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Abstract A quantitative understanding of how sensory signals are transformed into motor

outputs places useful constraints on brain function and helps to reveal the brain’s underlying

computations. We investigate how the nematode Caenorhabditis elegans responds to time-varying

mechanosensory signals using a high-throughput optogenetic assay and automated behavior

quantification. We find that the behavioral response is tuned to temporal properties of

mechanosensory signals, such as their integral and derivative, that extend over many seconds.

Mechanosensory signals, even in the same neurons, can be tailored to elicit different behavioral

responses. Moreover, we find that the animal’s response also depends on its behavioral context.

Most dramatically, the animal ignores all tested mechanosensory stimuli during turns. Finally, we

present a linear-nonlinear model that predicts the animal’s behavioral response to stimulus.

DOI: https://doi.org/10.7554/eLife.36419.001

Introduction
An animal’s nervous system interprets sensory signals to guide behavior, including behaviors that

are involved in evading predation. Investigating how the nervous system processes these signals is a

critical step towards understanding neural function.

Mechanosensation in the nematode Caenorhabditis elegans is an attractive platform for investi-

gating sensorimotor processing. Six soft-touch mechanosensory neurons arranged throughout the

body detect mechanical stimuli including those delivered either by a small probe in what is called a

touch or by striking the petri dish containing the animal in what is called a tap (Chalfie and Sulston,

1981). Despite decades of investigation, however, the behavioral response to dynamic time-varying

mechanosensory signals has not been fully explored.

Here we provide new details about the mechanosensory response system by quantitatively

exploring the animal’s detailed behavioral response to rich, dynamically varying signals. We find that

the animal responds to the temporal features of signals in its mechanosensory neurons, such as its

time-derivative (i.e. rate of change), that extend over many seconds. Moreover, we find evidence

that the animal’s sensorimotor response depends on the animal’s current behavior state. That we

find evidence of temporal processing and context dependency, even in the nematode’s relatively

simple touch circuit, raises the possibility that these features could be ubiquitous across sensory sys-

tems. Finally, we present a simple quantitative model that predicts the animal’s response to novel

mechanosensory signals.

Mechanosensation is important for C. elegans survival. Caenorhabditis elegans are preyed upon

by nematophagous fungi, and touch-defective animals fail to detect and escape from the fungus

(Maguire et al., 2011). Much is already known about this critical circuit. The six soft-touch
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mechanosensory neurons detect both spatially localized and non-localized stimuli. Anterior touches

are detected by anterior neurons ALML, ALMR and AVM and evoke reversal behaviors whereas pos-

terior touches are detected by posterior neurons PLML and PLMR and evoke forward sprints

(Chalfie and Sulston, 1981; Chalfie et al., 1985; McClanahan et al., 2017; Mazzochette et al.,

2018). Non-spatially localized plate taps are detected by both anterior and posterior soft-touch neu-

rons and evoke reversals in young adult animals (Chalfie and Sulston, 1981; Rankin et al., 1990);

on rare occasions, they also evoke forward acceleration (Wicks and Rankin, 1995; Chiba and Ran-

kin, 1990). Owing in part to its ease of delivery and its inherent compatibility with high-throughput

methods (Swierczek et al., 2011), plate tap emerged early on as an assay for studying sensitization

and habituation (Rankin et al., 1990). Plate tap has been used in concert with the touch assay to

study the development, circuitry (Chalfie and Sulston, 1981), genes, molecules and receptors

(Sanyal et al., 2004; Kindt et al., 2007) of the mechanosensory system.

When the animal interacts with its environment or brushes up against a nematophagous fungi’s

constricting ring, it necessarily receives time-varying stimuli. The response of an individual touch

receptor neuron to force (O’Hagan et al., 2005), including to time-varying stimuli, is

well characterized (Eastwood et al., 2015). The onset and offset of an applied force evokes strong

excitatory currents that adapt with a timescale of a few tens of milliseconds (O’Hagan et al., 2005)

and have a frequency response thought to peak in the 100 to 500 Hz range (Eastwood et al.,

2015). Intracellular calcium activity in individual soft touch neurons has also been well characterized

in response to touch and this activity exhibits slower transients that occur with a

timescale of seconds (Suzuki et al., 2003; Cho et al., 2018). In contrast to this detailed understand-

ing at the single neuron level, the animal’s downstream response to rich temporally varying mecha-

nosensory signals has been less well characterized.

The animal’s behavior response to mechanosensory stimuli has primarily been studied using

impulse stimuli. Specifically, the stimuli were either a brief application of touch, tap or optogenetic

eLife digest A worm called Caenorhabditis elegans has a nervous system made up of only 302

neurons, far fewer than the billions of cells that comprise our own brains. And yet these few hundred

neurons are enough for these worms to detect and respond to their surroundings. C. elegans is thus

a popular choice for studying how nervous systems process sensory information and use it to control

behavior. Yet, most experiments to date have used only simple stimuli, such as taps or pokes, and

studied a handful of behaviors, such as whether or not a worm stops moving or backs up. This limits

the conclusions it has been possible to draw.

Liu et al. therefore set out to determine how the worm’s nervous system responds to more

complex stimuli. These included physical stimuli, such as taps on the side of the dish containing the

worms, as well as simulated stimuli. To generate the latter, Liu et al. used a technique called

optogenetics to directly activate the neurons in the worm’s body that would normally detect

information from the senses, by simply shining a light on the worms. Doing so gives the worm the

sensation of a physical stimulus, even though none was present. Liu et al. then used mathematics to

examine the relationships between the stimuli and the worms’ responses.

The results confirmed that worms usually respond to simple stimuli, such as taps on the side of

their dish, by backing up. But they also revealed more advanced forms of stimulus processing. The

worms responded differently to stimuli that increased over time versus decreased, for example. A

worm’s response to a stimulus also varied depending on what the worm was doing at the time.

Worms that were in the middle of turns, for instance, ignored stimuli to which they would normally

respond. This suggests that an animal’s current behavior influences how its nervous system

interprets sensory information.

The discovery of relatively sophisticated responses to sensory stimuli in C. elegans indicates that

even simple nervous systems are capable of flexible sensory processing. This lays a foundation for

understanding how neural circuits interpret sensory signals. Building on this work will ultimately help

us understand how more complicated nervous systems interpret and respond to the world.

DOI: https://doi.org/10.7554/eLife.36419.002

Liu et al. eLife 2018;7:e36419. DOI: https://doi.org/10.7554/eLife.36419 2 of 29

Research article Neuroscience Physics of Living Systems

https://doi.org/10.7554/eLife.36419.002
https://doi.org/10.7554/eLife.36419


stimulation, and the most salient feature of these stimuli was their amplitude, not their temporal pro-

file (Petzold et al., 2013; Stirman et al., 2011; McClanahan et al., 2017; Mazzochette et al.,

2018). In the classical touch assay, for example, a saturating force that lasts just a few tenths of a

second is applied (Nekimken et al., 2017). Tap stimuli are even shorter in duration.

To our knowledge, the only temporally varying stimuli used to investigate behavioral responses

to mechanosensation are: trains of taps or touches (Chiba and Rankin, 1990; Kitamura et al.,

2001), trains of optogenetic pulses (Porto et al., 2017; Leifer et al., 2011), trains of ultrasound

pulses (Kubanek et al., 2018), the delivery of 100 Hz or 1 kHz acoustic vibration (Nagy et al.,

2014a, 2014b; Sugi et al., 2016), and the delivery of sustained acoustic vibrations of different fre-

quencies lasting many minutes to hours (Chen and Chalfie, 2014).

The following behaviors have been extensively studied in response to mechanosensory stimula-

tion. Early work scored the animal’s reversals (Chiba and Rankin, 1990) and more recent work

includes reversal distance (Kitamura et al., 2001), rate of reversals (Swierczek et al., 2011) or

pauses, reversal duration and reversal latency (Ardiel et al., 2017). The effect of mechanosensory

stimulation on accelerations has also been studied (Wicks and Rankin, 1995). Recent work, however,

shows that the animal’s repertoire of behavior is larger (Stephens et al., 2008; Brown et al., 2013).

Over short timescales, reversals or accelerations depend on the set of neurons stimulated and the

stimulus strength. The location of an applied force determines which touch receptor neurons are

activated and thus whether the animal accelerates or reverses, while the amplitude of the applied

stimulus determines the probability that the animal responds at all (Driscoll, 1997; Stirman et al.,

2011; Petzold et al., 2013; McClanahan et al., 2017; Mazzochette et al., 2018).

