, acute data sets from rat, mouse and zebrafish 

significantly overlapped with CONI data sets from dog 
and mouse. This finding suggests that the retinal response 
to injury is conserved, not only between acute and chronic 
models of optic nerve injury, but also evolutionarily from 
zebrafish to mammals.

A comparison of depleted genes among retinal data sets 
revealed a similar pattern of significance (Figure 4B). The rat, 
zebrafish and mouse AONI data sets significantly overlapped 
the CONI data sets from both dog and mouse.

Because degeneration of the optic nerve is critical to 
the progression of RGC degeneration, we examined how the 
gene expression changes in the optic nerve following AONI 
or CONI compared with the expression changes in the retina. 
Comparing transcriptional changes in the retina and optic 
nerve head following AONI or CONI revealed a significant 
overlap of the transcriptomes of several of the retinal data sets 
with the optic nerve data sets (Appendix 4). This suggests a 
similar tissue response to acute and chronic optic nerve injury 
in both the retina and the optic nerve, which could be medi-
ated by cellular elements common to both, such as astrocytes. 
Evaluation of specific genes and pathways (see below) could 
help to define this possibility.

Figure 3. Hierarchical clustering 
of the complete transcriptomes 
of data sets using the Affymetrix 
Mouse Genome 430 2.0 Array. The 
relative level of every gene in the 
experimental sample was calculated 
for all the study data sets that had 
used this array chip. Hierarchical 
clustering was used to determine 
how similar the transcriptomes 
were from samples generated 
by different groups. Overall, the 
cluster shows two distinct distant 
branches, with optic nerve head 
(ONH) data sets segregating to the 
upper branch, and retina data sets 
segregating to the lower branch. 
The exceptions to this are the “No 
or Early” retina data sets from the 
Howell study, which have greater 
similarity to transcriptomes of the 

ONH, rather than pathologic retinas. Other data sets from studies of brain-related CNS neurodegeneration appear to distribute between 
both arms of the cluster.
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The comparison of depleted genes shared between AONI 
and CONI optic nerve data sets showed significant overlap 
between acute data sets and the moderate and severe glau-
coma data sets, but not between the acute and “no or early” 
glaucoma data sets. This indicates that downregulation of 
gene expression occurs early in acute injury paradigms, but 
at much later stages in the more chronic models, consistent 
with the idea that chronic injury is less severe.

Gene Ontology (GO) term enrichment of genes common 
to retinal data sets of AONI and CONI: Next, PANTHER 
and KEGG were used to characterize the biologic processes 
and pathways that drove the significant similarity between 
AONI and CONI transcriptomes. Among retinal enriched 
genes, there were 47 genes found in at least 2 of the 3 AONI 
studies and both CONI studies (Appendix 5). The GO terms 
associated with this list of genes were “Regulation of Cell 
Migration,” “Intracellular Signal Transduction” and “Regula-
tion of Response to Stimulus” (Table 1). Four genes from the 
list, RRAS, DUSP16, TNFRSF1A, and FLNB are associated 
with the MAPK signaling pathway. GNAI2 and CSF1R are 
part of the RAP1 pathway that regulates cell-cell adhesion 
and cell motility. CSF1R, EHD2 and HLA-A are associated 
with endocytosis and ATP6V0A2, CTSS, and LAPTM5 are 
associated with the lysosomal pathway.

Among retinal depleted genes, 74 were found in at least 
two of five AONI studies and both CONI studies (Appendix 
6). The GO terms associated with this list of genes were 
related to neuronal cellular processes like “Synaptic Orga-
nization and Transmission” and “Neuronal Development” 

(Table 1). The genes in this list fall within KEGG pathways 
that are neuronally related like glutamatergic synapse and 
neuroactive ligand-receptor interaction. This result demon-
strates that the gene transcripts that are depleted in the retina 
following optic nerve injury are expressed primarily in 
neurons.

Comparison of retinal AONI and CONI with neurodegen-
erative data sets: Having observed a conserved response to 
injury between different species and injury paradigms in two 
tissues after optic nerve damage, we tested the hypothesis that 
many of the transcriptional responses found in AONI and 
CONI were also conserved among models of neurodegenera-
tion in different regions of the CNS. Transcriptomic changes 
in AONI and CONI data sets were compared to mouse models 
of amyotrophic lateral sclerosis, experimental autoimmune 
encephalomyelitis, and Alzheimer disease (Figure 5). The 
comparison of enriched genes demonstrated significant 
overlap of DE genes between both AONI and CONI with all 
examined models of neurodegeneration (Figure 5A). Taken 
together, these results suggest a transcriptional response to 
heterogeneous insults that is conserved across species, insults 
and spatial location of the insult within the CNS.

