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Abstract

virally-mediated gene therapy trials.

Background: Pancreatic ductal adenocarcinoma (PDAC) remains a leading cause of cancer mortality for which
novel gene therapy approaches relying on tumor-tropic adenoviruses are being tested.

Methods: We obtained the global transcriptional profiling of primary PDAC using RNA from eight xenografted primary
PDAC, three primary PDAC bulk tissues, three chronic pancreatitis and three normal pancreatic tissues. The Affymetrix
GeneChip HG-U133A was used. The results of the expression profiles were validated applying immunohistochemical
and westemn blot analysis on a set of 34 primary PDAC and 10 established PDAC cell lines. Permissivity to viral vectors
used for gene therapy, Adenovirus 5 and Adeno-Associated Viruses 5 and 6, was assessed on PDAC cell lines.

Results: The analysis of the expression profiles allowed the identification of two clearly distinguishable phenotypes
according to the expression of interferon-stimulated genes. The two phenotypes could be readily recognized by
immunohistochemical detection of the Myxovirus-resistance A protein, whose expression reflects the activation of
interferon dependent pathways. The two molecular phenotypes discovered in primary carcinomas were also
observed among established pancreatic adenocarcinoma cell lines, suggesting that these phenotypes are an
intrinsic characteristic of cancer cells independent of their interaction with the host's microenvironment. The two
pancreatic cancer phenotypes are characterized by different permissivity to viral vectors used for gene therapy, as
cell lines expressing interferon stimulated genes resisted to Adenovirus 5 mediated lysis in vitro. Similar results
were observed when cells were transduced with Adeno-Associated Viruses 5 and 6.

Conclusion: Our study identified two molecular phenotypes of pancreatic cancer, characterized by a differential
expression of interferon-stimulated genes and easily recognized by the expression of the Myxovirus-resistance A
protein. We suggest that the detection of these two phenotypes might help the selection of patients enrolled in

Background

The incidence and mortality of pancreatic ductal adeno-
carcinoma (PDAC) almost coincide and novel therapeu-
tic approaches are needed for this deadly disease. Gene
therapy aimed at the delivery of gene functions capable
of enhancing cancer cell immunogenicity [1] or inducing
oncolysis is a promising approach [2-6].
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Viral vectors well suit the purpose of gene therapy and
adenoviruses are commonly used gene-delivery vectors
due to the efficiency of their in vivo gene transfer [7].
Since 1993, about 300 clinical trials based on adenoviral
vectors have been performed [8]. However, a significant
limitation to their utilization is the host’s immune
response [9].

Physiologically, a viral infection stimulates the synth-
esis of interferons (IFNs) that are then secreted to acti-
vate the innate immune response of uninfected
neighboring cells preventing the viral spread. This
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endogenous immune response is induced by the recog-
nition of viral components by Toll-like receptor agonists
[10,11] and follows a two-step process, consisting in the
induction of type I IFNs followed by the transcriptional
activation of hundreds of IFN-stimulated genes (ISGs)
[12]. In turn, the activation of ISGs promotes the rapid
expression of proteins with direct anti-viral function
such as the Myxovirus-resistance-A (MxA) protein that
protects infected as well as non-infected bystander cells
[13] against a wide variety of viruses including adeno-
virus [14].

Various cancers including melanoma, breast, head and
neck, prostate, lung and glioma display transcriptional
profiles that suggest the existence of two subgroups of
cancer cells distinguishable according to a characteristic
IEN and inflammatory chemokines expression pattern
[15-20]. Interestingly, Weichselbaum et al. [20] recently
reported that IFN-related DNA damage resistance signa-
tures occur in common human cancers and can predict
responsiveness of breast cancer to chemotherapy and
radiation therapy based on the expression pattern of
ISGs.

In this study, we identified by transcriptional profiling
two ISG-defined phenotypes of pancreatic cancer that
are readily recognized by immunohistochemistry accord-
ing to the expression of MxA as a marker of IFN activ-
ity. The two phenotypes display diverse permissivity to
adenoviral replication in vitro suggesting the practical
implication that these signatures could facilitate the
identification of patients likely to respond/resist viral
vector-delivered gene therapy.

