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Abstract

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a high risk of trans-

mission in close-contact indoor settings, which may include households. Prior studies have

found a wide range of household secondary attack rates and may contain biases due to sim-

plifying assumptions about transmission variability and test accuracy.

Methods

We compiled serological SARS-CoV-2 antibody test data and prior SARS-CoV-2 test report-

ing from members of 9,224 Utah households. We paired these data with a probabilistic

model of household importation and transmission. We calculated a maximum likelihood esti-

mate of the importation probability, mean and variability of household transmission probabil-

ity, and sensitivity and specificity of test data. Given our household transmission estimates,

we estimated the threshold of non-household transmission required for epidemic growth in

the population.

Results

We estimated that individuals in our study households had a 0.41% (95% CI 0.32%– 0.51%)

chance of acquiring SARS-CoV-2 infection outside their household. Our household second-

ary attack rate estimate was 36% (27%– 48%), substantially higher than the crude estimate

of 16% unadjusted for imperfect serological test specificity and other factors. We found evi-

dence for high variability in individual transmissibility, with higher probability of no transmis-

sions or many transmissions compared to standard models. With household transmission at

our estimates, the average number of non-household transmissions per case must be kept

below 0.41 (0.33–0.52) to avoid continued growth of the pandemic in Utah.
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Conclusions

Our findings suggest that crude estimates of household secondary attack rate based on

serology data without accounting for false positive tests may underestimate the true average

transmissibility, even when test specificity is high. Our finding of potential high variability

(overdispersion) in transmissibility of infected individuals is consistent with characterizing

SARS-CoV-2 transmission being largely driven by superspreading from a minority of

infected individuals. Mitigation efforts targeting large households and other locations where

many people congregate indoors might curb continued spread of the virus.

1 Introduction

Since its emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

the virus responsible for COVID-19, has spread rapidly, causing severe morbidity, mortality,

and disruption to daily life. As public health officials continue grappling with reducing commu-

nity spread, it is of increased importance to understand transmission risk in different locations

where people mix. Transmission within households may be especially important, given the

mounting evidence that indoor environments with close, sustained contact are especially high

risk for SARS-CoV-2 transmission [1–3]. Furthermore, with substantial observed decreases in

mobility during the pandemic [4], individuals likely are spending a greater proportion of time

at home, thus increasing the importance of understanding within-household transmission.

Likewise, isolation and quarantine measures recommended to help control COVID-19 fre-

quently occur within homes, increasing risk to susceptible household members [5].

Data collected from members of households with at least one person infected with SARS-

CoV-2 have revealed a wide range of within-household transmission estimates. One systematic

review and meta-analysis [6] found 24 studies with household data conducted from January-

March 2020, mostly in China, with secondary attack rate estimates ranging from 5% to 90% in

the individual studies; pooling these data led to an average secondary attack rate estimate of

27% (95% CI: 21%– 32%). Another published review and meta-analysis of more recent data

found 22 studies on the secondary attack rate in households, including estimates ranging from

4% to 32% [7]. Pooling these studies, the review found an average secondary attack rate of

17.1% (95% CI: 13.7%– 21.2%). Another review and meta-analysis found 40 household studies

with individual study estimates ranging from 4% to 45% [8]. Their pooled analysis found that

the household-based secondary attack rate for all household contacts was 19.0% (95% CI:

14.9 – 23.1%). Data from households in the U.S. [9–12] produced secondary attack rate esti-

mates from 11% to 53%.

Most household studies generated data by first identifying index household cases via active

or passive surveillance followed by monitoring and testing specimens from their household

contacts using PCR or other methods that detect presence of the virus. These studies may

exhibit bias if mild or asymptomatic cases were less likely to be identified as an index house-

hold case. By contrast, data for the presence of antibodies among household members provide

information on the distribution of final sizes of household outbreaks no longer in progress and

in which some or none of the cases were identified at the time. We are aware of only 3 studies

that used serological antibody data to estimate household transmission, using data from Spain

[13], Brazil [14], and Switzerland [15].

In addition to average transmission rates, heterogeneity and variability in SARS-CoV-2

transmission have also been quantified. The amount of individual-level variation in the
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number of secondary infections can affect final outbreak size [16]. Large variation (i.e., over-

dispersion) indicates the presence of superspreading by a minority of individuals who transmit

to a disproportionately large number of others [17]. Better understanding of superspreading

individuals and locations can greatly enhance efficient targeting of transmission control strate-

gies [18]. Backward contact tracing can efficiently trace sources of acquisition to high-trans-

mission individuals and circumstances when superspreading is present [19], and efforts that

target similar circumstances for transmission prevention can have disproportionate benefits

[20,21].

Studies have quantified the variability in the number of SARS-CoV-2 transmissions from

infected individuals using the dispersion parameter k, governing the variance of a negative

binomially distributed offspring distribution [22–26]. Those studies estimated high overdis-

persion (low values of k) similar to what was observed during the first SARS-CoV outbreak in

2003 [17]. These estimates were derived from data on transmissions, including superspreading

events, occurring in a variety of locations both inside and outside of households. Regarding

household transmission specifically, Madewell et al. [8] showed preliminary evidence of over-

dispersion in household data, with more households than expected experiencing extremes of

transmission (i.e., either no transmission or many transmissions) from an introduced case.

In this study, we combine SARS-CoV-2 data from serological antibody tests and self-

reported prior tests to estimate within-household transmission of COVID-19 in Utah. Previ-

ously published secondary attack rate estimates are largely based on crude formulae which

ignore the probabilities of multiple members of a household acquiring infection from the com-

munity, multiple generations of transmission within the household (i.e. secondary, tertiary,

etc. transmissions), and imperfect test sensitivity and specificity. We addressed these limita-

tions by extending previous models of final household outbreak size distributions [27] to

develop a novel probabilistic model of household importation and household transmission

combined with test sensitivity and specificity. Our model also quantifies variability in house-

hold transmission and the potential extent of overdispersion, to shed light on superspreading

phenomena and the implications of household transmission for population-level controlla-

bility of COVID-19.

2 Methods

2.1 Data collection from Utah households

Details of our data collection process are described elsewhere [28]. Briefly, the Utah Health &

Economic Recovery Outreach project involved selecting households in several counties in

Utah by population sampling designed to form a set of households by which average commu-

nity seroprevalence could be assessed. Any member of selected households could participate in

a survey that included questions about prior SARS-CoV-2 test results (see Supplementary

Methods in S1 File for wording of relevant survey questions). Adult household members could

fill out surveys on behalf of children of any age in the household. Survey participants age 12 or

older could additionally opt to provide serological samples for COVID-19 antibody testing.