In contrast to the comparison of enriched genes, 
comparing depleted genes between AONI, CONI and 
neurodegeneration data sets revealed almost no significant 
overlap of DE genes (Figure 5B). Since the depleted genes 
in the retina and optic nerve resulted primarily from loss 
of signal from dying neurons, we hypothesized that the 
absence of significant depleted DE gene overlap is due to 

Figure 4. Pair-wise comparison of 
acute (vertical) and chronic (hori-
zontal) optic nerve injury data sets 
show moderate levels of overlap-
ping DE genes for comparison 
of (A) enriched and (B) depleted 
genes. The total number of DE 
genes identified in the independent 
analysis is shown for each data 
set. In each cell, the total number 
of overlapping genes between 
two data sets is recorded. Based 
on Monte Carlo simulations, the 
cells are color-coded red for a non-
significant overlap, or green for a 
significant overlap.
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loss of signal from genes that are selectively expressed by 
specialized neuronal populations in various CNS locations. 
We tested this hypothesis by looking for highly represented 
GO terms among pruned lists of DE genes from each neuro-
degeneration data set. The pruned list of depleted DE genes 
in the Ferraiuolo 120-day data set was not over-represented 
for any Biologic Process GO Terms. The list of depleted genes 
for the Gjoneska 6-week data set was over-represented for the 
metabolic GO term “Cholesterol Biosynthetic Process” and 
for neuronal GO terms like “Regulation of Neuronal Synaptic 
Plasticity,” “Memory” and “Positive Regulation of Neuron 
Projection Development.” The Jonas Motor Cortex data set’s 
list of depleted genes was over-represented for the GO term 
“Retinoid Metabolic Process” and terms associated with 
cellular migration and morphogenesis. The Jonas Sensory 
Cortex data set’s list of depleted genes was over-represented 
for GO Terms related to central nervous system development, 
chemotaxis and angiogenesis. These results suggest that the 
neuronal gene expression patterns in different parts of the 
CNS are variable enough to prevent significant overlap of 
depleted genes following injury.

After observing a conserved transcriptional response 
in AONI, CONI and neurodegeneration studies, it was 
surprising that no enriched genes were DE in all data sets. 
To identify the most conserved genes across all studies, the 

inclusion criteria were relaxed to include enriched genes that 
were DE in two AONI studies, two CONI studies and studies 
modeling two different neurodegenerative diseases. This list 
included these 15 genes: C1QB, CD68, CP, CSF1R, CTSS, 
DECR1, DUSP15, HLA-A, LAPTM5, LY86, MPEG1, MSN, 
SERPINA3, SESN3, TYROBP (Table 2). This list was too 
small to identify highly represented GO terms among genes 
shared between AONI, CONI and other neurodegenerative 
models. To generate a list of ample size for GO term analysis, 
we relaxed the inclusion criteria further to identify genes that 
were present in at least one AONI study, one CONI study and 
at least 2 different models of neurodegenerative disease. These 
criteria identified 118 enriched genes (Appendix 7). The GO 
terms highly-represented by this list of genes were related to 
immune processes like the complement cascade, interferon 
signaling and lymphocyte migration (Table 3). Among the 
numerous KEGG pathways associated with this list of genes 
were the complement pathway, PI3K-AKT signaling pathway, 
TNF signaling pathway, the Toll-Like Receptor signaling 
pathway, the JAK-STAT signaling pathway and the phago-
somal and lysosomal pathways. Eight genes in the list are 
associated with the complement pathway. The complement 
cascade drives phagocytosis, which is also associated with 
several genes in the list. FCGR1A, FCGR2B, FCGR3A, C3 
and TLR2 are all phagocytosis-promoting receptors present 

Figure 5. Pair-wise comparison of optic nerve injury (vertical) and brain-related CNS neurodegenerative disease (horizontal) data sets show 
widespread overlap of (A) enriched DE genes, but not (B) depleted DE genes. The total number of DE genes identified in the independent 
analysis is shown for each data set. In each cell, the total number of overlapping genes between two data sets is recorded. Based on Monte 
Carlo simulations, the cells are color-coded red for a non-significant overlap, or green for a significant overlap.
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in the list. Furthermore, TUBB and 5 different cathepsins are 
members of the phagosome pathway that were present in our 
list. TUBB is a scaffold protein that phagosomes travel along 
and cathepsins are the hydrolases that have diverse function 
including the digestion of phagocytosed products following 
acidification [27,28].