Methods

Pancreatic cancer samples

Thirty-four primary PDAC and 10 established PDAC
cell lines from the Biobank of the Department of Pathol-
ogy, University of Verona were used following approval
by the institutional Ethics Committee. The 34 samples
comprised 23 primary bulk PDAC tissues and 11 pri-
mary PDACs that were cancer-cell enriched by xeno-
grafting PDAC tissues in athymic nu/nu mice [21]. The
10 human PDAC cell lines included Pancl, MiaPaCa-2,
HPAF-I, CFPAC1, Ger, PSN1, Panc2, Paca3, Paca44 and
PT45 [22].

Microarray analysis

RNA from 8 xeno-grafted primary PDAC, 3 primary
PDAC bulk tissues, 3 chronic pancreatitis and 3 normal
pancreatic tissues was hybridized to a GeneChip HG-
U133A containing 22,283 probe sets (21,430 genes, Affy-
metrix, Sacramento, CA). RNA quality and concentra-
tion were assessed using Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA). First- and sec-
ond-strand cDNA were synthesized from 12.5 pg of
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total RNA according to manufacturer’s instructions
(Affymetrix). After in vitro transcription, labeling and
fragmentation, probes were hybridized to the GeneChips
that were then washed in a GeneChip Fluidics Station
400 (Affymetrix); results were visualized with a Gene
Array scanner using Affymetrix software. Array data
were normalized and summarized using the RMA
method [23]http://bioconductor.org/packages/2.0/bioc/
src/contrib/affy 1.14.0.tar.gz. Cluster analysis was based
on cluster and Treeview software (Eisen’s laboratory,
Berkeley, CA). Functional interpretations were based on
Gene Ontology and Ingenuity Pathways Analysis soft-
ware http://www.ingenuity.com.

Western Blot analysis

Western blot analysis using MxA (sc-50509, Santa Cruz
Biotechnology Delaware, CA) and B-actin (sc-47778,
Santa Cruz Biotechnology) antibodies was performed on
11 primary xenografted PDAC, 4 primary PDAC bulk
tissues, 1 normal pancreatic tissue and 10 PDAC cell
lines. Antibodies against MxA and B-actin were used at
a dilution of 1:1000 and 1:2000, respectively. As positive
control for MxA expression, peripheral blood mononuc-
lear cells from healthy donors were incubated overnight
with IFN-alpha at a final concentration of 100 IU/ml

Immunohistochemical analysis

A tissue microarray (TMA) containing 23 primary
PDACs, 11 xenografts, and 3 normal pancreas was
stained with MxA antibody (sc-50509, Santa Cruz Bio-
technology). The TMA was constructed using 1 mm
cylinders from selected areas of formalin-fixed paraffin-
embedded tissues using a tissue micro-arrayer from Bee-
cher Instruments (Sun Prairie, WI). Four tissue cores
were arrayed for each sample. Three um sections were
de-paraffinized, boiled for 30 min at 98°C in 10 mM
citrate buffer pH 6, treated with 3% hydrogen peroxide
10 min and then with Protein Blocking Agent (Novocas-
tra Laboratories, Newcastle, UK) for 10 min. MxA anti-
body was applied diluted 1:1000 for 60 min at room
temperature. Sections were washed and treated with
NovoLink Polymer Detection System according to man-
ufacturer’s instructions (Novocastra).