Over longer timescales of minutes to hours, however, the picture has been shown to be more

complicated. Habituation (Rankin et al., 1990), quiescence (Raizen et al., 2008; Cho et al., 2018),

and exposure to prolonged vibrations, salt or hypoxia, all modulate the animal’s sensitivity to

mechanical stimuli (Chen and Chalfie, 2014, 2015).

More recently, evidence has also emerged that short timescale properties of the stimulus may

also play a role in modulating the animal’s behavioral response. Porto et al. (2017) reported the use

of reverse correlation and a binary optogenetic stimulus to present evidence that temporal process-

ing is important for the animal’s behavioral response over a timescale of seconds. In our work here,

we show that the nervous system does indeed process signals from the mechanosensory neurons

over timeseries of many seconds. We find that the animal’s behavior response depends on higher-

order temporal features such as the derivative of those mechanosensory signals, in addition to the

stimulus amplitude and the animal’s own behavioral context.

Here, we revisit the animal’s behavioral response to mechanosensory stimulation armed with

high-throughput optogenetic methods for delivering time-varying stimuli and improved techniques

for measuring animal posture (Stephens et al., 2008) and behavior (Berman et al., 2014). Using

reverse correlation (Ringach and Shapley, 2004; Schwartz et al., 2006; Gepner et al., 2015), we

analyze over 8000 animal-hours of recordings and find new insights into the interplay between sen-

sory processing and behavior.

Results

Mechanosensation evokes a range of behavioral responses
We first investigated the animal’s response to plate tap, a spatially non-localized mechanosensory

stimulus generated by tapping the dish containing the animals. Plate taps had previously been

reported to evoke reverse locomotion (Rankin et al., 1990) and rarely forward accelerations

(Wicks and Rankin, 1995) in the young adult animals used here. A solenoid repeatedly delivered a

tap stimulus every 60 s for 30 min to a plate of many young adult wild-type (N2) worms, repeated

across 22 plates, resulting in 40,409 total animal-tap presentations. The inter-stimulus interval was

chosen to minimize the effects of habituation (Rankin and Wicks, 2000). The animal’s behavior was

continuously measured and classified using a behavior-mapping technique similar to that described

in Berman et al. (2014). Briefly, statistical inference was performed on all of the animal’s posture

dynamics to generate a single behavior map. Stereotyped posture dynamics that emerged from this

map were defined as behaviors. Each individual animal’s posture dynamics were projected into this

map at each point in time and automatically classified into one of nine behavior states, which were
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Figure 1. Caenorhabditis elegans behavior quantification. (a) Behavior map showing the probability density of posture dynamics observed during 2284

animal-hours of behavior, including stimulus and control conditions (‘Random Noise’ row in Table 2). Posture dynamics have many dimensions but are

projected down into a low-dimensional space using the t-SNE method used by Berman et al. (2014). Peaks indicate stereotyped postures. Discrete

behavior states are defined by dividing the posture map into nine regions by using a watershedding algorithm. (b) Human-readable behavior names

Figure 1 continued on next page
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assigned labels such as ’Turn.’ See Figure 1, Figure 1—figure supplements 1 and 2 and methods

for a complete description of the behavior mapping. Also see example videos of behavioral map-

ping in Figure 1—video 2 and Figure 1—video 3.

Consistent with previous reports, we observed that taps most dramatically evoked the animal to

transition to the ’Fast Reverse’ state. Tap stimulus induced a 14-fold increase in the fraction of ani-

mals exhibiting ’Fast Reverse’ immediately post stimuli, see Figure 2a and Figure 2—figure supple-

ment 2. In addition, animals that continued in forward locomotion exhibited an overall slowing

down, transitioning from fast locomotion states to slower locomotion states, which to our knowledge

had not been reported previously. We also observed a 4.5-fold increase in the fraction of animals

exhibiting ’Turn’ behavior approximately 5 s post stimulus. The fraction of animals exhibiting ’Slow

Reverse’ also increased slightly upon stimulation. These measurements suggest that plate tap evokes

a wide-range of behavioral responses in the animal.

Optogenetic stimulation mimics a tap
We sought to activate the mechanosensory circuit optogenetically because optogenetic stimulation

is more amenable to modulation and control. Optogenetic stimulation of the six mechanosensory

neurons had previously been shown to evoke reversals and accelerations, similar to the response to

tap (Nagel et al., 2005). We wondered whether the details of the behavior response to tap that we

observed are also present in response to optogenetic activation. Animals expressing the light-gated

ion channel Chrimson in their soft touch mechanosensory neurons (strain AML67 [Pmec-4::Chrim-

son::SL2::mCherry::unc-54]) were illuminated with red light for 1 s with a 60 s inter-stimulus interval

(2,444 stimulus-animal presentations, 20 mW mm–2, selected to be in a region of high behavior sensi-

tivity, see Figure 2c). Consistent with previous reports, light stimulation evoked a behavior response

that was quantitatively similar to that of the plate tap (see Figure 2b) and required the cofactor all-

trans retinal (ATR), see Figure 2—figure supplement 2. For both light and tap, the most salient

response was a dramatic increase in animals in the ’Fast Reverse’ state. Both light and tap also

evoked an increase in ’Forward 3’ behaviors and both evoked similar decreases in ’Forward 4’, ’5’

and ’6’ behaviors. Both light and tap also evoked an increase in ’Turn’ behavior that peaked 5 s

post-stimulus. Hence, optogenetic stimulation of mechanosensory neurons evoke detailed behavior

responses similar to those resulting from a mechanical stimulus. This suggests that our optogenetic

stimulation generates physiologically reasonable signals in the mechanosensory neurons and we

therefore proceeded to explore the animal’s response to optogenetic stimulation.

Behavioral responses are correlated to temporal features such as the
derivative
When the animal explores its natural environment, crawls through crevices, and interacts with other

organisms, it probably experiences time-varying mechanical stimuli. Therefore, we sought to investi-

gate the animal’s response to random temporally varying optogenetic stimulation. We find that the

Figure 1 continued

are provided by the experimenters. (c) Mean center of mass velocities of animals in each region. Positive velocity is in the direction of the animal’s

head. (d) Probability of transitioning between behaviors. Thickness of lines scales with probability. Transition probabilities < 2% were omitted.

DOI: https://doi.org/10.7554/eLife.36419.003

The following video and figure supplements are available for figure 1:

Figure supplement 1. Analysis pipeline for classifying behavior.

DOI: https://doi.org/10.7554/eLife.36419.004

Figure supplement 2. Behavior maps were generated from 2284 animal-hours of behavior recorded from Pmec-4::Chrimson worms during optogenetic

stimulation and control conditions.

DOI: https://doi.org/10.7554/eLife.36419.005

Figure 1—video 1. Video of tracked animals undergoing optogenetic stimulation.

DOI: https://doi.org/10.7554/eLife.36419.006

Figure 1—video 2. Videos of randomly selected animals performing each of the nine behaviors.

DOI: https://doi.org/10.7554/eLife.36419.007

Figure 1—video 3. Video showing the path of an animal through behavior space.

DOI: https://doi.org/10.7554/eLife.36419.008
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animal’s specific behavioral response correlates with higher-order temporal features of the stimulus,

not merely the amplitude.

To deliver rich temporally varying stimuli, we continuously presented a plate of transgenic animals

with light modulated by broad frequency noise (7 Hz nyquist limit, 0.5 s correlation time, 25 mW

mm–2 average intensity, min 0, max 50 mW mm–2, see power spectra in Figure 3—figure supple-

ment 4, and video in Figure 1—video 1).

Modulating light intensity has been shown to elicit graded potentials during optogenetic activa-

tion of other C. elegans neurons (Liu et al., 2009; Narayan et al., 2011), therefore we expect the

time-varying light stimuli to result in a membrane potential that varies smoothly over time. Noise

stimulation evoked a wide range of behavioral responses (see Figure 3—figure supplement 1). We

used reverse correlation to identify the salient features of the stimulus that correlates with transitions

into each behavior. Reverse correlation yields kernels that describe how a behavior is tuned to a

stimulus. Kernels are particularly powerful in the context of the linear non-linear (LN) model, a simple

and ubiquitous model in neuroscience that can be used to predict a neuron’s or animal’s response

Figure 2. Stimulation evokes a diverse range of behavior responses. (a) Fractions of animals occupying each behavior state in response to a plate tap

(40,409 stimulus-animal presentations) and (b) in response to a 1 s optogenetic light stimulation of the six soft touch mechanosensory neurons (2,444

stimulus-animal presentations, 20 mW mm–2). Note the similarity in the behavior responses to light and tap. The gray shaded window indicates inherent

temporal uncertainty in behavior classification. See ’Materials and methods’. (c) Response to optogenetic stimulation depends on light intensity. Peak

fraction of animals in the ’Fast Reverse’ state in a 6 s window post stimulus are shown for different-intensity light pulses. More than 2,000 stimulus-

animal presentations were recorded for each point plotted. Arrow indicates the light intensity used in (B). Pink shaded region indicates light range used

for subsequent continuous light stimulation experiments, as in Figure 3.