Serum specimens were analyzed using the Abbott SARS-CoV-2 IgG assay performed on an

Abbott Architect i2000 instrument (Abbott Laboratories), with methodology and criteria for a

positive antibody result defined according to the manufacturer’s instructions. Data included in

this analysis were collected between May 4 and August 15, 2020.

The University of Utah Institutional Review Board reviewed the surveillance project that

produced the data analyzed in this manuscript and determined it as non-research public health

surveillance, waived the requirement for documented consent, and determined that use of

these data for analysis to understand the dynamics of SARS-CoV-2 transmission was exempt
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from further review (IRB_00132598). Individuals were informed of the project procedures and

that participation was voluntary. Participants provided their agreement to participate and

were given the chance to opt out of having their data used for future research. The data were

analyzed anonymously for this manuscript.

The data are represented as follows. For each household in the dataset, we captured the fol-

lowing 7 values from the data:

• n: total number of people in household

• a: number who were antibody tested

• s: number who responded to the survey but were not antibody tested

• aPP: number who reported a prior positive test result and received a positive antibody test

• aPN: number who reported a prior positive test result and received a negative antibody test

• aNP: number who reported no prior positive test result and received a positive antibody test

• sP: number who were surveyed, reported a prior positive test result, and did not receive an

antibody test

Those surveyed participants who reported no prior positive test result includes both those

who had never been tested and those who had been tested but received no positive results. We

did not have sufficient information to properly distinguish those two groups, nor to determine

the circumstances of any prior negative tests that might affect the inferred probability of true

prior infection.

Each of the C unique combinations of the above 7 values found at least once in the dataset

was indexed as a vector yi:

yi ¼ ðni; ai; si; aPPi; aPNi; aNPi; sPiÞ

We tallied the number of households for which each yi occurred in the frequency elements

fi, and represented the entire dataset by the vector y = (y1,. . .,yC,f1,. . .fC).

The dataset y and all codes, written in R version 4.0.3, used for analyses described in the fol-

lowing sections are posted and publicly available at https://github.com/damontoth/

householdTransmission.

2.2 Total household infection size model

Here we derive the probabilities Mkn for the probability that k out of n total household members

ended up infected. If k members of a size-n household were infected, that means that n−k mem-

bers escaped being infected by a non-household member (called “community” acquisitions) and

escaped being infected by any of the n infected within the household. Thus, our model for Mkn

combines both probabilities and does not depend on the order of occurrence of household trans-

missions and subsequent community acquisitions after the initial one, as in similar prior formula-

tions [27]. Also following prior formulations, we assume that active infections were not present in

the households at the time of antibody data collection (i.e., that household outbreaks had reached

final size). Accounting for the timing of recent household importations, transmissions, and devel-

opment of detectable antibodies during an ongoing household outbreak would significantly com-

plicate the model equations and would likely have little effect on our overall results, given that the

prevalence of active infections at the time of data collection was very low [28].

The Mkn values depend on 3 parameters. The parameter pc is the average per-capita proba-

bility of community acquisition, ph is the mean transmission probability from an infected

PLOS ONE High variability in transmission of SARS-CoV-2 within households and implications for control

PLOS ONE | https://doi.org/10.1371/journal.pone.0259097 November 10, 2021 4 / 21

https://github.com/damontoth/householdTransmission
https://github.com/damontoth/householdTransmission
https://doi.org/10.1371/journal.pone.0259097


person to a fellow household member, and dh is the dispersion parameter characterizing vari-

ability in transmissibility across infected individuals, with no assumed correlation among

members of the same household.

For a given household size n�2, the formula for Mkn is:

Mknðpc; ph; dhÞ ¼

ð1 � pcÞ
n
; k ¼ 0

Xk

i¼1

n

i

0

@

1

AðpcÞ
i
ð1 � pcÞ

n� iTi;k� i;n� iðph; dhÞ; k ¼ 1; . . . ; n � 1

1 �
Xn� 1

k¼0

Mknðpc; ph; dhÞ; k ¼ n

8
>>>>>>>><

>>>>>>>>:

For households of size n = 1, note that the expression involving the household transmission

parameters does not apply and we have M01 = 1−pc and M11 = pc.
The probability that a household of size n had 0 infections: M0n = (1−pc)n, is the probability

that none of the household members acquired infection from the community and does not

depend on the household transmission variables because no household transmissions were

possible without a community introduction. For the final number of household infections to

be nonzero, there must be at least one community acquisition, which may be followed by

within-household transmissions. The
n

i

 !

ðpcÞ
i
ð1 � pcÞ

n� i
expression is the binomial proba-

bility that i out of the n household members had a community acquisition, and the function

Txyz is the probability that x already infected household members lead to a total of y transmis-

sions to z susceptible household members. In other words, Txyz is the probability that the final

outbreak size is x+y, given that x household members are already infected in a house with z
susceptible members. For efficiency of computation, the Txyz values are calculated in order of

increasing values of y, i.e. Tx0z for each relevant x and z value are calculated first, then the Tx1z

values, then Tx2z. This allows the use of Txyz values for lower values of y to be used in the for-

mula (see S1 File for details):

Txyzðph; dhÞ ¼

Hx0zðph; dhÞ; y ¼ 0

Xy� 1

i¼0

Hx;y� i;zðph; dhÞTy� i;i;z� yþiðph; dhÞ; y ¼ 1; . . . ; n

8
><

>:

Within the Txyz formula, the function Hxyz is the probability that x infected household

members transmit infection directly to y out of z fellow household members who are suscepti-

ble. The Hxyz values are calculated in order of increasing values of x for efficient computation

(see S1 File):

Hxyzðph; dhÞ ¼

Fyzðph; dhÞ; x ¼ 1

Xy

i¼0

Hx� 1;i;zðph; dhÞH1;y� i;z� iðph; dhÞ; x ¼ 2; . . . ; n � 1

8
><

>:

Finally, the function Fyz(p, d) is the probability mass function of the beta-binomial distribu-

tion for y successes out of z trials, parameterized by a mean success probability p and a disper-

sion parameter d. When d is finite and nonzero, Fyz is derived from the binomial distribution

with success probability that is a beta-distributed random variable with parameters α = dp, β =

d(1−p), with decreasing variance as d increases. We also make use of the boundary cases d = 0
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and d!1. In the limit d!1, holding p constant, Fyz becomes the binomial distribution with

constant success probability p (S1 File). In the maximal variance limit, d!0, with p held con-

stant, Fyz becomes an “all-or-nothing” distribution where y = z successes occur with probabil-

ity p and to y = 0 successes occur with probability 1−p (S1 File):

Fyz p; dð Þ ¼

(
1 � p; y ¼ 0

0; 0 < y < z

p; y ¼ z

; d ¼ 0

z

y

 !
Bðyþ dp; z � yþ dð1 � pÞÞ

Bðdp; dð1 � pÞÞ
; 0 < d <1

z

y

 !

pyð1 � pÞz� y; d!1

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

The function B is the beta function. We use Fyz within the formula for H1yz to quantify the

distribution of household transmissions directly from a single infected household member,

where y is the number of transmissions, z is the number of susceptible household members, p
= ph, and d = dh.