Cell line culture, infection, and transfection with BAAV
vector

Ad5-CMV-GFP and Ad5-CMV-null were purchased
from Applied Viromics (Fremont, CA). AAV5 and
AAV6 were from Dr J.A. Chiorini. Ad5-Luc was a gift
of Zheng, Changyu (NIH/NIDCR, Bethesda, MD). Cells
were cultured in RPMI 10% FBS in 6-well plates at 2 x
10° until 70% confluence, washed twice with cold phos-
phate buffered saline (PBS) and infected overnight at 37°
C in 5% CO2 with Ad5-CMV-GFP or Ad5-Null as at 13
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pfu/cell (10x) or 136 pfu/cell (100x). Media was
replaced after 24 hours and cells expressing GFP were
observed after 2 days under a fluorescence microscope
(Zeiss Axiovert 200 M - Software: Openlab). On day 2,
cells were trypsinized, washed with 2 ml FACS Buffer
(PBS plus 2,5% FBS), at 1,200 rpm for 5 minutes at +4°
C and fixed with 4% paraformaldehyde. Cyto-fluori-
metric analysis was performed using FACS Canto cyto-
fluorimeter and the FACS Diva software (Becton Dickin-
son, San Jose, CA) while the supernatant after lysis was
collected for testing viral load by real time qPCR. AAV
infection was performed in Costar black 96 well plates
with clear flat bottom (Corning, NY). Luciferase assay
was performed using the Bright-Glo lysis buffer/sub-
strate (Promega, Madison, WI).

293T human kidney cells were maintained in Dulbec-
co’s modified Eagle’s medium: recombinant AAVs
expressing EGFP or LUC were produced using a four-
plasmid procedure as previously described [24]. The
AAV particle titers were in the range of 10'> DNAse
resistant particles (DRP) x ml. Adenovirus type 5 wt
from crude lysate titer and Ad DNA replication was
determined by qPCR using the following primers: Ad
type 5 forward primer 5-AACCGAAGGCTGCATT-
CACT, reverse primer 5~ ACCGCACAGGGTCTTAA-
TAGAG. Following denaturation at 96°C for 10 min,
cycling conditions were 96°C for 15s, 60°C for 1 min for
40 cycles. The viral DNA in each sample was quantified
by comparing the fluorescence profiles with a set of Ad
DNA standards (449B plasmid).

Plasmids for constructing pISRE-SEAP and pIFN-beta-
SEAP, and pMetLuc-Control were obtained from Clon-
tech. Secreted alkaline phosphatase (SEAP) and secreted
luciferase from Metridia were selected for reporter
assays. The human IFN-beta promoter -281- to +20
sequence (Genbank # EF064725) was synthesized by
GenScript and confirmed by DNA sequencing. pIFN-
beta-SEAP was constructed by sub-cloning human IFN-
beta promoter into pTAL-SEAP. Plasmid pISRE-SEAP
and pNFkB-SEAP were similarly constructed into the
pISRE-Luc. SEAP reporters were under the control of
IFN-stimulated response element (ISRE) and IFN-beta-
promoter in pISRE-SEAP and pIFN-beta-SEAP, respec-
tively. Cells transfected with pMetLuc-control plasmid
expressed and secreted luciferase constitutively in the
tissue culture media under the control of CMV IE pro-
moter and were used as internal control for normaliza-
tion of the transfection efficiency. Phospha-Light™ SEAP
Reporter Gene Assay System was obtained from Applied
Biosystems (Foster City, CA). Ready-To-Glow Secreted
Luciferase Reporter System for Metridia secreted lucifer-
ase (Met-Luc) was obtained from Clontech (Mountain
View, CA).
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Cells were seeded at 2.5 to 3 x 10°/well into 6-well
plates, grown overnight, then washed with 2 ml Opti-
MEM I reduced serum medium (Invitrogen, Carlsbad,
CA) and fed with 1 ml of the same medium. Transfec-
tions were conducted using Lipofectamine 2000 trans-
fection reagent (Invitrogen) with 4 pl of Lipofectamine.
Reporter plasmids (0.5 pg pIFN-beta-SEAP, pISRE-
SEAP, or negative control vector pGeneClip) and inter-
nal control vectors (10 ng pMetLuc-control) were
diluted in 250 pl of Opti-MEM I, then added into the
lipofectamine mixture and incubated for an additional
20 min. The lipofectamine/DNA mixture was added to
each well, incubated at 37°C for 4 h and aspirated. Trea-
ted wells were fed with 3 ml complete RPMI medium
without antibiotics, and incubated for 20-24 h. Culture
supernatants were collected to assay the activities of
SEAP and Met-Luc by chemi-luminescence. SEAP activ-
ity was normalized to Met-Luciferase activity. Data were
expressed as mean relative SEAP unit. The fold induc-
tion of promoter activity was calculated by dividing the
normalized SEAP activity from pIFN-beta-SEAP or
pPISRE-SEAP transfected cells with that of control plas-
mid transfected cells (relative activity).