DOI: https://doi.org/10.7554/eLife.36419.009

The following figure supplements are available for figure 2:

Figure supplement 1. Diagram of high-throughput stimulation and behavior assay.

DOI: https://doi.org/10.7554/eLife.36419.010

Figure supplement 2. Transition rates for tap and light stimulation.

DOI: https://doi.org/10.7554/eLife.36419.011

Figure supplement 3. Control animals grown without ATR are light insensitive.

DOI: https://doi.org/10.7554/eLife.36419.012

Figure supplement 4. Tap sensitivity of transgenic animals is reduced compared to that of wild-type animals.

DOI: https://doi.org/10.7554/eLife.36419.013
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Figure 3 continued on next page
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to stimulus (Ringach and Shapley, 2004; Schwartz et al., 2006; Coen et al., 2014; Gepner et al.,

2015; Hernandez-Nunez et al., 2015; Calhoun and Murthy, 2017; Clemens and Murthy, 2017).

See in particular (Gepner et al., 2015). Briefly, the LN model treats the response to a stimulus as a

stochastic process involving two steps: first the stimulus timeseries s tð Þ is convolved with a kernel A

(linear operation), and then it is transformed into a response probability P via a non-linear look-up

function f (non-linear operation), such that,

P behavior½ � tð Þ ¼ f A*sð Þ tð Þ½ �; A*sð Þ ¼
Z

¥

0

A tð Þs t� tð Þdt: (1)

The shapes of the kernel and the non-linearity describe how a behavior response is tuned to the

stimulus.

Kernels can be estimated by finding the behavior-triggered average. Briefly, the stimulus in a

time window centered on a behavior transition is averaged across all such behavior transitions. The

mean subtracted and time-reversed behavior-triggered average is an estimate of the kernel, and so

henceforth, we use the terms behavior-triggered average and kernel interchangeably. Once the ker-

nels A are calculated, it is straightforward to estimate the non-linearities f from the observed behav-

ior responses (see ’Materials and methods’). Kernels and associated non-linearities were computed

for transitions into each of the nine behavior states from over 50,000 behavior transition events per

behavior (see Figure 3 and Figure 3—figure supplement 2). Kernels for six of the nine behaviors

were found to be significant compared to a shuffled stimuli (see ’Materials and methods’). By con-

trast, kernels computed from control animals grown without the necessary cofactor ATR all failed to

pass our significance threshold (see Figure 3—figure supplement 3). Non-linearities calculated for

the six behaviors were found to be mostly linear, suggesting that in our case the kernels themselves

capture most of the information about how the nervous system responds to our stimulus.

Our prior understanding of the mechanosensory circuit makes strong predictions about the shape

of the kernels that we should expect. If the behavior depends only on which neurons are activated,

then all kernels should have the same shape, scaled linearly, because we are always activating the

same set of neurons. (This assumes that all six neurons are activated in a linear regime, which seems

reasonable given the approximately linear response observed in Figure 2c). Moreover, if the proba-

bility of response depends only on instantaneous stimulus amplitude, then we further expect all ker-

nels to be narrow Gaussians. In contrast to these predictions, we see a wide diversity of kernels.

Forward-locomotion kernels have biphasic waveforms, not at all like Gaussians. ’Forward 6’, for

example, has the shape of a differentiator, suggesting that the transitions into ’Forward 6’ correlate

with decreasing stimuli on a 7 s timescale. Kernels for ’Slow Reverse’ and ’Fast Reverse’, on the other

hand, do look like Gaussians, consistent with prior reports that reversals do depend on the stimulus

amplitude. Interestingly, the Gaussians are wide, which suggests that the animal may integrate

the sensory signal over approximately 3 s in determining to reverse.

Figure 3 continued

The shape of the behavior-triggered average depends on the behavior. Note that some behaviors have Gaussian-like shapes, whereas others have

biphasic shapes that act like derivatives. The numbers of observed transitions, n, in each behavior are listed. (b) Similar behaviors have similar behavior-

triggered averages. Dendrogram showing hierarchical clustering of the euclidian distance of the scaled behavior-triggered averages. The two reversal

states, for example, form a cluster.

DOI: https://doi.org/10.7554/eLife.36419.014

The following figure supplements are available for figure 3:

Figure supplement 1. Change in behavioral occupancy evoked by random noise stimulation.

DOI: https://doi.org/10.7554/eLife.36419.015

Figure supplement 2. Behavior-triggered averages and non-linearities for all behaviors.

DOI: https://doi.org/10.7554/eLife.36419.016

Figure supplement 3. Behavior-triggered averages for control animals grown without ATR.

DOI: https://doi.org/10.7554/eLife.36419.017

Figure supplement 4. Power spectra of a single instantiation of the random noise stimulus.

DOI: https://doi.org/10.7554/eLife.36419.018

Figure supplement 5. Light-intensity histogram for random noise stimulus.

DOI: https://doi.org/10.7554/eLife.36419.019
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stimuli shaped like the kernels in Figure 3. Predicted (black bar) and observed (color bar) changes in transition rate are shown for transitions into each

kernel-shaped stimulus’ corresponding behavior. For example, a ’Forward 3’-shaped stimulus increases transitions into ’Forward 3’ (mustard bar). For

five of the six behaviors, stimulation evoked increased transitions into their corresponding behaviors, as predicted. Transition rate changes are

Figure 4 continued on next page
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Taken together, we conclude that the animal’s behavior response is not merely correlated with

which neurons are stimulated and the stimulus amplitude. Instead different behaviors correlate with

different temporal features of signals in the mechanosensory neurons, even though the same six neu-

rons were always activated. The behavioral response correlates with properties of the stimulus

such as the derivative or the integral, not just the amplitude.

Similar behavioral responses are tuned to similar stimuli
We wondered about the organization of the behavioral responses with respect to the stimuli to

which they are tuned. One might expect animals to have evolved their behavioral response so that

similar behaviors are tuned to similar stimuli. Indeed, we find that similar behaviors have quantita-

tively similar kernels. Hierarchical clustering was performed on the euclidian distance of the scaled

kernels (see Figure 3). The two reverse locomotion states have similar kernels and were clustered

together. Forward velocity states fell into two clusters that were based on speed: ’Forward 3’ and

’Forward 4’ are slower and clustered together, whereas ’Forward 5’ and ’Forward 6’ are faster and

clustered together. That similarities in the kernels reflect the similarities in their associated behaviors,

provides additional confidence in our reverse correlation analysis.

Stimuli can be tailored to generate specific behavioral responses
To test causally whether specific signals in the mechanosensory neurons can bias the animal towards

specific behaviors as predicted, we generated stimuli that were tailored to elicit specific behavioral

responses. The kernels found in Figure 3 purport to describe how each behavioral response is tuned

to the stimuli. Therefore, stimuli shaped like one of the kernels should drive an increase in transitions

into its respective behavior. If, however, the behavioral response is tuned differently, then the ker-

nel-shaped stimulus may evoke decreases in transitions to that behavior. (We already know that the

animal can respond to some stimuli by decreasing transitions to certain behaviors because we saw

this with tap and ’Forward 6’, for example [see Figure 2—figure supplement 2]).

We tested whether stimuli that are shaped like the kernels in Figure 3 increased transitions into

their associated behaviors. Kernel waveforms were presented to a plate of animals in a randomized

order (six kernels, >13,500 animal-stimulus presentations per kernel; 40 s inter-stimulus interval).

Five of six kernels elicited increased transitions to their respective behaviors as predicted, three of

the six significantly so (see Figure 4a). None significantly decreased transitions to their respective

behaviors. We therefore conclude that the kernels correctly depict tuning of the behavioral

responses. Consequently, we conclude that mechanosensory signals (even in the same neurons) can

be tailored to evoke specific behaviors just by altering the stimulus waveform.