The above formulas are derived in the S1 File. Elements of this model appear in other publi-

cations. Longini and Koopman [27] derived a formula for Mkn for the model with no variabil-

ity among households or individuals, equivalent to our model with dh!1. While they

provided a more efficient formula that takes advantage of the properties of that special case, we

confirmed that our calculation scheme above reproduces the results of their formula. Becker

[29] published explicit formulas for the final size of household outbreaks after a single intro-

duction to households up to size 5 using the beta-binomial chain model, equivalent to our Txyz

for x = 1 and z up to 4. We confirmed that our scheme for calculating Txyz produces the same

results as their example formulas for arbitrary values of ph and dh.

2.3 Likelihood model

We sought to use our data to simultaneously estimate the 3 parameters (pc, ph, dh) using maxi-

mum likelihood estimation (MLE). However, applying the Mkn formula directly to our data

would be problematic because the true number of infections k in each household are not

known with certainty. The data include two sources of COVID-19 test information by which

prior infection status of a portion of individual household members can be probabilistically

inferred: antibody test results and surveys in which participants could report results of a prior

test.

Antibody test results are subject to imperfect sensitivity and specificity due to false negative

tests and false positive tests, respectively. To account for these, we added two additional

parameters to be estimated by the MLE: ϕA, the probability that an antibody-tested person

with a prior infection tested positive for antibodies, and πA, the probability that an antibody-

tested person with no prior infection tested negative for antibodies.

Prior test results for SARS-CoV-2 reported on the survey also do not perfectly identify

those with prior infections. To quantify this imperfection, we introduced two more parameters

to be estimated by the MLE: ϕV, the probability that a surveyed person with a prior infection

reported receiving a positive test for the virus, and πV, the probability that a surveyed person

with no prior infection did not report receiving a positive test.
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Some household members received a survey but no antibody test and other members

received neither. The Mkn formula depends on the total household size n, which for many

households includes individuals with missing data. For households with at least one but not all

members infected (1�k�n−1) and in which less than n member were full participants, the

likelihood formula required the probability that different portions of the k infected members

were among those who were antibody tested or surveyed only. To arrive at our formula, we

assumed that the antibody-tested and surveyed-only portion of a household were a random

sample of household members with respect to their prior infection status. I.e., we assumed that

those individuals in a participating household with and without prior infections were equally

likely to participate in the study and equally likely to agree to antibody testing.

In all we have 7 variables to be estimated by MLE, encapsulated in the following vector θ:

θ ¼ ðpc; ph; dh; �V ; �A; pV ; pAÞ

The log likelihood of the dataset y described in Section 2.1 with variable set θ is then

ln LðyjθÞ ¼ f1 lnLðy
1
jθÞ þ � � � þ fC lnLðyCjθÞ

To present the formula for LðyijθÞ, the likelihood of a particular yi, we first define the fol-

lowing quantities calculated from the core elements of yi listed in Section 2.1:

• aNNi = ai−aPPi−aPNi−aNPi: number who reported no prior positive test result and received a

negative antibody test

• SNi = si−sPi: number who were surveyed, reported no prior positive test result, and did not

receive an antibody test

• qi = ni−ai−si: number untested for antibodies and not surveyed

Then we have:

LðyijθÞ ¼
XaPPi

u¼0

XaPNi

v¼0

XaNPi

w¼0

XaNNi

x¼0

Aðu; v;w; x;�V ; �A; pV ; pAÞ
XsPi

y¼0

XsNi

z¼0

Sðy; z;�V ; pVÞ

�
Xuþvþwþxþyþzþqi

k¼uþvþwþxþyþz

Hðk; uþ vþ wþ x; yþ zÞMkni
ðpc; ph; dhÞ

In the formula, the function A quantifies the probability of observing the given set of test

result combinations among antibody-tested people (aPPi, aPNi, aNPi, aNNi), given that (u, v, w,

x) of them had a prior infection, respectively. E.g., u is the number of the aPPi household mem-

ber who had an infection (true positives), v is the number of the aPNi household members who

had an infection (true positive by prior test and false negative by antibody test), w is the num-

ber of the aNPi household members who had an infection (true positive by antibody test and

did not report a prior positive test), and x is the number of the aNNi household members who

had an infection (false negative by antibody test and did not report a prior positive test). The

formula for A is

Aðu; v;w; x;�V ; �A; pV ; pAÞ

¼ fmðu; v;w; x; pIð�V ; �AÞÞfmðaPPi � u; aPNi � v; aNPi � w; aNNi � x; pUðpV ; pAÞÞ

The function fm(r; p) is the probability mass function for the multinomial distribution,

where the number of trials is the sum of the elements of r, which are the number of infected or

uninfected antibody-tested people who received each of the four possible test result combina-

tions. The vector p contains the probability of each of the four test result combinations given
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that the person was infected (for p = pI) or uninfected (for p = pU):

pIð�V ; �AÞ ¼ ð�V�A; �Vð1 � �AÞ; ð1 � �VÞ�A; ð1 � �VÞð1 � �AÞÞ

pUðpV ; pAÞ ¼ ðð1 � pVÞð1 � pAÞ; ð1 � pVÞpA; pVð1 � pAÞ; pVpAÞ

The first element of pI, ϕVϕA, is the probability that an antibody-tested person with a prior

infection reported a prior positive test (with probability ϕV) and also had a positive antibody

test result (with probability ϕA). Note that ϕA represents the sensitivity of the antibody test, but

ϕV includes both the sensitivity of the prior test and the probability that an infected person

actually sought and received a SARS-CoV-2 test during the period of infection in which detect-

able virus was present and reported that positive test on our survey. Elements 2–4 of pI are the

probabilities that an antibody-tested, prior infected person reported a prior positive test but

tested negative for antibodies, did not report a prior positive test and tested positive for anti-

bodies, and did not report a prior positive test and tested negative for antibodies, respectively.

The elements of pU are the corresponding probabilities for individuals with no prior infection.

The function S quantifies the probability of the survey-only data (sPi, sNi) given that y of the

sPi individuals had a prior infection and z of the sNi individuals had a prior infection:

Sðy; z;�V ; pVÞ ¼ fbðy; yþ z; �VÞfbðsNi � z; sNi � z þ sPi � y; pVÞ

The function fb(q;r,p) is the probability mass function for the binomial distribution, for q
successes given that there were r independent trials with probability p for success of each trial.