DISCUSSION

Inter-study comparison of gene expression data: Considering 
the low concordance among data sets obtained from similar 
injury paradigms, we conclude that a sizeable fraction of the 
data produced by whole transcriptome studies may not be 
biologically relevant. Similar discordance has been reported 
in other comparisons of microarray studies [8,29,30]. The 
cohort of DE genes that are not shared between transcrip-
tomes may result from both biologic and technical variability. 
Various, subtle environmental stimuli can have an impact on 
gene expression as can the age, sex and social context of an 
animal [31,32]. Biologic variability between samples has been 
demonstrated to be the major contributor to heterogeneity in 
gene expression studies [33]. These sources of biologic vari-
ability are further confounded by technical variability which 
are explored in detail elsewhere [33,34].

Furthermore, the deviation in the number of DE genes we 
detect from the number of DE genes reported by the authors 
of the various studies demonstrates that the statistical method 
chosen to analyze data has a dramatic impact on the number 
of DE genes detected for the same raw data. Using a uniform 
approach to analyze heterogeneous studies was necessary to 
compare the results from different studies. Importantly, this 
method of normalization and DE gene detection did not work 
well for all the data we attempted to analyze, which illustrates 
one difficulty in comparing the data from gene expression 
studies with different study designs, controls and numbers 
of microarrays.

Although the transcriptional response to acute injury is 
variable among different strains of the same species [16,35], 
we were able to observe a conserved transcriptional response 
between acute and chronic optic nerve injuries and between 
any two species examined. Since both AONI and CONI insult 
RGC axons in the optic nerve [26], we speculate that this 
conserved response is the result of shared damage signals 
from axons.

Common pathways in response to neuronal injury: Analysis 
of KEGG pathways implicates RAS signaling in the retinal 
response to both the AONI and CONI paradigms. RAS 
signaling is known to cause increased phagocytosis, MAPK 
signaling and reorganization of the actin cytoskeleton in the 
cell. These RAS signaling targets were represented among 

the GO terms identified and in the KEGG pathways, which 
suggests that RAS signaling controls these cellular functions 
after CNS injury.

The RAP1 GTPase signaling pathway was common 
to both AONI and CONI. In RGCs, RAP1 is important for 
transducing neurotrophic signals, particularly NGF, from the 
distal axon to the cell body via signaling endosomes [36]. 
This signaling induces sustained MAPK activation in PC12 
cells and is important in neuronal migration [36,37]. Further 
work is needed to characterize the role of RAP1 in retinal 
response to injury, but the presence of pathway members in 
both optic nerve injury paradigms hints at its importance.

The PI3K-AKT pathway was common to ONI and neuro-
degenerative paradigms. The cellular processes affected by 
PI3K-AKT activation are diverse and overlap with several 
conserved biologic processes we identified with GO and 
KEGG including cellular migration, proliferation, TNF 
signaling and autophagy [38,39]. In neurons, PI3K-AKT 
acts in a neuroprotective fashion by inhibiting degenerative 
MAPK signaling immediately following injury, suggesting 
that modulation may be therapeutically beneficial in a host of 
neurodegenerative diseases [40,41]. It is difficult to speculate 
on the implication of PI3K-AKT involvement in the CNS 
injury response because all detected enriched genes associ-
ated with this pathway were either cell surface receptors or 
extra-cellular matrix proteins which act upstream of PI3K. 
Further analysis is needed to identify which cells activate 
PI3K-AKT following injury and to tease out the implication 
of this mechanism on pathological outcome.