Figure 4 continued

measured with respect to baseline (see ’Materials and methods’). Significance was estimated via a t-test and error bars show the standard error of the

mean. The number of stimulus-animal presentations, from left to right, were 14,238, 13,612, 14,699, 14,424, 14,194 and 13,708. Of these, the number of

timely transitions observed were 14,00, 1,428, 1,692, 944, 191 and 513. The p-values were 2.2e–1, 5.6e–6, 1e–4, 3.4e–5, 7.5e–2, 9.5e–1. (b) The LN model

predicts details of the animal’s behavioral response. For each point in time, the LN model predicts the change from baseline of transition rates for all

nine behaviors in response to a stimulus. Detailed responses to ’Forward 4’- and ’Forward 5’-kernel-shaped stimuli are shown (see Figure 4—figure

supplement 1 for the rest). Raw transitions rates (light colored shading), smoothed transition rates (colored line) and LN prediction (solid black line) are

shown. For stimuli that are shaped like ’Forward 4’, the LN model correctly predicts not only that transitions into ’Forward 4’ increase but also that

transitions into ’Forward 5’ and ’6’ decrease. Light gray shading indicates the 2 s time window used to calculate transition rates for the transitions

shown in (A) (orange and pink arrows). Of 13,612 and 14,699 presentations for ’Forward 4’- and ’5’-kernel shaped stimuli, respectively, the following

number of transitions were observed in the 20 s window: by row for ’Forward 4’-shaped 1,265, 1,330, 12,312, 11,962, 13,436, 6,861, 1,735, 4,934 and

2,864, and for ’Forward 5’-shaped 1,198, 1,437, 13,657, 13,538, 14,656, 7,295, 1,673, 5,506 and 3,118.

DOI: https://doi.org/10.7554/eLife.36419.020

The following figure supplements are available for figure 4:

Figure supplement 1. Behavioral responses to all kernel-shaped stimuli.

DOI: https://doi.org/10.7554/eLife.36419.021

Figure supplement 2. Control animals grown without ATR do not respond to kernel-shaped stimuli.

DOI: https://doi.org/10.7554/eLife.36419.022
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Figure 5. Novel stimuli can be constructed to enrich specific mechanosensory responses. A novel triangle-wave optogenetic light stimulus was

repeatedly presented to animals. Change in transition rates are shown for transitions into each behavior (raw, light color shaded; smoothed, solid color

line). Changes to transition rate as predicted by the LN model are also shown (black line). Increasing light intensity increases transitions into ’Forward

3’and ’Forward 4’, while decreasing light intensity increases transitions into ’Forward 5’ and ’Forward 6’. Transitions into ’Slow Reverse’ and ’Fast

Figure 5 continued on next page
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LN model predicts behavioral response, including response to novel
stimuli
The LN model provides an analytical framework to predict how an animal responds to a stimulus.

The LN model correctly predicted that kernel-shaped waveforms should increase transitions into

each kernel’s associated behavior state (see Figure 4a). The kernel-shaped waveforms also evoked

other behavioral responses. For example, stimuli that were shaped like the ’Forward 4’ kernel

increased transitions to both ’Forward 4’ and ’Forward 3’; but decreased transitions to ’Forward 5’

and ’Forward 6’ (see Figure 4b). How well, we wondered, does the LN model predict those

responses? We compared the observed behavioral responses (colored lines) to detailed time-depen-

dent predictions made by the LN model (black lines). To the resolution at which we could observe,

we were reassured to find that the LN model correctly predicted the sign and temporal profile of

changes in transition rates for all nine behavior states in response to each of the six kernel

stimuli (see Figure 4b and Figure 4—figure supplement 1), suggesting that the LN model captures

myriad details of the animal’s behavioral response.

We further challenged our understanding of the animal’s behavioral response to stimulus by pre-

senting an entirely novel stimulus, a triangle-wave (340,757 stimulus-animal presentations) (see Fig-

ure 5 and Figure 5—figure supplement 1). How well does the LN model predict the animal’s

behavior response to this novel stimulus? The LN model captured the sign and general trend

(though not all features) of the time-dependent change in the transition rate to all nine behaviors in

response to the triangle wave. Moreover, the LN model provides a framework for understanding the

animal’s response by inspecting features of the kernel waveform. For example, the ’Fast Reverse’

kernel is symmetric in time and its mean-subtracted integral is positive. Therefore the shape of the

’Fast Reverse’ kernel suggests that ’Fast Reverse’ should be tuned to the overall stimulus intensity

but not its derivative. Indeed we observe a very slight increase in the rate of transitions to ’Fast

Reverse’ during peak stimulus intensity. Conversely, the ’Forward 6’ kernel is asymmetric in time and

its biphasic waveform resembles that of the negative derivative of a Gaussian. Therefore, ’Forward

6’ should be tuned to decreases in stimulus intensity, as we observe.

Taken together, our experiments show that the animal can be driven to transition into different

specific behavior states by modulating the temporal profile of signals in the same mechanosensory

neurons, and that the LN model predicts the animal’s response.

Sensory processing is context dependent
Caenorhabditis elegans are known to respond differently to the same stimuli when they are in differ-

ent long-lived behavior states such as hunger (Ghosh et al., 2016), quiescence (Raizen et al., 2008;

Schwarz et al., 2011; Nagy et al., 2014b; Cho et al., 2018) or arousal (Cho and Sternberg, 2014),

or while undergoing Dauer formation (Chen and Chalfie, 2014, 2015). We wondered whether

mechanosensory processing might also be influenced by short-lived behavior states, like the ’Turn’,

’Reverse’ or ’Forward’ locomotory states measured here. To investigate tuning of the animal’s

behavioral response conditional on its current behavior state, we calculated context-dependent ker-

nels, one for each pairwise transition (see Figure 6—figure supplement 1). Of 72 possible pairwise

transitions, 27 had kernels that passed our shuffled significance threshold (compared to only four for

our off-retinal control (see Figure 6—figure supplement 2). Transitions to some behavior states,

such as ’Forward 4’, had kernels that changed dramatically depending on which behavior the animal

originated from (see columns in Figure 6—figure supplement 1). The pairwise-specific kernels

Figure 5 continued

Reverse’ are highest during greatest stimulus intensity. The LN model predicts these trends (though not all the details) even though the LN model was

fitted using the random noise experiments and therefore was not exposed to this particular stimulus. In response to the 340,757 animal-stimulus

presentations, the following number of transitions were observed (by row, from top to bottom): 33,315, 31,243, 298,400, 343,474, 327,509, 160,332,

43,909, 106,743, and 57,439.

DOI: https://doi.org/10.7554/eLife.36419.023

The following figure supplement is available for figure 5:

Figure supplement 1. Control animals grown without ATR do not respond to triangle wave.

DOI: https://doi.org/10.7554/eLife.36419.024
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Figure 6. Behavior transitions that involve slowing down and speeding up have stereotyped tuning. Selected context-dependent kernels are shown for

transitions amongst forward locomotory states, where higher numbered states have higher velocities. Kernels for slowing transitions (left column) are all

similar, whereas kernels for speeding up transitions (right column) are also similar. Slowing and speeding-up kernels resemble horizontal reflections of

one another.

DOI: https://doi.org/10.7554/eLife.36419.025

The following figure supplements are available for figure 6:

Figure supplement 1. All 72 pairwise context-dependent behavior-triggered averages.

DOI: https://doi.org/10.7554/eLife.36419.026

Figure 6 continued on next page
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provided evidence of two types of context-dependent sensory processing in C. elegans that occur

within short-time scales. In both cases, the animal appears to respond to the same stimuli differently

depending on its current behavior. In the first, the animal responds to certain mechanosensory sig-

nals by speeding up or slowing down. In the second type, the animal suppresses its response to

mechanosensory stimuli during turning behavior. These two types of context-dependency are

described below.

There are mechanosensory signals for speeding up or slowing down
Behavior transitions that involve slowing down have similar tuning. For example, the ’Forward

5’!’Forward 4’ kernel has a similar shape to the ’Forward 4’!’Forward 3’ kernel (see Figure 6, left

column). Likewise, transitions involving speeding up also have similar kernels. For example, ’Forward

3’!’Forward 4’ and ’Forward 4’!’Forward 5’ have similar kernels (see Figure 6, right column).

Moreover, the two classes of kernels appear to be reflections of one another about the line of mean

stimulus intensity. The stereotypy of the speed up and slow down kernels suggests that these nemat-

odes have evolved to respond to certain stimuli by slowing down or speeding up in a relative way

Figure 6 continued

Figure supplement 2. All 72 pairwise context-dependent behavior-triggered averages for control animals grown without ATR.