The function H(k, ka, ks) in the likelihood equation is the probability that, when k of ni indi-

viduals in the household were infected, ka infected individuals were among the ai individuals

antibody tested and ks infected individuals were among the si individuals surveyed but not

antibody tested:

Hðk; ka; ksÞ ¼ fhðka; k; ni � k; aiÞfhðks; k � ka; ni � k � ðai � kaÞ; siÞ

The function fh(b;c,d,e) is the probability mass function of the hypergeometric distribution

for the number b of infected people selecting to be antibody-tested or surveyed-only, given

that there were c infected people and d uninfected people available for selection in the house-

hold, and e people were tested or surveyed-only. These terms account for individuals in house-

holds who received neither an antibody test nor a survey, who may have included infected

individuals. Our use of the hypergeometric distribution led from our assumption that, if some

members of the household had a prior infection and others didn’t, the antibody-tested / sur-

veyed individuals were a random sample from the household with respect to their prior infec-

tion status.

2.4 Likelihood optimization and uncertainty

We maximized the log likelihood over the 7 unknown parameters (pc, ph, dh, ϕV, ϕA, πV, πA)

using the observations (n, a, s, aPP, aPN, aNP, sP) for each household, to produce the MLE:

ŷ ¼ ðp̂c; p̂h; d̂h; �̂V ; �̂A; p̂V ; p̂AÞ. The log likelihood maximization was performed using the

“optim” function in R. We derived approximate confidence interval boundaries for an individ-

ual parameter θi using the likelihood ratio test, using the statistic 2 logðLðŷÞ=LðyÞÞ, where θ
consists of θi freely varying and the other 6 elements of θ held at their optimal value. We

defined a 95% confidence interval boundary where θi produces a value for this statistic equal

to the 95th percentile of the chi-squared distribution with 1 degree of freedom. We also plotted

2-dimensional confidence region boundaries for each of the 21 possible (θi, θj) parameter pairs
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by allowing each pair to vary freely together while holding the other 5 at their optimal values.

We calculated the boundary in the (θi, θj) parameter plane where the likelihood ratio statistic

equals the 95th percentile of the chi-squared distribution with 2 degrees of freedom. To calcu-

late P-values at which certain fixed parameter values could be rejected in favor of the MLE, we

used the chi-squared distribution with degrees of freedom equal to the number of fixed

parameters.

Additionally, we developed a simulation model to produce synthetic data sets on which to

test our likelihood model. We ran the simulation for the same number of households with the

same sizes and participation rates for survey and antibody testing as in the actual data (fixed

values of n, a, and s for each household). We randomized importations to households and sim-

ulated transmissions using the MLE values of the three epidemiological parameters pc, ph, and

dh, randomized survey and antibody test results using the MLE sensitivity and specificity val-

ues, and maximized the likelihood against the simulated data. We repeated this process for 500

simulated data sets and recorded the median estimated value of each variable, for comparison

against the MLE value that generated the data. We also used the 500 sets of simulation-based

estimates as a parametric bootstrap to generate 95% confidence estimates for each variable, for

comparison against the intervals generated from the likelihood ratio test.

We also compared the performance of our 7-parameter model against simpler models with

fewer free parameters, including models assuming dh = 0 and dh!1, models fixing the sensi-

tivity and specificity of the antibody test according to independent data from the test manufac-

turer (ϕA = 89.3% and/or πA =99.6%) [32], and models assuming perfect specificity of prior

test result reporting or antibody testing (πV = 100% or πA = 100%). We tested each of these

assumptions individually and in various combinations, resulting in models ranging from 3 to

6 optimized parameters. We compared the models using the Akaike information criterion,

which aims to balance goodness of fit with model simplicity.

Finally, we tested an alternate model that allows the community acquisition probability to

vary by household, such that some households may have a higher per-capita acquisition rate

than others applied to each household member. To quantify this probability in the alternate

model, we employed the beta-binomial distribution for the number of community acquisitions

in a household of a given size (see Supplementary Methods in S1 File).

2.5 Household transmission variability

We quantified the implications of our household transmission variability estimates by calculat-

ing the probability of transmission extremes, compared to those produced by the classic bino-

mial transmission model (dh =1). Specifically, we calculated the probability that an initially

infected individual transmits to no one or everyone in households of sizes from 2 to 10.

For households of size n, the probability of no transmissions from the index infection is

F0,n−1(ph, dh) and the probability the index person transmits directly to the entire household is

Fn−1,n−1(ph, dh). We used our overall MLE values for p̂h and d̂h to calculate these values for

each n, with confidence intervals using our parametric bootstrap results. For comparison to

the binomial model we applied dh =1, paired with the alternate MLE of ph under that

constraint.

We also calculated an example of a dynamic transmission model that produces a distribu-

tion of household transmission probabilities close to that produced by our MLE beta distribu-

tion, using the method of moments. Specifically, if an infected person’s duration of

infectiousness is assumed to be fixed and transmissibility to a housemate is modeled as a

gamma distribution with shape parameter k, then we solve for the value k that produces the

same mean and variance for the transmission probability as that of the beta distribution with
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mean ph and dispersion dh (Supplementary Methods in S1 File). We solved for k using our

MLE p̂h and d̂h values, and we derived a confidence interval for k using the pairs of (ph, dh)

estimates from our parametric bootstrap analysis.

2.6 Within-household reproduction number

We calculated the within-household reproduction number Rh, defined as the expected number

of household transmissions directly from a community acquirer with all fellow household

members susceptible:

Rh ¼ phðmþ s
2=m � 1Þ;

where μ and σ2 are the mean and variance of the household size distribution, and ph is the sec-

ondary attack rate as determined by our MLE. This equation for Rh is derived as in Ball et al.

[30] and detailed in the S1 File.

Additionally, we derived an alternate household reproduction number R�h defined as the

expected total number of transmissions in the household of an infected person who acquired

infection in the community and has no initially non-susceptible housemates. This differs from

Rh in that it counts all potential downstream transmissions in the household stemming from

the index community acquirer. The formula for R�h, derived in the S1 File, is

R�h ¼
XN� 1

i¼1

ðiþ 1Þhiþ1

m

Xi

j¼1

jT1jiðph; dhÞ;

where hi is the fraction of all households that are size i.
To investigate the implications of household transmission for population-wide transmis-

sion control, we use a threshold condition delineating subcritical and supercritical transmis-

sion in the population. Supercritical transmission occurs when RcðR�h þ 1Þ > 1, where Rc is the

average number of community (non-household) transmissions from an infected person. We

derive this formula in the S1 File, following Ball et al. [30]. We estimated Rh, R�h, and the thresh-

old value for Rc by applying our MLE estimates of ph and dh to the above formulas and their

confidence intervals by applying the (ph, dh) pairs from each parametric bootstrap estimate.