RNA Interference Assay

Small interfering RNAs (siRNA) for interferon regula-
tory factor IRF-3, IRF-7, virus-induced signaling adapter
(VISA), and the non-targeting control (NC) siRNA were
obtained from Ambion (Austin, TX). NF-kB p65 siRNA
was obtained from Cell Signaling Technology (Danvers,
MA). For detailed information about the sequences
please refer to additional File 1. Transfection of siRNAs
was carried out using Lipofectamine 2000 (Invitrogen)
at a final concentration of the siRNA mixture at 50 nM.
Cells transfected with siRNAs were further incubated
for 36-48 hrs and then reporter gene plasmids were
introduced into cells and the culture supernatant were
collected for chemi-luminescence assays.

Results

IFN-related signatures suggest the existence of two
molecular phenotypes of PDAC

Eight xenografted primary PDACs, three primary PDAC
bulk tissues, three chronic pancreatitis and three normal
pancreatic tissues were hybridized to a 21,430 gene
GeneChip HG-U133A Affymetrix array.

Class comparison identified a module enriched of
ISGs among the genes differentially expressed by
PDACs compared to normal tissues or pancreatitis. We,
therefore, selected from the complete data set 76 genes,
represented by 112 probesets, associated with IFN sig-
naling according to Gene Ontology such as IFNs, IFN
receptors, IFN regulatory factors (IRFs), IEN stimulated
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Figure 1 Interferon related genes expression profile. Supervised
cluster expression analysis of 76 selected interferon related genes,
represented by 112 probesets, in 8 xenografted primary pancreatic
adenocarcinomas (X-PDAC), 3 pancreatic adenocarcinoma bulk
tissues (PDAC), 3 chronic pancreatitis (CP) and 3 normal pancreas
(Normal). The analysis distinguished a cluster comprising the 11
adenocarcinoma samples (cluster 2) from the normal and
pancreatitis samples that clustered together (cluster 1). Among the
cancer samples there were two phenotypes, 2a and 2b, the former
being closer to the cluster of normal and pancreatitis. The list of
probesets corresponding to up regulated genes in group 2b is
listed in red while those corresponding to down regulated genes
are in green.

genes (ISGs), IFN induced proteins (IIPs), IFN asso-
ciated signaling pathway molecules, such as JAK and
STAT and IFN associated proteins, such as IL18
and OAS molecules (additional file 2). Hierarchical
clustering using this gene set identified two main clus-
ters (Figure 1, additional file 3), the first including nor-
mal pancreas and chronic pancreatitis (cluster 1), the
second including all the PDACs (cluster 2). Moreover,
two subgroups could be identified within cluster 2, the
first including three xenografts (cluster 2a) and the
other (cluster 2b) including the five remaining xeno-
grafts and the three PDAC bulk tissues.
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Cluster 2b displayed a profile diametrically opposite
to that of normal pancreas or chronic pancreatitis
and was characterized by upregulation of ISG and IIP
genes, while all IFN (including IFN-alpha4,5,7,17, IFN-
betal, IFN-omegal) and several IFN receptor genes
(including IFN-alpha, beta and omega receptor 1, IFNal-
phabeta and omega receptor 2) were down regulated.
Display of the IFN canonical pathways by Ingenuity
Pathway Analysis showed that IFN-related genes were
activated predominantly down-stream of IFN receptor/
IFN interactions (additional file 3). As the activation of
ISGs typically follows a viral infection, we considered
these tumors as bearing an “anti-viral state”.