The activity of the JNK and p38 mediated MAPK 
pathway in neurodegeneration is well characterized. 
Numerous groups have described the role of JNK activation 
in the degeneration and apoptosis of RGCs [42-44]. JNK acti-
vation and subsequent nuclear accumulation of c-JUN lead 
to neuronal apoptosis [1]. Furthermore, a recent study identi-
fied a pivotal role for MAPK signaling in axon degeneration, 
which precedes apoptosis and must be prevented to maintain 
functional neurons [41]. Our findings demonstrate that these 
pathways are activated in ONI and neurodegeneration data 
sets, indicating that therapeutic intervention into this pathway 
may be beneficial for a host of human neurologic diseases. 
As expected, the depleted genes shared by AONI and CONI 
models were related to neuronal cellular processes, indicating 
that they resulted from the degeneration and death of RGCs. 
The identification of pathologically relevant depleted genes 
requires a more granular analysis focusing on early time 
points following injury.

Innate immune response pathways common to injury in the 
CNS: The observation that the transcriptional response to 
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nerve injury is conserved throughout the CNS is evidence 
that these tissues have a common response to various injury 
stimuli. The magnitude and persistence of this response 
depends on the nature of the injury, but the activated biologic 
pathways are redundant for all tested CNS insults. Analysis 
of the common genes using Gene Ontology and KEGG 
pathways implicates the innate immune system as a major 
contributor to this similarity. The observation of several 
complement cascade related genes being shared between 
optic nerve injury and neurodegenerative studies agrees with 
previous studies demonstrating induction of the cascade in 
neurodegeneration and illustrates that this pathway is regu-
lated transcriptionally [11,18,45,46], although the effect on 
disease progression remains controversial and may be disease 
or component specific [47,48].

Our findings demonstrate that transcriptional activation 
of the tumor necrosis factor (TNF) pathway is common to 
CNS injuries. TNF-α and its receptor are both more prevalent 
following injury and this has been shown to contribute to 
retinal ganglion cell death in several injury paradigms and in 
human glaucomatous tissue [49,50]. The TNF pathway genes 
shared between ONI and neurodegeneration data sets were 
downstream effectors that influenced cell adhesion, leuko-
cyte recruitment and intracellular signaling (Bcl3 and Socs3).

TLR signaling has emerged as an important mechanism 
for glia to react to injury in the CNS [51-55]. TLR receptors 
on glia respond to damage associated molecular patterns 
that can come from external stimuli, like bacterial LPS, or 
from neuronally released signals (i.e., HSPs), which cause 
a myriad of glial responses that generally exacerbate the 
pathologic outcome [56,57]. TLR knockout animals and 
those treated with TLR antagonists have abrogated neuronal 
cell loss following injury relative to wild-type or untreated 
mice [58-60]. Multiple TLRs contribute to neuronal cell loss 
following artificial injury and it is unclear which are truly 
important for human neurodegenerative disease. It is likely 
that there is redundant TLR signaling following CNS injury.

The GO term “Leukocyte migration” was highly repre-
sented in the list of enriched genes common to ONI and 
neurodegeneration data sets, suggesting that leukocytic infil-
tration may be a common phenomenon among CNS diseases. 
Circulating leukocytes can be recruited into CNS tissues 
with glia activated by TNF-α or the TLR-4 ligand LPS [61]. 
The specific role of infiltrating immune cells is varied and 
controversial, but their presence in a host of neurodegenera-
tive models implicates them as a factor in the progression of 
CNS disease [62-64].

The list of enriched genes that was conserved between 
AONI and CONI contained numerous genes related to the 

lysosomal and endocytic pathways. We also observed several 
autophagy related genes in the list of enriched genes found in 
AONI, CONI and neurodegeneration data sets. Since endo-
cytosis and autophagy are activated in ONI models following 
injury and are impaired in other neurodegenerative “protein 
accumulation” diseases, these two pathways are vital for 
neuron health and the ability of neurons to respond to stress 
[65,66]. It remains unclear if the activation of autophagy 
in models of ONI is detrimental to the survival of retinal 
ganglion cells [67,68]. In a protein accumulation model of 
neurodegeneration, the activation of autophagy increased 
neuron survival and decreased the number of tau positive 
cells, suggesting a therapeutic benefit of autophagy activa-
tion [69].

Together, these results demonstrate that the innate 
immune response is activated following neuronal injury. This 
activation can exacerbate the extent of tissue damage or aid 
in recovery in different contexts [70]. These findings indicate 
that this response is significantly similar between optic nerve 
injuries, autoimmune neuronal injuries and in injuries caused 
by the overexpression of neurotoxic peptides.