3. Results

3.1 Data summary

We compiled data from 9,383 households (Fig 1). Of these, we retained 9,224 (98.3%) for use

in the MLE. The 159 excluded households were removed because the household size was

unknown (51) or the reported household size was less than the number of people tested or sur-

veyed in the house (108). In the 9,224 retained households, there were 28,321 (3.07 per house-

hold) reported household members, 13,998 (1.52 per household) people who were both

surveyed and antibody tested, and another 5,249 (0.57 per household) who were surveyed but

not antibody tested. The households in the data were located in 7 of the 29 counties in Utah;

the 22 excluded counties account for<14% of Utah’s total population S1 Table in S1 File.

Of the 13,998 antibody tests in the retained households, 178 (1.27%) were positive. Of those

178 people with a positive antibody test, 58 (32.6%) reported receiving a prior positive test. Of

the 19,247 people who were antibody tested or surveyed only, 119 (0.62%) reported receiving a

prior positive test. This broke down to 0.53% (75 / 13,998) for those who were antibody tested

and 0.84% (44 / 5,249) for those who were surveyed but not antibody tested. The rate of testing

positive for antibodies among those reporting a prior positive test was 77.3% (58 / 75). The

interval between the reported prior positive test date and the antibody test date did not exhibit
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a strong correlation to the fraction of testing antibody positive, other than perhaps the 3 indi-

viduals reporting a very recent (less than 1 week) positive test all testing negative for antibodies

(S2 Table in S1 File). The rate of survey participants agreeing to antibody testing was lower for

those who reported a prior positivetest compared to those who did not: 63.0% (75 of 119) vs.

72.8% (13,923 of 19,128), a small but statistically significant (P < 0.01) difference in

proportion.

Of the retained households, 193 (2.1%) had at least one household member who either

tested positive for antibodies or reported a prior positive test. There were 159 households with

exactly 1 positive member (by either antibody test or reported prior test or both), 26 house-

holds with 2 positives, 6 with 3 positives, 1 with 4 positives, and 1 with 6 positives. In all, there

were C = 273 unique yi vectors representing household data described in section 2.1.

The crude secondary attack rate measure derived from antibody testing only (fraction of

antibody-tested housemates of antibody-positive household members who were also antibody

positive) was 14.9% (29 / 194). The crude secondary attack rate estimate from reported prior

test data only (fraction of surveyed housemates of people reporting a prior positive test who

also reported a prior positive test) was 23.0% (31 / 135). When combining both types of data,

the crude secondary attack rate estimate (fraction of surveyed / tested housemates of any anti-

body-positive or reported-prior-positive person who were positive by either or both measures)

was 15.6% (46 / 295).

We tallied demographic statistics of the set of surveyed individuals (S3 Table in S1 File).

The distribution of reported ages skewed older than Utah’s overall population age distribution,

and females were slightly overrepresented (52.0%). The distribution of surveyed individuals’

race, Hispanic origin, and education level also differed from the overall Utah and U.S.

distributions.

3.2 Maximum likelihood estimates

Our MLE procedure produced simultaneous estimates for all 7 parameters (Table 1). The

MLE for pc, the per-person community acquisition probability from outside the household,

was 0.41% (0.32%– 0.51%). For within household transmission probability, the MLE produced

an average secondary attack rate estimate ph = 36% (27%– 48%). The MLE for the dispersion

Fig 1. Data summary flowchart. Flow diagram for data from participating households and household members.

https://doi.org/10.1371/journal.pone.0259097.g001
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parameter dh, quantifying variability in transmissibility by person, was 0.43 (0.02–2.0). The

boundary case dh =1, representing the classic binomial household transmission model with

no variability in individual infectiousness [27], could be rejected with P = 0.001 (Table 2).

Table 1. Maximum likelihood estimates.

Value MLE (95% CI) Parametric bootstrap: median

(95% range)

Mean community acquisition probability (pc) 0.41% (0.32%–

0.51%)

0.41% (0.30%– 0.55%)

Mean per-capita household transmission probability

(ph)

36% (27%– 48%) 36% (25%– 51%)

Per-capita household transmission dispersion (dh) 0.43 (0.02–2.0) 0.38 (0–2.2)

Probability infected person reported a prior positive

test (ϕV)

72% (62%– 82%) 72% (63%– 82%)

Probability infected person tested positive for

antibodies (ϕA)

86% (75%– 93%) 86% (77%– 95%)

Probability uninfected person did not report a prior

positive test (πV)

99.94% (99.88%–

99.98%)

99.94% (99.87%– 99.99%)

Probability uninfected person tested negative for

antibodies (πA)

99.3% (99.2%–

99.5%)

99.3% (99.2%– 99.5%)

Confidence intervals for MLE derived from the likelihood ratio test, varying each individual parameter while fixing

other parameters at their MLE values. Parametric bootstrap was based on MLE fits to 500 different synthetic data sets

generated from stochastic simulations using the MLE parameter values.

https://doi.org/10.1371/journal.pone.0259097.t001

Table 2. Comparison of MLE for alternate models.

Fixed values p̂^
c p̂^

h d̂^

h ϕ̂^
V ϕ̂^

A π̂^
V π̂^

A
Log likelihood Rejection P value Free Parameters ΔAIC

None 0.41% 36% 0.43 72% 86% 99.94% 99.3% −1173.84 - 7 -

dh = 0 0.44% 41% (0) 68% 80% 99.95% 99.3% −1174.85 0.16 6 0.02

dh =1 0.34% 32% (1) 76% 89% 99.91% 99.3% −1179.30 0.00096 6 8.91

ϕA = 89.3% 0.39% 36% 0.55 73% (89%) 99.93% 99.3% −1174.11 0.46 6 −1.46

πV = 100% 0.51% 34% 0.16 70% 77% (100%) 99.3% −1176.01 0.037 6 2.34

πA = 99.6% 0.57% 31% 0.20 60% 83% 99.96% (99.6%) −1181.08 0.00014 6 12.47

πA = 100% 1.2% 18% 0.02 37% 78% 100% (100%) −1201.26 <0.0001 6 52.84

(dh, ϕA) 0.41% 43% (0) 70% (89%) 99.93% 99.3% −1176.85 0.050 5 2.01

(dh, πV) 0.52% 36% (0) 68% 75% (100%) 99.3% −1176.17 0.097 5 0.66

(dh, πA) 0.61% 33% (0) 58% 79% 99.97% (99.6%) −1181.35 0.00055 5 11.02

(ϕA, πV) 0.49% 30% 0.36 73% (89%) (100%) 99.3% −1180.62 0.0011 5 9.55

(ϕA, πA) 0.53% 30% 0.39 62% (89%) 99.94% (99.6%) −1181.76 0.00036 5 11.84

(πV, πA) 0.65% 30% 0.05 58% 76% (100%) (99.6%) −1181.72 0.00038 5 11.75

(dh, ϕA, πV) 0.51% 34% (0) 70% (89%) (100%) 99.3% −1183.29 0.00029 4 12.89

(dh, ϕA, πA) 0.55% 34% (0) 59% (89%) 99.94% (99.6%) −1183.87 0.00017 4 14.05

(dh, πV, πA) 0.66% 30% (0) 58% 76% (100%) (99.6%) −1181.73 0.0013 4 9.78

(ϕA, πV, πA) 0.62% 26% 0.31 62% (89%) (100%) (99.6%) −1186.34 <0.0001 4 18.99

(dh, ϕA, πV, πA) 0.64% 29% (0) 60% (89%) (100%) (99.6%) −1188.39 <0.0001 3 21.11

Values in parentheses were fixed for the model in that row; other values were optimized by MLE. P values were derived from the likelihood ratio test, compared to the