DOI: https://doi.org/10.7554/eLife.36419.027

Figure 7. Animals respond to the same stimuli differently depending on their current behavior state. The change in transition rate from baseline is

shown for transitions into ’Forward 5’ from either ’Forward 4 ’(middle row) or ’Forward 6’ (bottom row) in response to four different stimuli (columns).

Observed transition rates (colored bars) are compared to LN model predictions (black bars). The stimulus affects the rate of transitions into ’Forward 5’

differently depending on whether the animal was in ’Forward 4’ or ’Forward 6’ at the time of stimulus. For example, consistent with the animal

responding to a slowing-down signal, the ’Forward 4’-shaped stimulus decreases ’Forward 4’!’Forward 5’ transitions, but increases ’Forward

6’!’Forward 5’ transitions. A star indicates a significant change in transition rate from baseline. Gray shaded regions indicate the time windows over

which the transition rate is calculated. Baseline is defined slightly differently for the kernel-shaped stimuli compared to the triangle waves (see

’Materials and methods’). Of 13,612 and 14,699 stimulus-animal presentations for ’Forward 4’ and ’Forward 5’ kernel-shaped stimuli, and 340,757

stimulus-animal presentations for the triangle wave, the following number of transitions were observed: 26, 24, 2,604 and 2,634 for ’Forward

4’!’Forward 5’ (top row) and 6, 7, 713 and 791 for ’Forward 6’!’Forward 5’ (bottom row). A t-test was used to test for signifiant changes from baseline

and the following p-values were observed: 5.5e–5, 6.9e–6, 1.8e–19 and 5.1e–48 for ’Forward 4!’Forward 5’ (top row) and 6.3e–2, 8.7e–1, 3.9e–2 and

6.7e–5 for ’Forward 6’!’Forward 5’ (bottom row). Error bars show the standard error of the mean.

DOI: https://doi.org/10.7554/eLife.36419.028
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instead of transitioning to a stimulus-defined velocity. This is of interest because it implies a form of

context dependency: it suggests that the same stimulus will drive the animal into forward locomo-

tory states of different speeds depending on the animal’s current state.

To determine whether the stereotyped speed-up or slow-down stimulus does indeed cause the

animal to speed up or slow down, we again inspected the animal’s response to the kernel-shaped

stimuli or the triangle-wave stimulus. Indeed, we found that the same stimulus drives the animal into

a different forward locomotory state depending on the animal’s current state (see Figure 7). For

example, animals in the slower ’Forward 4’ state responded to a ’Forward 4’ kernel-shaped stimulus

by decreasing their transitions to ’Forward 5’. By contrast, animals in the faster ’Forward 6’ state

responded to the same stimulus by increasing their transitions into ’Forward 5’. This was one of mul-

tiple instances in which we observed the animal responding to the same stimuli with opposite

Figure 8. Attention to mechanosensory signals depends on behavior. When the animal is in the ’Turn’ state, it ignores mechanosensory stimuli. (a)

Kernels are shown for two context-dependent transitions into ’Fast Reverse’. Transitions into ’Fast Reverse’ originating from ’Forward 5’ are correlated

with stimulus and have a significant kernel, whereas those originating from ’Turn’ are not correlated with stimulus and fail our shuffled significance

threshold (see methods’). The kernels shown are same as those in Figure 6—figure supplement 1. (b) Transition rate in response to light and tap are

shown. Animals in the ’Turn’ state show no significant change in transition rates in response to light or tap, whereas animals in other states, such as

’Forward 5’, do show a response. The 2 s post-stimulus mean transition rate into ’Fast Reverse’ is shown in response to a 1 s light stimulation (+),

mechanical tap (+) or a mock control (–). A star indicates significance, calculated using an E-test (see ’Materials and methods’). Error bars show

the standard error of the mean. 2,487 and 37,000 stimulus-animal presentations were analyzed for light (+) and tap (+) respectively, and 2,427 and

40,012 mock controls(–) for light and tap. The following number of transitions were observed: 1, 2, 11 and 15 for ’Turns’!’Fast Reverse’ (top row) and 9,

55, 18 and 160 for ’Forward 5’!’Fast Reverse’ (bottom row). P-values for the E-test are 0.68 and 0.34 for ’Turn’!’Fast Reverse’ (top row) and 1.96e-

9 and 0 for ’Forward 5’!’Fast Reverse’(bottom row).

DOI: https://doi.org/10.7554/eLife.36419.029

The following source data and figure supplements are available for figure 8:

Source data 1. P-values for transition rates in response to a light pulse for all pairwise transitions.

DOI: https://doi.org/10.7554/eLife.36419.032

Source data 2. P-values for transition rates in response to a tap for all pairwise transitions.

DOI: https://doi.org/10.7554/eLife.36419.033

Figure supplement 1. Transition rates in response to a light pulse for all pairwise transitions.

DOI: https://doi.org/10.7554/eLife.36419.030

Figure supplement 2. Transition rates in response to a tap for all pairwise transitions.

DOI: https://doi.org/10.7554/eLife.36419.031
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responses depending on its current behavior. During triangle wave stimulation, for example, an

increasing ramp causes slowing down, whereas a decreasing ramp causes speeding up (see Fig-

ure 7). We therefore conclude that stereotyped mechanosensory signals drive the animal to speed

up or slow down.

Attention to mechanosensory signals depends on the animal’s current
behavior
When the animal turns, it ignores all tested mechanosensory signals. This surprising observation is

predicted by reverse-correlation analysis and confirmed by optogenetic and tap stimulation. Transi-

tions out of ’Turn’ are uncorrelated with stimulus, and kernels for those transitions all fail to pass our

shuffled significance threshold (see bottom row in Figure 6—figure supplement 1). Consequently,

the kernels predict that the animal should ignore mechanosensory stimuli during turns. By contrast,

for every other behavior state, there is always at least one (and often many) transitions exiting out of

the state whose kernels pass our significance threshold (all rows other than ’Turn’ have at least one

significant kernel).

To further test whether the animal does indeed ignore stimuli during turns, we investigated the

animal’s context-dependent response to light pulses or tap. When the animal was in the ’Turn’ state,

neither a light pulse nor a tap evoked a significant change in the rate of transitions into any other

behavior (see bottom row Figure 8—figure supplements 1 and 2) (multiple-hypothesis corrected

E-test, see ’Materials and methods’). By contrast, when the animal was in other states, such as ’For-

ward 5’, both a tap and light pulses evoked significant changes in the transition rate into other

behaviors. In fact, every other behavior state except for ’Forward 2’ had at least one behavior transi-

tion exiting the state whose transition rate was significantly affected by either light or a tap. The

’Turn’ behavior state was unique in that none of the kernels for transitions originating in ’Turn’

passed the shuffled significance threshold, and no transition rates changed significantly in response

to either light or a tap, (see Figure 8—figure supplements 1 and 2). We therefore conclude that in

’Turn, but not other states, the animal ignores mechanosensory stimuli.

Transitions into ’Fast Reverse’ provide an illustrative example (see Figure 8). When the animal is

in the ’Turn’ state, there is no significant difference in the rate of ’Turn’!’Fast Reverse’ transition

between shuffled and stimuli. But when the animal is in ’Forward 5’, light and taps caused a signifi-

cant increase in ’Forward 5’!’Fast Reverse’. Taken together, we conclude that the animal attends to

mechanosensory signals during most behavior states, such as ’Forward 5’, but ignores them during

turns.

Discussion
This work provides new insights into C. elegans sensory processing. First, we show that the animal’s

behavioral response is tuned to the temporal properties of mechanosensory signals, such as the

derivative, that extend over many seconds in time. Moreover, by adjusting the waveform of a stimu-

lus, mechanosensory signals in the same neurons can be tailored to elicit different behavioral

responses. Second, mechanosensory signals influence a broad set of behaviors. Mechanosensation

not only drives reversals and accelerations but can also evoke the animal to slow down. Third, even

short timescale behavior states can influence the animal’s sensory processing. Earlier work has

reported context-dependent sensory processing for behaviors with timescales of minutes to hours,

such as hunger-satiety (Ghosh et al., 2016), quiescence (Raizen et al., 2008; Schwarz et al., 2011;

Nagy et al., 2014b; Cho et al., 2018), arousal (Cho and Sternberg, 2014) or Dauer formation

(Chen and Chalfie, 2014, 2015). Here, we show that seconds-long timescale behaviors can also pro-

foundly alter how the animal responds to a stimulus. Most dramatically, when the animal turns, it

appears to ignore mechanosensory signals completely.