A small, highly conserved group of genes that respond to 
neuronal injury: We identified 15 genes in two AONI data 
sets, two CONI data sets and two different models of neuro-
degeneration. Of the 15 highly conserved genes, C1QB, 
CD68, CSF1R, CTSS, HLA-A, LY86, MPEG1 and TYROBP 
are well characterized as members of the innate or adaptive 
immune response following CNS injury, or are expressed by 
monocytes, macrophages or microglia.

Another conserved gene, ceruloplasmin (CP), is a ferrox-
idase that is expressed by astrocytes and Müller cells in the 
retina and may have antioxidant properties [71,72]. Increased 
expression of CP has been noted in the rodent retina following 
optic nerve crush and in human and murine glaucomatous 
retinas [72,73]. Iron accumulation resulting from deficient CP 
is a hallmark of neurodegenerative disease [74]. Furthermore, 
ceruloplasmin has been implicated in controlling the produc-
tion of nitric oxide by glia following stimulation in the CNS 
through signaling mechanisms that require further study [75].

The enzyme 2,4-dienoyl-CoA reductase, DECR1, is 
responsible for the beta oxidation of unsaturated fatty acids in 
the mitochondria [76]. Activation of this metabolic pathway 
is downregulated in cancer and may be controlled by AKT 
[77,78]. A proteomic screen of brain tissue from patients with 
atypical frontotemporal lobar degeneration identified DECR1 
as differentially expressed, but further work is necessary to 
characterize the role of DECR1 in the healthy CNS and in 
neurodegeneration [79].
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The ortholog mapping of dual specificity phosphatase, 
Dusp genes, between species is difficult because there are 
multiple Dusp genes in each species and they do not map 
to a human gene with the same gene symbol. Therefore, we 
report DUSP15 as a highly-enriched gene, but the DE genes 
that were detected in the various data sets were not named 
Dusp15, even though they are orthologous to human DUSP15 
(see methods). From this, we postulate that Dusp genes are 
transcriptionally enriched following neuronal injury and are 
potentially important for understanding and treating neuro-
degenerative disease.

Lysosomal-associated protein multispanning transmem-
brane 5, LAPTM5, is a lysosomal protein whose function is 
incompletely understood. LAPTM5 is expressed in immune 
cells and contributes to the NFκB and MAPK signaling of 
immune cells following exposure to TNF [80,81]. These 
factors suggest LAPTM5 may fit well into the narrative 
of innate immune activation discussed here, but more 
work is needed to characterize the role of LAPTM5 in 
neurodegeneration.

Moesin (MSN) is a member of the Ezrin-Radixin-
Moesin (ERM) family of proteins which link actin filaments 
and microtubules to the plasma membrane and play a role 
in extracellular signal transduction [82]. MSN is important 
for the maintenance and alteration of cell shape as exem-
plified by a study in Drosophila, which demonstrated that 
MSN antagonizes rhodopsin (RHO) activity to maintain 
cell morphology [83]. MSN can also bind to microtubules to 
assist in the mitotic process [84]. In the context of neurode-
generation, MSN has been characterized as a substrate of the 
Parkinson Disease related gene, LRRK2, whose dysregulation 
leads to irregularities in the cellular cytoskeleton [85]. The 
ERM family member, Ezrin, has also been identified as a 
contributor to the progression of Huntington’s disease [86]. 
Therefore, it appears that cytoskeletal dynamics are disrupted 
in neurodegeneration, but the impact of ERM family proteins 
remains to be explored.

Serine protease inhibitor A3, SERPINA3, is a protein 
that blocks the protease activity of several serine proteases, 
including Cathepsin G [87]. Although it is normally localized 
to the extracellular space, SERPINA3 has been seen in the 
nucleus of cancerous cells. Furthermore, SERPINA3 can bind 
to DNA, perhaps to prevent DNA polymerization following 
DNA damage [87]. Importantly, SERPINA3 is the only 
Serpin gene expressed in astrocytes [87]. SERPINA3 is found 
in the senile plaques associated with Alzheimer disease, 
but the implication of its presence in plaques is still being 
worked out. Finally, other in silico analyses have identified 

SERPINA3 as a common entity in neurodegenerative disease 
[88-90].