likelihood of the overall MLE in the top row (twice the difference in log likelihood compared to the chi-squared distribution with one degree of freedom). ΔAIC value is

the difference in Akaike information criterion compared to that of the model in the top row: positive ΔAIC means the model in the top row has lower AIC and is

favored by this criterion.

https://doi.org/10.1371/journal.pone.0259097.t002

PLOS ONE High variability in transmission of SARS-CoV-2 within households and implications for control

PLOS ONE | https://doi.org/10.1371/journal.pone.0259097 November 10, 2021 12 / 21

https://doi.org/10.1371/journal.pone.0259097.t001
https://doi.org/10.1371/journal.pone.0259097.t002
https://doi.org/10.1371/journal.pone.0259097


Our MLE result for ϕV, the probability that a surveyed person with a prior infection

reported a prior positive test, was 72% (62%– 82%). The ϕV value can be interpreted as the case

ascertainment fraction, i.e. fraction of individuals with SARS-CoV infections who were identi-

fied with a positive test during their infection. Our result may be high compared to other areas

of the U.S.: one study estimated that less than 60% of symptomatic cases in the U.S. were iden-

tified during February-June 2020 [31]. Our finding may reflect unusually successful case ascer-

tainment efforts in Utah during the Spring and early Summer of 2020, perhaps partly owing to

slower emergence compared to other regions.

For πV, the probability that a surveyed person with no prior infection reported no prior

positive test, the MLE was 99.94% (99.88%– 99.98%). This result is consistent with the low

probability of false positives among viral tests, which to our knowledge were exclusively PCR-

based in Utah prior to our data collection. It is possible that some false positives in our survey

data occurred by erroneous reporting, i.e. survey respondents reporting a prior positive test

that did not occur, rather than via errors in testing procedure. Even though our MLE for this

parameter was in excess of 99.9%, we found that an alternate model assuming πV = 100% pro-

duced notably different estimates of some of the other parameters (Table 2), which suggests

that studies producing epidemiological estimates relying on a 100% viral test specificity

assumption should test robustness of conclusions to small deviations from that assumption.

For ϕA, the probability that a prior-infected person’s antibody test was positive, the MLE

was 86% (75%– 93%), similar to the test manufacturer’s finding that 109 of 122 (89.3%) PCR-

positive subjects were positive for antibodies [32]. Assuming ϕA = 89.3% directly and optimiz-

ing the other 6 parameters produces a slightly better AIC than the full 7-parameter model

(Table 2). The manufacturer’s results included only symptomatic subjects and were highly

dependent on the number of days post-symptom onset at which the serological sample was

taken. Because the symptom histories of the antibody-tested people in our data are largely

uncertain, it is difficult to determine how consistent our result is with the manufacturer’s data.

The MLE for πA, the probability that an antibody-tested person with no prior infection

tested negative for antibodies, was 99.3% (99.2%– 99.5%), which is within the uncertainty

range of the test manufacturer’s estimate of 99.6% (99.0%– 99.9%) based on 4 positive tests

from 997 samples collected prior to September 2019 [32]. Models assuming the manufacturer’s

point specificity estimate of 99.6%, produced inferior AIC to the full model (Table 2). When

we ran our MLE under the assumption of perfect specificity (no false positives) for the anti-

body test (πA = 100%), the result for secondary attack rate reduced from 36% to 18%, which is

closer to the crude estimate described in Section 3.1, and the results for community acquisition

probability increased from 0.4% to 1.2% (Table 2). Thus, our model suggests that allowing for

false positives can shift the attribution of infections toward household transmissions and away

from acquisitions outside the household. We also found that assuming perfect specificity of

the antibody test dramatically reduced the estimate of ϕV from 72% to 37% (Table 2), which

suggests that ignoring false positives in serology data could cause an underestimate of the case

ascertainment rate if the serology data are used for that purpose.

When optimizing the likelihood equation against 500 synthetic data sets simulated using

the MLE variable assumptions, the median estimates of each parameter were very close to the

MLE values (Table 1). The confidence intervals derived from these bootstrap estimates were

similar to those derived from the likelihood ratio test, though the bootstrap intervals were

somewhat wider for the three parameters governing importation and transmission. Likewise,

the likelihood ratio-based intervals reported in Table 1 expanded modestly when we calculated

2-dimensional confidence regions based on each pair of estimated parameters, with most

regions exhibiting close to symmetric shapes around the MLE (Supplemental Figures in S1

File). Notably, the 95% confidence regions involving the transmission dispersion parameter dh
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can extend to the high-variability boundary dh = 0, a result that is also reflected by the fact that

the MLE for the model with fixed dh = 0 cannot be rejected with high confidence (P = 0.16)

(Table 2). However, none of the alternate models assuming dh = 0 produced a superior AIC to

the full model (Table 2).

Our alternate model that employed a beta-binomial distribution for the number of house-

hold acquisitions, using a new dispersion parameter dc estimated as an additional variable in

the MLE, found dc = 2.1 (0.89–7.5), with somewhat altered estimates of the other parameters

(S4 Table in S1 File) compared to those in Table 1. However, the log likelihood of the model in

Table 1, which is equivalent to the alternate model with dc =1, is sufficiently close to that of

the alternate model that dc =1 cannot be rejected by the likelihood ratio test and neither

model is favored by the Akaike information criterion. If overdispersion in household commu-

nity acquisitions does occur, the uncertainty ranges of the transmission variables ph and dh
become large (see Supplementary Results in S1 File).

3.3 Household transmission variability

We quantified the implications of our key finding of high transmission variability within

households of persons infected with COVID-19 by calculating the probability of transmission

extremes. Compared to our overall MLE, the classic binomial transmission model (dh =1)

produced a similar average secondary attack rate estimate of ph = 32% (24%– 41%). However,

the binomial model produces substantially lower probabilities that an infected individual

transmits to no one or everyone in larger households (Table 3).