A high throughput approach was crucial in revealing these new findings. Previously, we had

probed the behavior response to mechanosensation using a targeted illumination system that

allowed us to probe individual mechanosensory neuron pairs (Leifer et al., 2011). That approach,

however, is impractical for collecting the thousands of animal-hours of recordings needed here. In

this work, we instead activate all mechanosensory neurons simultaneously, which allows us to study

many animals in parallel. The set of neurons that is activated is determined by the opsin’s expression

pattern. If opsins were expressed only in a single neuron, the current approach would also achieve
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single-neuron resolution. Although single-cell promoters are not known for any of the soft-touch

mechanosensory neurons, intersectional approaches may allow the targeting of subsets (Wei et al.,

2012; Schmitt et al., 2012). Future work is needed to explore the role of individual mechanosensory

neurons in temporal processing.

Automated behavior mapping was also critical for interpretation of the thousands of hours of ani-

mal behavior. We chose to classify behavior into discrete states, which are a natural description of

discrete behaviors such as turns or reversal events. Alternatively, one could have chosen to use con-

tinuous description of behaviors, such as velocity, angular velocity or acceleration, which might be a

more natural description of forward locomotion and speeding up or slowing down.

The linear-nonlinear (LN) model was used to map out the relationship between sensory signals

and behavior, and it predicts the animal’s response to stimuli satisfactorily. The LN model was cho-

sen largely because of its ubiquity in neuroscience and simplicity of interpretation. We suspect that

other models would yield similar findings. The LN model assumes a particular structure of linear and

non-linear processing that is not inherently motivated by the biology, and it fails to take into account

longer-timescale effects such as habituation. By contrast, the Gated Recurrent Unit (GRU) neural net-

work model is one example of a model that is entirely non-linear and known to handle multi-time-

scale dependencies (Cho et al., 2014). GRUs are just one of many alternative models with varying

degrees of complexity and interpretability that could be used to probe temporal processing

(Glaser et al., 2017).

In more complex sensory systems such as the retina, we have come to expect that the nervous

system is carefully tuned to the temporal properties of sensory signals (Meister and Berry, 1999).

Recently, it was shown that in drosophila, temporal processing is important for behavioral responses

to odor, light and sound (Behnia et al., 2014; Coen et al., 2014; Gepner et al., 2015; Hernandez-

Nunez et al., 2015). And in the much simpler C. elegans, temporal processing within timescales in

the order of seconds has been observed in thermosensation (Clark et al., 2006, 2007), as well as

in chemosensation (Kato et al., 2014) where it is known to be crucial for guiding thermotaxis or che-

motaxis. In the C. elegans mechanosensory circuit, it had been shown previously that temporal proc-

essing occurs at the receptor level in order to convert applied forces into evoked currents, with a

timescale of tens of milliseconds (Eastwood et al., 2015), but it had remained unclear whether the

nervous system used temporal information downstream to detemine the animal’s behavioral

response. In this work, we now see evidence of temporal processing on seconds-long behavior-rele-

vant timescales that guides the animal’s behavioral response. This temporal processing may arise

from recurrent activity in the neural network downstream of the touch receptor neurons. The obser-

vation of such behavior-relevant temporal processing even in the simple mechanosensory circuit

raises the possibility that temporal processing may be ubiquitous across sensory systems for driving

behavior.

Why might it be beneficial for the C. elegans nervous system to have evolved to tune its behav-

ioral response to the temporal properties of mechanosensory signals, such as the derivative, over

seconds? The natural ecology of C. elegans is not well understood (Félix and Braendle, 2010) and

the statistics of the forces that it encounters in its natural environment are not known. We speculate

that it could be useful for the worm to react differently if mechanosensory signals are increasing or

decreasing, instead of making decisions solely on the overall stimulus strength. Note that we have

characterized temporal processing to optogenetic signals, thus bypassing the animal’s mechanoelec-

tro transduction machinery. Further work is needed to characterize the temporal processing of

applied forces directly.

It is is striking and surprising that the animal ignores mechanosensory inputs during turning. Why

might the animal have evolved to ignore such signals during turns? The turn is part of the C. elegans

escape response, an avoidance behavior that shares some similarities with escape responses in other

organisms, such as crayfish, mollusks or goldfish (Pirri and Alkema, 2012). Caenorhabditis elegans

escape consists of reverse locomotion, followed by a turn and then forward locomotion in a new

direction. The turn allows the animal to reorient and navigate away from a predator, and defects in

this circuit have been shown to decrease survivability (Maguire et al., 2011). Failing to complete the

turn could inadvertently cause the animal to retrace its steps and return to danger.

Ultimately, we see evidence of two kinds of internal processes that govern how the animal inter-

prets sensory signals. First, the animal integrates mechanosensory information over a timescale of

seconds. Second, the animal interprets these signals differently depending on the animal’s behavior
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state. An exciting future direction will be to identify the neural circuit mechanisms that allow the

worm’s nervous system to integrate mechanosensory signals over time; and to alter its response

rapidly depending on behavior state. This could shed insight into how internal brain states rapidly

modulate sensory processing in a simple model system.

Materials and methods

Strains
The two strains used in this study were wild-type N2 Bristol animals (RRID:WB-STRAIN:N2_(ances-

tral)) and AML67 (RRID:WB-STRAIN:AML67) (wtfIs46[pmec-4::Chrimson::SL2::mCherry::unc-54]), a

transgenic strain that expresses the light-gated ion channel Chrimson and a fluorescent protein

mCherry in mechanosensory neurons. To generate AML67, 40 ng of plasmid (pAL::pmec-4::Chrim-

son::SL2::mCherry::unc-54) were injected into N2 animals and integrated via UV irradiation

(Evans, 2006). These animals were outcrossed with N2 six times. AML67 has been deposited in the

public Caenorhabditis Gentics Center repository at the University of Minnesota. Plasmid pAL::pmec-

4::Chrimson::SL2::mCherry::unc-54 (https://www.addgene.org/107745/) was engineered using a HiFi

Cloning Kit (NEB). Chrimson was a kind gift from Ed Boyden of MIT. mCherry and backbone was

amplified from pJIM20, a gift from John Murray of the University of Pennsylvania. The promoter

sequence (mec-4), splicing sequence (SL2) and 30-utr sequence (unc-54) were amplified using primers

as listed in Table 1. The construct was sequenced confirmed before injection.

Transgenic animals exhibited reduced sensitivity to a tap or touch compared to wild-

type animals, presumably because Chrimson competes with endogenous MEC-4 protein for

transcription (see Figure 2—figure supplement 4). From the alleles we had generated, we selected

AML67 for use in this study because it was the most sensitive to tap and touch, despite being

reduced compared to wild-type.

Nematode handling
Strains were maintained on 9 cm NGM agar plates seeded with OP50 Escherichia coli food at 20˚ C .

Worms were bleached 3 days prior to the experiment to provide 1-day-old adults. For optogenetic

experiments, bleached worms were placed on plates seeded with 1 ml of 0.5 mM all-trans-retinal

(ATR) mixed with OP50. Control plate lacked ATR. To avoid inadvertent optogenetic activation,

plates were wrapped in aluminum foil, handled in the dark, and viewed under dissection micro-

scopes using dim blue light.

To harvest worms for high-throughput experiments, roughly 100 to 200 worms were cut from

agar, washed and then spun-down in a 1.5 ml micro centrifuge tube. Worms at the bottom of the

tube were placed on an unseeded 9 cm NGM agar plate via a micropipette. Excess liquid on the

Table 1. Forward and reverse primer sequences used to generate pAL::pmec-4::Chrimson::SL2::

mCherry::unc-54.

Primer Sequence

mec-4_fwd AAGCTTCAATACAAGCTC

mec-4_rev TAACTTGATAGCGATAAAAAAAATAG

CHRIMSON_fwd ATGGCTGAGCTTATTTCATC

CHRIMSON_rev AACAGTATCTTCATCTTCC

SL2_fwd GGTACCGCTGTCTCATCC

SL2_rev GATGCGTTGAAGCAGTTTC

mCherry_fwd ATGGTCTCAAAGGGTGAAG

mCherry_rev TTATACAATTCATCCATGCC

U54_fwd GCGCCGGTCGCTACCATTAC

U54_rev AAGGGCCCGTACGGCCGA

DOI: https://doi.org/10.7554/eLife.36419.034
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plate was carefully wicked away using tissue paper. Worms were allowed to adapt to their new envi-

ronment for 25 min before recordings or stimulation were carried out.