To characterize the difference between the two cancer
phenotypes, we examined the genes differentially
expressed between cluster 2a and 2b and found that a
set of 935 genes were differentially expressed at a broad
cut-off of significance (Student’s T test p, < 0.05) (Fig-
ure 2, additional file 4). This low threshold of signifi-
cance was selected to include all genes of potential
relevance for pathways analysis [25,26]. To verify the
relevance of the gene selection in spite of the low signif-
icance threshold a permutation test [27,28] was per-
formed following NCI criteria [29] demonstrating that
this assortment reflected a true biological difference
rather than resulting stochastically from the large num-
ber of tests. Ingenuity Pathway Analysis confirmed pre-
dominant up regulation of genes associated with IFN
signaling (but not IFN or IFN receptor) as well as
human leukocyte antigen (HLA) class I and class II
genes (Figure 2) and genes related to antigen processing.
Interestingly, the hypoxia pathway was also differentially
affected (Figure 2). Among genes associated (i.e. IL18,
OAS genes) or directly involved in IFN signaling (JAK/
STAT), STAT1 and OAS1, OAS2, OAS3 and MxA best
distinguished the two phenotypes.

MxA expression discriminates the two ISG-related
molecular phenotypes of PDAC

Among the ISGs differentially expressed between the
two PDACs phenotypes, MxA was selected as marker
for the “anti-viral phenotype” since this protein is
directly associated with anti-viral properties [30]. Indivi-
dual display of MxA transcription is reported in Figure
3A, protein expression by Western Blot in Figure 3B
and by immunohistochemistry in Figure 3C. MxA
expression by immunohistochemical and Western blot
were concordant with transcriptional analysis showing
that four of 11 xenografts (36%) displayed an anti-viral
phenotype (Figure 3D).

The existence of two diverse molecular phenotypes of
PDAC based on the expression of MxA was confirmed
in an independent set of 23 primary PDACs by immu-
nohistochemistry. Ten (43%) PDACs stained positively
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for MxA (Figure 4A); three had over 80% of cancer cells
expressing MxA while seven had a positivity ranging
from 25% to 60%. Western Blot of four of these primary
PDACs confirmed the findings with two MxA-positive
and two MxA negative samples (Figure 4B).

Adenoviral infection of PDAC cell lines

To assess the functional relevance of the anti-viral state,
we screened 10 PDAC cell lines for MxA expression.
Western Blot analysis discriminated cancer cell lines into
MxA positive (PaCa44, HPAFI, CFPAC, PSN1) or MxA
negative (Ger, PT45, Pancl, Panc2, MiaPaCa2, PaCa3)
(Figure 5A). These lines were tested in an in vitro assay
for permissivity to Adenovirus replication or transduc-
tion using a wild type or recombinant virus frequently
used as oncolytic and gene therapy vectors for experi-
mental cancer therapies. Cell lines that did not express
MxA were more prone to the cytopathic effects and
more permissive to viral replication than those expres-
sing MxA (Figure 5B and 5C). PDAC transduction by

serial dilution of Ad-GFP resulted also in higher expres-
sion of GFP in lines not expressing MxA (Ger, PT45,
Pancl, Panc2, MiaPaCa2) (Figure 5D and 5E).

Adeno-Associated viral infection of PDAC cell lines

To assess whether MxA expression influences cancer cell
permissivity to the infection by viruses other then adeno-
virus, we tested the transduction properties of the Adeno
Associated Virus (AAV) types 5 and 6 on 8 representative
PDAC cell lines (Figure 5F). In spite of intrinsic trophic
differences between AAV type 5 and 6, the relative trans-
duction properties of the two viruses is quite similar.
Also in this case, cell lines expressing MxA were much
less prone to transduction than MxA negative cells.

Antiviral status is partially depending on IRF7

To assess the permanent activation of the ISGs, we
transfected the MxA positive PDAC cell lines with two
plasmids, one with an alkaline phosphatase regulated by
the ISRE promoter, and a second with an alkaline
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Figure 5 Endogenous MxA expression in PDAC cell lines and resistance to viral infection. A) MxA expression in PDAC cell lines by
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of MxA+ and MxA- to the adeno associated infection, data are shown as relative luciferase units (RLU).