For example, our MLE model estimates that an infected member of an 8-member house-

hold would have a 46% (22%– 70%) chance of transmitting to no one, but a 20% (3%– 50%)

chance of transmitting infection directly to all 7 housemates. By contrast, the no-variability

binomial model estimate would be substantially lower for each extreme: 7% (3%– 14%) chance

of transmitting to no one and 0.03% (0.005%– 0.2%) chance of transmitting to everyone

(Table 3).

We calculated an example of a dynamic transmission model that would produce the same

mean and variance of a person’s transmission probability to a household member that is pro-

duced by our MLE beta distribution. If an infected person’s duration of infectiousness is

assumed to be fixed and transmissibility to a housemate is modeled as a gamma distribution

Table 3. Effect of transmission overdispersion on probability that first infected person transmits to no one or everyone in the household.

Household

size

Transmit to none: overall model

MLE (95% CI)

Transmit to none: binomial model

MLE (95% CI)

Transmit to all: overall model

MLE (95% CI)

Transmit to all: binomial model

MLE (95% CI)

2 64% (49%– 75%) 68% (59%– 76%) 36% (25%– 51%) 32% (24%– 41%)

3 57% (42%– 71%) 46% (35%– 57%) 29% (14%– 49%) 10% (6%– 17%)

4 53% (34%– 69%) 32% (21%– 43%) 26% (9%– 49%) 3% (1%– 7%)

5 51% (30%– 69%) 22% (12%– 33%) 24% (6%– 50%) 1% (0.3%– 3%)

6 49% (26%– 69%) 15% (7%– 25%) 22% (5%– 50%) 0.3% (0.08%– 1%)

7 47% (24%– 69%) 10% (4%– 19%) 21% (3%– 50%) 0.1% (0.02%– 0.5%)

8 46% (22%– 70%) 7% (3%– 14%) 20% (3%– 50%) 0.03% (0.005%– 0.2%)

9 45% (20%– 70%) 5% (2%– 11%) 20% (2%– 50%) 0.01% (0.001%– 0.08%)

10 44% (19%– 70%) 3% (0.9%– 8%) 19% (2%– 51%) 0.003% (0.0003%– 0.03%)

Probabilities in this table are for a single infected household member transmitting directly to no one or everyone else in the household. The “transmit to all” values do

not include the probability of multiple-generation transmission chains that eventually infect all household members. Confidence intervals for the overall MLE-based

estimates were derived from applying (ph, dh) pairs from our parametric bootstrap analysis to the beta-binomial transmission equations.

https://doi.org/10.1371/journal.pone.0259097.t003
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with shape k, then k = 0.18 (95% CI 0–0.7) when the mean and variance are matched, regard-

less of the infectious duration (Supplementary Methods in S1 File). This estimate of k is com-

parable to the dispersion parameter k of the negative binomial distribution commonly used to

characterize overall variability in the number of transmissions from individuals, which can be

derived from the Poisson distribution with a mean that is gamma-distributed with shape

parameter k [17]. Our estimate of k is similar to point estimates for SARS-CoV-2 of k = 0.1

[22], k = 0.25 [23], and k = 0.33 [24].

3.4 Within-household reproduction numbers

Our estimate of the household reproduction number Rh, the expected number of household

transmissions from a community acquirer with no other infected fellow household members,

depends on our estimate of ph and the mean μ and variance σ2 of the household size distribu-

tion. From our data we found μ = 3.07 and σ2 = 3.12, so our estimate is Rh = 1.12 (0.78–1.56).

Our estimate of the alternate household reproduction number R�h, the expected total number

of transmissions in the household of a community acquirer, is R�h = 1.45 (0.94–2.05).

The supercritical threshold for Rc, the average number of non-household transmissions by

an infected individual, is approximated by 1=ðR�h þ 1Þ (see Methods section 2.6 and S1 File).

Using our estimate for R�h in Utah, this formula suggests that Rc must be kept below approxi-

mately 0.41 (0.33–0.52) to avoid increasing growth of COVID-19 infections in the population.

4. Discussion

The key findings of our analyses stem from our simultaneous estimation of the average and

variability of SARS-CoV-2 household transmission, household importation, and test data

accuracy. Our novel combination of those interacting features within our model revealed two

important epidemiological insights. First, we found that accounting for test error, especially

the specificity of the serological antibody test, produced a substantially higher estimate for the

household secondary attack rate. Second, we found evidence of substantial variability of trans-

missibility within households, which has important implications for understanding broad

transmission patterns and mitigation strategies.

An important implication of the first finding is that assuming perfect test accuracy may be a

source of underestimation for the household secondary attack rate in other studies. Our maxi-

mum likelihood estimate was 35% (27%– 48%), which is higher than recent pooled estimates

of 17–19% from the most recent meta-analyses of worldwide household studies [7,8]. These

and other published studies have generally estimated the secondary attack rate by a simple cal-

culation of the fraction of tests that were positive among household contacts of known cases.

When we applied that calculation to our combined data, we found a crude secondary attack

rate estimate of 15.6%. We traced the major source of this substantial underestimate to the

assumption of perfect test specificity inherent in the crude formula.

Our second major finding of overdispersion of household transmission stemmed from our

use of the beta-binomial distribution to quantify the number of household transmissions from

infected individuals. We quantified individual-level variability in transmissibility using a dis-

persion parameter dh, and the optimal value occurred at low dispersion (high variability; dh =

0.43). The more commonly used binomial model, a special case of our model at minimal vari-

ability (dh!1), was rejected, suggesting that transmission patterns are not well captured by

that simplifying assumption.

Our dispersion parameter estimate is not directly comparable to another commonly used

dispersion parameter, often named k, that characterizes variability in the total number of

transmissions (whether household or not) from each infected person as a parameter of the
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negative binomial distribution [17]. We converted dh to k in the context of simple model in

which the only source of variability is a person’s transmissibility per unit time in contact with

others, finding k = 0.18, similar to other published results for SARS-CoV-2. This similarity per-

haps suggests that variability in infectivity per time is a major driver of overall transmission

variability for SARS-CoV-2. This could be consistent with findings that viral shedding is highly

variable by individuals with SARS-CoV-2 infections, both during asymptomatic and symp-

tomatic phases of disease, suggesting that heterogeneous transmissibility may be largely

explained by overdispersion in levels of viral shedding by individuals [33]. However, other

studies suggest that SARS-CoV-2 transmission overdispersion in the wider population beyond

households may be less driven by biological heterogeneity and more by heterogeneous social

contact behavior [34].

The level of within-household transmission variability captured by the parameter dh affects

the contribution of household transmission toward threshold levels of overall transmission.