High-throughput imaging
Experiments were conducted in a custom-built high-throughput imaging rig (Figure 2—figure sup-

plement 1). Plates of animals were recorded while undergoing 30 min of optogenetic or tap stimula-

tion. Imaging was performed as follows: the agar plate was illuminated by a ring of 850 nm infrared

LEDs (irrf850-5050-60-reel, environmentallights.com). A 2592 � 1944 pixel CMOS camera

(ACA2500-14um, Basler) recorded worm movements at 14 frames per second and a magnification of

20 mm per pixel, so as to provide sufficient spatiotemporal resolution to capture posture dynamics.

The field of view of the camera was centered on the plate and included approximately 50% of

the plate surface. Custom LabVIEW software acquired images from the camera and controlled stimu-

lus delivery as described below.

Tap delivery
Taps were delivered to the side of 9 cm plates containing the animals by means of a solenoid, fol-

lowing a method similar to that described by Swierczek et al. (2011). An electric solenoid tapper

(Small Push-Pull Solenoid, Adafruit) was driven with a 70 ms, 24 V, DC pulse under Labview control

via a LabJack DAQ and a solid-state relay. During tap experiments, taps were delivered to the plate

once per minute for 30 min (see Table 2). The 1 min inter-stimulus interval was chosen to minimize

habituation (Timbers et al., 2013).

Optogenetic stimulation
Experiments involving optogenetic stimulation are summarized in Table 2. Optogenetic stimulation

was delivered by three 625 nm LEDs (M625L3, Thorlabs) positioned such that their light approxi-

mately tiles the agar plate visible in the camera’s field of view. LED’s were driven by a diode driver

(L2C210C, Thorlabs) under the control of LabVIEW via an analog signal from a LabJack DAQ (Model

U3-HV with LJTick-DAC). The range of the light intensity for optogenetic stimulation averaged at the

plate spanned from 0 to 80 mW mm–2. Small spatial inhomogeneities in light intensity were charac-

terized and accounted for in software so as to calculate the precise light intensity delivered to each

animal. An infared long pass filter (FEL0800, Thorlabs) in front of the camera blocked light from the

stimulus LEDs and only permitted light from the infrared behavior LEDs.

Optogenetic pulse stimulus
For optogenetic pulse experiments, as in Figure 2, a 1 s light pulse was delivered once per minute

for 30 min. Initial experiments measured the behavioral responses to pulses of different light intensi-

ties. In those experiments, shown in Figure 2c, the light intensity of the pulse was randomly shuffled

such that five pulses each of 2, 5, 10, 50, and 80 mW mm–2 were delivered during the 30 min

recording.

Random noise optogenetic stimulus
Experiments involving reverse correlation all used a light stimulus with intensity modulated by ran-

dom broad-spectrum noise. The random noise stimulus was generated according to,

s tþ 1ð Þ ¼ As tð ÞþBnrandþC; (2)

where A� exp� tperiod=tc
� �

and B� srms

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�A2
p

. Here s tþ 1ð Þ is the stimulus intensity at the next

time-point, A is the weighting of the previous stimulus s tð Þ, B is the weighting of a random number,

nrand, drawn from a Gaussian distribution with standard deviation given by srms, and C is a constant

offset that sets the average stimulus intensity. The weighting A is related to correlation time tc and

the duration of our time step tperiod. Because in our setup the stimulus is updated with each image

acquisition, the time step tperiod is the inverse of the image acquisition rate, or approximately 0.07 s

for 14 Hz.

Both C and srms were chosen to be 25 mW mm–2 so that the function generated intensities that

mostly fell in the intensity range of 0–50 mW mm–2, a regime that appeared to be most sensitive to
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behavior response (see Figure 2c). tc was chosen to be 0.5 s as this roughly matched our intuition

about the timescale of temporally varying mechanical stimuli that the animal might encounter while

navigating its natural environment. Finally, the stimulus was clipped and forced to stay in the range

of 0–50 mW mm–2. Frequency spectra of our stimuli are shown in Figure 3—figure supplement 4.

Triangle wave optogenetic stimulus
Triangle wave stimuli were also generated. Triangle waves were linearly increasing ramps of light

intensity from 0 mW mm–2 to 50 mW mm–2 for 10 s followed by linearly decreasing ramps of 50 mW

mm–2 to 0 mW mm–2 for 10 s, repeated continuously for 30 min.

Kernel-shaped (tailored) stimulus
In the tailored stimulation experiments, stimuli were generated from the behavior-triggered aver-

ages found using reverse correlation. The six behavior-triggered averages from Figure 3 were scaled

in intensity until either their minimum was at 0 mW mm–2 or the maximum was at 50 mW mm–2. These

were then shuffled and played back one per minute such that each behavior-triggered average was

delivered 5 times per 30 min experiment. 25 mW mm–2 of constant light intensity was delivered

between stimulus presentation.

Measuring animal behavior
The unsupervised behavior mapping approach used in this work is adapted from work in drosophila

(Berman et al., 2014) and is similar in spirit to work in rodents (Wiltschko et al., 2015). It also builds

upon decades of methodological advances quantifying C. elegans behavior (Croll, 1975;

Stephens et al., 2008; Ramot et al., 2008; Brown et al., 2013; Yemini et al., 2013; Gyenes and

Brown, 2016; Gomez-Marin et al., 2016).

Animal behavior was measured and classified using an analysis pipeline, summarized in Figure 1—

figure supplement 1. First, the worms were located and tracked, then their posture was extracted,

and finally their posture dynamics were clustered and classified. Details of the pipeline are described

below. The pipeline was written in MATLAB and run on the Princeton University’s high-performance

parallel computing cluster. Source code is available at (https://github.com/leiferlab/liu-temporal-

processing) (Liu and Leifer, 2018; copy archived at https://github.com/elifesciences-publications/liu-

temporal-processing).

Animal location tracking
To first identify animals and to track their location, raw video of animals on plates was analyzed using

a modified version of the Parallel Worm Tracker (Ramot et al., 2008). Animals were found via binary

thresholding and centroid tracking (Figure 1—video 1).

Animal posture extraction
The animal’s posture was found by extracting the animal’s centerline from the video using custom

MATLAB scripts. Videos of each individual worm were first generated by cropping a 70 � 70 pixel

region around the worm’s centroid in every frame. A centerline with 20 points was fitted to the

image at each frame using an active contour model similar to that used by Nguyen et al., 2017),

which was inspired by the one described by Deng et al. (2013). The algorithm for fitting the center-

line was specifically optimized to measure the posture of the worm in a variety of conditions, includ-

ing when the animal crossed over itself during turns. The active contour model fits the centerline by

relaxing contiguous points along a gradient defined by four forces: (1) an image force that fits the

contour to the image of the worm; (2) a tip force that guides the beginning and end of the contour

to the worm’s presumptive head and tail; (3) a spring force that guides the contour to be similar

lengths; (4) and a repel force that makes sure that the contour does not stick to itself. To ensure con-

tinuity in time, the active contour of the following frame is initialized by the relaxed contour of the

previous frame. The head and the tail of the worm were determined by assuming that the worm

moves forward the majority of the time. A quality score was calculated to estimate how well the cen-

terline fit the image and how much it displaced from the previous centerline. On the rare occasion

when the quality score of a frame fell below threshold, that frame was dropped, and the track was

split into two.
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Posture dimensionality reduction
To interpret the animal’s posture more efficiently, the dimensionality of the animal’s centerline was

reduced from 20 position x; yð Þ coordinates to five posture coefficients using principle component

analysis (PCA), following the method of Stephens et al. (2008). Principle components of posture

were extracted from recordings of approximately 2 million animal-frames of freely behaving N2

worms. Centerlines were converted into a series of angles oriented such that the mean angle is 0.

The first five principle components explain >98% of the posture variance. The animal’s posture

dynamics were thus represented as a time-series of five coefficients, one for each of the five principle

posture modes.

Generating spectrograms of posture dynamics
To characterize posture dynamics, a spectrogram was generated for each of the posture mode

coefficients (as in Berman et al. [2014]). A Morlet continuous wavelet transform was performed on

each of the five coefficient time series at 25 frequencies dyadically spaced between 0.3 Hz and 7 Hz.

The low-frequency bound was chosen to reflect our intuition regarding the timescale of C. elegans

behavior and the high-frequency bound was set by the Nyquist sampling frequency of our image

acquisition. The spectrogram provides information about the frequency spectra of the animal’s pos-

ture dynamics but it lacks information about the phase of the animal’s posture, which is important

for discerning forward from backward locomotion. To preserve forward and backward information,

we introduced a binary ‘directionality’ vector that is 2 when the worm centroid is moving forward,

and 1 when the worm centroid is backwards. Directionality was calculated by taking the sign of the

dot product of the head vector with a tangent vector of the animal’s centroid trajectory. Together,

the five spectrograms and directionality vector provide a 126 dimensional feature vector that

describe the animal’s behavior at each time point. It is this feature vector that is clustered, as

described below.