1, top) and MxA

E) Luminescence analysis for the permissivity

phosphatase regulated by the IFN-beta promoter. As
shown in Figure 6A all four MxA-expressing cell lines
demonstrated spontaneous activation of the ISRE pro-
moter independently of external stimulus while no con-
stitutive activation for the IFN-beta promoter was seen.
To confirm that the endogenous activation of ISG was
responsible for the reduced permissivity to viral infec-
tion, we silenced transcription factors known to be asso-
ciated with viral resistance. We focused on one MxA
positive cell line, the PaCa44, and used the ISG15 gene,
directly dependent on ISRE promoter, as a marker of
downstream silencing (Figure 6B). Silencing NFkB, IRF3
and IRF7 but not VISA (Figure 6B) decreased expression
of ISG15 probably due to the decreased activity of ISRE

promoter as also monitored by the decreased production
of reporter gene in transfected cells at least for IRF7
(Figure 6C). Though NFkB, IRF7 and IRF3 silencing
decreased ISG15 expression, only IRF7 decreased the
level of the reporter gene expression by more than 50%
(Figure 6C) and partially reverted the resistance to infec-
tion with Ad5GFP (Figure 6D).

Discussion

It has been reported that melanoma metastases display a
heterogeneous phenotype in vivo that could be segre-
gated according to the coordinate expression of an
inflammatory signature including cytokines, chemokines
and angiogenic factors [16,31]. The expression of these
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targeting control (NC). The data were normalized using a pMet luc plasmid control. D) FACS analysis profile of GFP expression in PaCa44 cell line
infected with Adeno5 CMV-GFP virus after silencing IRF3 and IRF7. Cells were infected by using 136 pfu/cell: solid black line, 68 pfu/cell: dashed
black line, 27.2 pfu/cell: dotted black line of Adeno5-CMV-GFP vector and 136 pfu/cell Adeno5-CMV-Null vector: solid grey. Numbers represent

GFP

genes followed a modular behavior and was coordinated
among them resulting in two cutaneous melanoma
metastases phenotypes. Modular “operon-like” gene
expression has been recognized to be a relatively com-
mon feature in several immune pathologies [20,32] and
may offer a bottom up view of complex diseases and
their interaction with the host. The original observation
described for metastatic melanoma could not separate
the identified modular patterns between those related to
the host’s response to cancer cells and those primarily
due to potential taxonomic differences between two
molecular subsets of cutaneous melanoma [33].

The present study confirms this phenomenon, and in
addition suggests that 1) the two phenotypes ("inflam-
matory” vs “quiescent”) are not limited to cutaneous
melanoma but are also present in pancreatic adenocarci-
noma, suggesting that it could be possibly a widespread
phenomenon among cancers; 2) the activation of ISGs is
due to two independent taxonomies of cancer cells and

not to the host’s reaction to the cancer as it is was
observed in xenografts growing in immune deficient ani-
mals and in in vitro cultured cell lines; 3) the two phe-
notypes reflect a true “anti-viral” state capable of
inhibiting replication of at least two families of viruses
(adeno viruses and adeno associated viruses); 4) the two
cancer taxonomies described here may bear relevant
biological characteristics that might affect treatment of
cancer with viral vectors or with immunotherapy.

It remains to be elucidated why these two phenotypes
exist. One possibility is that the cancer cells bearing the
“anti-viral” state are chronically infected with a latent
virus that could induce endogenous activation of innate
cellular immune responses. Alternatively, it might repre-
sent an endogenous activation of anti-viral pathways
associated with the mutagenic process. This phenom-
enon has been clearly described for Epstein-Barr virus
or papilloma virus related cancers and could apply to
other viruses as well [34,35]. However, two observations
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mitigate against this interpretation. First, no genes
encoding for any known type I IFNs were observed to
be up-regulated in association with the “anti-viral state”
or the down-stream activation of ISGs; although type
one IFN expression is not an absolute requirement for
ISG activation during cytomegalovirus infection [36],
this IFN-independent activation of ISGs remains to be
demonstrated in other viral models in which IFN pro-
duction at mRNA and protein levels are believed to be
crucial [30,37]. Second, in a preliminary analysis, we
compared a number of cancer cell lines bearing either
phenotype by hybridizing their mRNA to a commer-
cially available pathogen chip containing probes for all
known viruses (Agilent Technology) and we could not
identify any viral sequence in the cell lines (Worschech
A et al, unpublished observation).