Sestrin 3, SESN3, is the third and least characterized 
member of the sestrin gene family. Sestrin genes activate 
autophagy and prevent the accumulation of reactive oxygen 
species, although they may accomplish this through indirect 
means [91]. Transcriptional regulation of sestrin genes is tied 
to p53 and forkhead transcription factors [91,92]. Interest-
ingly, AKT and RAS activation have been shown to suppress 
SESN3 expression, which conflicts with the results observed 
here. It is possible that the expression of these genes comes 
from different cells types or that transcriptional regulation in 
the damaged CNS is controlled by some novel mechanism. 
The role of sestrin genes, particularly Sestrin 3, in neurode-
generative conditions requires further study.

The findings presented here demonstrate a common 
transcriptional response to heterogeneous injury stimuli. 
The similarity in the responses of different stimuli result 
from the innate immune system activation in all condi-
tions. The Rap1 pathway and the presence of cathepsins are 
understudied aspects of retinal response to ONI that require 
further study. CP, DECR1, Dusp genes, LAPTM5, MSN, 
SERPINA3 and SESN3 were identified as understudied genes 
that were conserved across numerous neurodegenerative 
paradigms. Understanding the function of these conserved 
genes and pathways is critical for understanding and treating 
neurodegeneration.

APPENDIX 1.

A summary of all the studies and data sets used for the meta-
analysis. Each study is defined by the name of the first author. 
Where possible, the number of differentially expressed (DE) 
that were enriched (more prevalent) or depleted (less preva-
lent) reported in the study for each data set is given, along 
with the corresponding number of DE genes that were calcu-
lated using the independent analysis of the raw data in this 
report (genes observed). In cases where the reporting authors 
did not differentiate between up and downregulated genes 
(just the total number of DE genes were reported), we have 
designated this a “total” DE genes reported in the upregulated 
column. RSOT, Rosetta Stone Ortholog Table. GEO, Gene 
Expression Omnibus. To access the data, click or select the 
words “Appendix 1.”

APPENDIX 2.

Pair-wise comparison of acute optic nerve injury data sets 
showing the number of overlapping DE genes. The total 
number of DE genes identified in the independent analysis 
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is shown for each data set. In each cell, the total number of 
overlapping genes between two data sets is recorded. Based 
on Monte Carlo simulations, the cells are color-coded red for 
a non-significant overlap, or green for a significant overlap. 
To access the data, click or select the words “Appendix 2.”

APPENDIX 3.

Pair-wise comparison of chronic optic nerve injury data sets 
showing the number of overlapping DE genes. The total 
number of DE genes identified in the independent analysis 
is shown for each data set. In each cell, the total number of 
overlapping genes between two data sets is recorded. Based 
on Monte Carlo simulations, the cells are color-coded red for 
a non-significant overlap, or green for a significant overlap. 
To access the data, click or select the words “Appendix 3.”

APPENDIX 4.

Pair-wise comparison of retinal and optic nerve data sets 
from optic nerve injury studies. The retinal data sets are 
shown vertically, and the optic nerve data sets are shown 
horizontally. The total number of DE genes identified in the 
independent analysis is shown for each data set. In each cell, 
the total number of overlapping genes between two data sets 
is recorded. Based on Monte Carlo simulations, the cells are 
color-coded red for a non-significant overlap, or green for 
a significant overlap. To access the data, click or select the 
words “Appendix 4.”

APPENDIX 5.

A list of DE genes that are enriched in multiple acute (AONI) 
and chronic (CONI) optic nerve injury models. The human 
ortholog is indicated and the matching orthologs in each 
study data set (in some cases multiple orthologs that map to 
the same human gene name were present) are shown, along 
with the Log2 fold change and the adjusted p value (gene 
name_fold change_p-value). To access the data, click or select 
the words “Appendix 5.”

APPENDIX 6.

A list of DE genes that are depleted in multiple acute (AONI) 
and chronic (CONI) optic nerve injury models. The human 
ortholog is indicated and the matching orthologs in each 
study data set (in some cases multiple orthologs that map to 
the same human gene name were present) are shown, along 
with the Log2 fold change and the adjusted p value (gene 
name_fold change_p-value). To access the data, click or select 
the words “Appendix 6.”

APPENDIX 7.

A list of DE genes that are depleted in at least one acute 
(AONI) and one chronic (CONI) optic nerve injury studies, 
and at least two neurodegenerative disease (ND) studies. The 
human ortholog is indicated and the matching orthologs in 
each study data set (in some cases multiple orthologs that 
map to the same human gene name were present) are shown, 
along with the Log2 fold change and the adjusted p value 
(gene name_fold change_p-value). To access the data, click 
or select the words “Appendix 7.”
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