Defining the behavioral map and behavior states
To classify behavior into discrete stereotyped behavior states that emerge naturally from our record-

ings, we followed a behavior-mapping strategy described in Berman et al. (2014). A single behavior

map was generated so that behaviors were defined consistently across all experiments. To generate

the behavior map, 50,000 animal-time points were uniformly sampled from the 2,284 animal-hours

of behavior recordings made during random-noise optogenetic stimulation. Each animal-time point

contributes a 126-dimensional feature vector describing the animal’s instantaneous behavior. We

generated a two-dimensional map of these feature vectors by embedding the 126-dimensional

space in a plane using a non-linear dimensionality reduction technique called t-distributed stochastic

neighbor embedding (t-SNE) (Lvd and Hinton, 2008). Under t-SNE, each feature vector is embed-

ded such that the local distance between feature vectors is conserved but long distance scales are

distorted (Figure 2—figure supplement 2a).

We then generated a probability density histogram of behavior by projecting all 108 behavior

time points from the 2,284 animal-hours of random noise optogenetic stimulation (Figure 1—figure

supplement 2b) into the 2D map. Clusters of high probability in this density map corresponded to a

distinct stereotyped behavior. Stereotype behaviors were defined by water-shedding the probability

density map (Figure 1—figure supplement 2c) and each region was assigned a name such as ‘For-

ward 3’ (Figure 1b). Videos showing examples of worms exhibiting behaviors in each region are

shown in Figure 1—video 2. Time points from subsequent recordings were similarly projected into

this map for the purposes of classifying animal behavior.

Identifying behavioral transitions
At each time point, the worm belongs to a point in the 2D behavior map described above (see Fig-

ure 1—video 3). Animals that dwelled in one behavior region for at least 0.5 s were classified as

exhibiting that behavior during all contiguous time points in that behavior region. Animals inhabiting

a behavior region for less than 0.5 s were classified as ‘in transition’.

A transition into behavior X is defined to occur on the first time point that the animal is classified

as in X. Transitions from behavior W ! X were defined to occur on the first time point the animal is

classified as in X provided that: (i) the animal transitioned directly from W to X; or (ii) the animal had
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previously been classified as in W, was then classified as ‘in transition’, and then was classified as in

state X. Cases where the animal was in X, then ‘in transition’ and then returned to X, were ignored.

Ambiguities in temporal definition of behavior
The wavelet spectrogram introduces an inherent uncertainty in the precise timing of a behavior tran-

sition. This ultimately arises from the uncertainty principle: behavior dynamics that have low-fre-

quency components provide less temporal resolution than higher-frequency dynamics. An equivalent

view is that the spectrogram feature vector at any given moment is influenced by temporally adja-

cent postural dynamics in the past and future, and this influence is stronger at lower frequencies

than at higher ones.

This temporal uncertainty or ‘bleeding over’ of future behavior, causes the animal occasionally to

appear to respond (but not actually respond) to a stimulus prior to its delivery. In the worst case, the

time-scale of this leakage is set by our choice of the lowest frequency wavelet, which is 0.3 Hz (i.e.

2.7 s). Behaviors with strong higher-frequency components have shorter timescale uncertainties. We

take large time windows of 20 s to define our kernels; in part, so that a few second time-shift does

not result in any loss of information.

Reverse correlation
Reverse correlation was used to find a linear kernel and non-linearity that describe the relationship

between the animal’s behavior transitions and an applied stimulus.

Calculating kernels
Linear kernels for each behavior were estimated by computing the behavior-triggered average of

the stimulus,

Â¼ 1

N

X

N

n¼1

s
!

tnð Þ; (3)

where tn is the time of nth behavioral transition, s
!

tnð Þ is a vector representing the stimuli presented

during a 20 s temporal window around tn, and N is the total number of behavioral transitions

(Schwartz et al., 2006). The linear kernel was estimated to be the mean-subtracted, time-reversed

behavior-triggered average.

Kernel significance
Behavior-triggered averages (also referred to as kernels) were deemed significant if their magnitude

(L2 norm) exceeded the top 1 percent of a distribution of random kernels found by shuffling the

stimulus in time. Shuffling was performed in such a way as to preserve the temporal properties of

the transition train while completely decorrelating it from the stimulus. Specifically, shuffling was per-

formed by circle-shifting the transition timings within every track by a randomly selected integer

between one and the number of time points in the track. Shuffled kernel distributions for each

behavior were generated by recalculating the behavior-triggered average 100 times, each with dif-

ferent circle-shifted timings.

Estimating the non-linearity
The non-linearity f allows the probability of a behavior transition to be estimated from the filtered

signal, namely the stimulus convolved with the linear kernel (Gepner et al., 2015). Non-linearities

were estimated from the ratio of two histograms: the first is a histogram of time-point counts versus

filtered signal given a behavioral transition at that time-point, and the second is a histogram of time-

point counts versus filtered signal for all time-points (Schwartz et al., 2006). Histograms were tabu-

lated with 10 equally spaced bins spanning the range of the filtered signal. Bin-wise division of the

two histograms yielded 10 points relating probability of behavior to filtered signals (Figure 3—fig-

ure supplement 2). For each point, we calculate a propagated error, E, assuming Poisson counting

statistics,
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E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T � 1

F2
þT2 F� 1ð Þ

F4

r

; (4)

where T is the number of behavioral transitions in that bin, and F is the number of filtered signal

time-points in that bin. We then fitted a two parameter exponential to the 10 points, weighing each

point by the inverse of the error in order to reduce the influence of noise. This fitted exponential

function is our estimate of the non-linearity.

Calculating transition rates
When presented as a timeseries of rates, as in Figure 2—figure supplement 2, transition rates were

calculated according to the following: behavior timeseries from all recordings were cropped in a

time window around each stimulus, commingled, and then time aligned to the stimulus. The fraction

of all animals undergoing a transition was calculated at each time step. The fractions of animal were

directly converted into a rate of transitions per animal per minute, yielding the timeseries of rates.

Calculating transition rate changes
Transition rate change, as in Figure 4b, Figure 4—figure supplement 1, Figure 5, and Figure 7,

were calculated as follows: an average transition rate was found in a time window during a stimulus

(as described above), and then a baseline was subtracted off. For kernel-shaped stimuli experiments

(Figure 4a and Figure 4—figure supplement 1), the baseline is defined as the average transition

rate in a 20 s time window prior to each stimulus. For the triangle wave in Figure 5, the baseline was

defined to be the overall mean transition rate throughout the recording.

In cases where a bar is shown (Figure 4a, Figure 7), a change in transition rate was calculated by

averaging the timeseries of rates over a time window (indicated in the those figures by gray

shading).

Measuring transition rates for context-dependent tap or light-induced
experiments
Transition rates were calculated slightly differently in Figure 8 and Figure 8—figure supplements 1

and 2 to facilitate significance testing via the E-test (Krishnamoorthy and Thomson, 2004). The

transition rate in a 2 s time window immediately following light pulse or tap (+) was compared to a

transition rate in a 2 s window immediately following a mock control (–). Mock controls were set to

occur at the mid point between consecutive stimuli.

Instead of calculating the transition rates at each time bin and then averaging across time, as

described previously, we instead calculated a single transition rate for the entire 2 s time window by

comingling transitions from all time bins, as follows. We 1) selected tracks that were uninterrupted

for the 2 s, (2) counted the first transition (if it occurred) within 2 s after stimulus onset across all of

our experiments, (3) divided by the total number of tracked time points, and (4) converted the value

to transitions per animal per minute. The number of stimulus-animal presentations differs slightly

from those in Figure 2 because now tracks are required to be contiguous for 2 s after stimulus pre-

sentation, which was not a requirement previously.

P-values were attained using an E-test (Krishnamoorthy and Thomson, 2004). To account for

testing 72 behavior transitions concurrently, we use the Bonferroni multiple-hypothesis correction.

Only p-values less than a ¼ 0:05=72 ¼ 7 � 10�4 are considered significant.

In our analysis of light-pulse response, we grouped all stimulation light intensities together.

Data
Behavioral analysis and stimulation data for all tracked animals in all experiments in Table 2 are avail-

able at https://doi.org/10.6084/m9.figshare.5956348. See dataset README for details. All recorded

data, including raw images (2 TB), will be available at http://dx.doi.org/10.21227/H27944.
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