Thus, the “anti-viral state” is a characteristic molecular
phenotype of a subset of pancreatic cancers that may be
the result of a specific mutational profile of cancer cells
which is difficult to be understood at this time [38]. Epi-
genetic level control, such as methylation, may represent
an additional mechanism since a strict correlation exists
between demethylation and enhancements in STAT-1
phosphorylation followed by an increase in ISG expres-
sion [39]. From the gene ontology analysis it was inter-
esting to observe the participation of hypoxia pathways
in cancer cells with the “anti-viral” state as this can
clearly affect tumor biology and responsiveness to che-
motherapy [40] and likely immunotherapy of immune
responsive cancers such as renal cell carcinoma [41] and
melanoma [42].

We could also speculate that the constitutive activa-
tion of antigen presentation pathways might be signifi-
cant in modulating T cells responses and be responsible
for their heterogeneity in various cancers; this may
explain the immunogenicity of some melanomas com-
pared with other melanomas [43] and may become a
tool to stratify cancer patients to be treated with T cell-
directed vaccines. Whether cancer cells with an active
“anti-viral” state bear an enhancement in the presenta-
tion of endogenous proteins needs to be evaluated in
future studies.

The existence of cancer cells with “anti-viral” capacity
has potential relevance to viral gene therapy approaches.
Adenoviruses and Adeno-Associated viruses are used to
deliver genes to tumor cells with the goal of modifying
the phenotype, as for example, by introducing suicide
genes [44,45]. Particularly in the case of incurable solid
tumors such as pancreatic adenocarcinoma, trials have
been initiated with third generation adenoviral vectors
[46,47]. The present study suggests that gene delivery by
adenoviral vectors might be hampered in some patients;
this information can be important in the selection of
patients undergoing virally-related gene therapy and

Page 9 of 11

could provide important insights into the interpretation
of clinical results.

Brunicardi’s group [48] demonstrated that gene ther-
apy using Adenovirus subtype 5 mediates rat insulin
promoter directed thymidine kinase (A-5-RIP-TK)/gan-
ciclovir (GCV) gene therapy resulting in significantly
enhanced cytotoxicity to both Pancl and MiaPaCa2
pancreatic cancer cells in vitro [49]. An in vivo study
from the same group showed that systemically adminis-
tered A-5-RIP-TK/GCV is an effective treatment for
pancreatic cancer [50]. These studies are based on a rat
PDAC model in which the pancreatic tumors were
derived from Pancl and MiaPaca2 cell lines. In this
model they found a very tight correlation among A-5-
RIP-TK/GCV cytotoxicity to malignant cells, adenoviral
dose and length of GCV treatment [48]. Interestingly, all
the experiments were performed on cell lines that were
negative for the MxA expression. These findings are in
full accordance with our theory of a possible effect of
interferon associated gene up regulation and its relation-
ship to gene therapy outcome.

If these findings are confirmed in humans, positivity for
MxA at diagnosis might become important exclusion cri-
teria and might consequently increase the efficacy of viral-
mediated gene therapy for those who test MxA negative.

The observation that both Adenovirus and Adeno
Associated viruses were similarly affected by the anti-
viral state suggests that this phenomenon is at least par-
tially independent of viral idiosyncrasies related to speci-
fic receptors or other restricted properties of each
individual virus but rather is a general phenomenon that
can apply to several oncolytic delivery systems. Of
course, work needs to be done to assess the relevance of
this phenotype in other viral systems.

The existence of either phenotype in xenografted pri-
mary cancers and in vitro models provides evidence that
the antiviral state phenotype is stable. Since most of
those genes are expressed only during viral infection in
non cancer patients, this observation makes some of the
product of those inducible genes, for example ones that
codify for membrane proteins, new markers and new
possible therapeutic target.

Conclusions

Our findings stress the in vivo occurrence in human
adenocarcinoma of two distinct phenotypes based on
expression of ISGs. Those phenotypes might be impor-
tant for the resistance to possible introduction of genes
using viral vectors or for the resistance to oncolytic
gene therapy. We believe that this finding can be of cru-
cial interest for the field of cancer vaccines and gene
therapy by giving important pre-screening tools that
could aid in the selection of patients most likely to ben-
efit. Alternatively, understanding this resistance
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mechanism could provide a new target for anti-cancer
drug development.
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