Threshold conditions are often expressed using a reproduction number (R), the average num-

ber of transmissions from each infected person. The average number of household transmis-

sions directly from an initially infected household member (Rh) is independent of dh, but dh
does affect the average number of household transmissions in the next generation, i.e. by

someone who acquired infection from a housemate. When transmission variability is higher,

the household transmission potential of a household acquirer is lower, reducing to zero in the

“all-or-nothing” limit dh = 0. To capture this effect, we introduced an alternate reproduction

number R�h, which is the average number of total household transmissions after the initial

introduction, when final household outbreak size has been reached.

Neither Rh>1 nor R�h > 1 are sufficient threshold conditions for sustained transmission in

a community, which requires some level of between-household transmission to be maintained.

Given our estimate of R�h = 1.45 (0.94–2.05), we can estimate the critical value of Rc, the average

number of non-household community transmission that would push transmission for the

population above the supercritical threshold for a growing epidemic, with the threshold condi-

tion Rc > 1=ðR�h þ 1Þ. Thus, we estimate that Rc must be kept below approximately 0.41 (0.33–

0.52) to avoid continued case growth in Utah if household transmission continues to be well

characterized by our model. As this result depended on the average household size in our data,

it is notable that Utah has the highest state-average household size in the United States. The

average household size in Utah is 3.1, about 20% higher than the national average household

size. Thus, our Rh estimate may be high compared to other locations. A lower value of Rh

would lead to a higher threshold value for Rc.The potential contribution of interventions to

reduce household transmission may also be important. Using the terms defined above, if Rc<1

but RcðR�h þ 1Þ > 1, then overall transmission is above-threshold but could be pushed below-

threshold by reducing household transmission alone, such that R�h < 1=Rc � 1. Methods to

reduce household transmission might include increased used of at-home testing to earlier

detect potential asymptomatic or pre-symptomatic transmitters, paired with increased use of

masks, disinfectants, and/or distancing within homes of an infectious person [35].

This study has several limitations. Our estimate of high household transmission variability

may not be robust to alternate assumptions for the way community acquisition risk varies by

household. For example, some households could have been comprised of families with both

parents working essential jobs during Spring/Summer 2020, with children attending in-person

day care or camps, thus placing the entire household at much higher risk of community acqui-

sition compared to households working / caring for children at home. Also, households could

have high collective community acquisition probability via attending multi-household gather-

ings of extended family or other social groups. In these ways, households conceivably could
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vary considerably in their infection numbers for reasons that don’t involve within-household

transmission.

We tested the implications of this alternate possibility for household variability in our

model by allowing variability in community acquisition by household using an additional dis-

persion parameter to the MLE model (Supplementary Results in S1 File). Interestingly, the

MLE for the transmission dispersion parameter dh still occurred at high variability in house-

hold transmission (d̂h = 0.21) under this alternate model. Furthermore, the improvement in

likelihood was not substantial, such that the more complicated model would not be favored by

the likelihood ratio test nor the Akaike information criterion. However, larger uncertainty

ranges under the alternate model suggest that we may not be able to definitively rule out the

possibility that variability in community acquisition risk by household plays a substantial role

in explaining overall variability in household infection numbers.

It is also possible that household transmission variability could be driven by properties of

households such as contact behavior, underlying health composition of household members,

physical properties of the domicile such as size and ventilation, or other properties that could

increase transmission risk of all household members together. Possible variability in person-

to-person transmission probability by household, rather than by individual, is not accounted

for in our model. Using a beta distribution for this probability across different households to

arrive at an alternate final size distribution would require integrating the beta distribution over

the full final size distribution equations produced by the binomial-chain model, which would

be complicated for larger households. Alternatively, one could model a functional relationship

between observed properties of a household in the dataset and its average transmission proba-

bility, while retaining dispersion occurring at the individual level. We have not attempted this

with our data; we suspect that the sample size of outbreaks in households with a given feature

would not be large enough to draw meaningful conclusions, but this could be an important

direction of future work enhanced by a larger dataset.

Another limitation lies in our potentially inaccurate assumptions used to quantify the prob-

ability of prior infections among those with missing data within participating households.

Most non-participating individuals within participating households were children under 12,

who were not offered antibody tests. Older participants could fill out surveys on behalf of chil-

dren of any age, including reporting of prior positive tests, but participation in that option was

low. Thus, our assumption that non-participants had equal community acquisition rates, sus-

ceptibility to acquisition from another household member, and transmissibility to other

household members compared to study participants would be violated if children were sub-

stantially different from adults in one or more of those quantities. Our assumption is consis-

tent with studies finding similar transmission rates to and from children compared to adults.

In a study of COVID-19 clusters linked to day care centers within our study area in Utah [36],

42% of the cases occurred in children, who represented 60% of the people with epidemiological

contacts to the facilities. The infected children (median age 7) transmitted infection to at least

26% of their non-facility contacts, close to our household estimate. Another study found that

children under 10 in China were as likely to be infected as adults [37]. However, other studies

suggest that children may be less likely to acquire infection than adults [38], and one study

found very low household secondary attack from infected children in South Korea [39]. A

study similar to ours found lower rates of importation and household acquisition among chil-

dren aged 5–9 compared to older groups, although confidence intervals overlapped [15]. If

substantial differences existed between children under 12 and our study participants, one or

more of our estimates could be biased.
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In addition, many eligible participants older than 12 chose not to participate, either declining

the serological antibody test only (but still filling out a survey) or declining to participate at all.

Comparing full participants to survey-only participants, we found that participants reporting a

prior positive SARS-CoV-2 test were less likely to agree to antibody testing, though the difference

was not large (63.0% vs. 72.8%). It is unknown whether a prior confirmed or suspected infection

affected eligible household members’ decision to agree or decline to fill out a survey. The full set

of surveyed participants had different distributions of reported age, sex, race, Hispanic origin, and

education level compared to the wider population, and future work could assess the implications

of those differences for extrapolating COVID-19 risk to other households.

We also have not adjusted for potential biases related to non-participation rates of entire

households that were selected and approached for inclusion in the study. Our data collection

included a complicated sampling design across several different strata, and weights were intro-

duced partly to account for different rates of nonresponse across the different strata. For sim-

plicity we ignored these details and sampling weights for the analysis presented here. Also,

while the 7 included Utah counties represent >86% of the state population, there may be

important differences in households from the 22 excluded counties. Thus, households with

higher COVID-19 risk may be overrepresented or underrepresented in our data relative to

their frequency in the broader population of households in Utah.

Other potential limitations due to simplifying assumptions could be addressed in future

work by relaxing those assumptions, such as assuming different prior infection probabilities

for those who reported prior negative tests vs. those who reported never being tested and

including the probability of active infections at the time of serological testing. Although these

potential limitations, which also exist for other analyses of household transmission from sero-

logical data [13–15], remain in our analysis, we believe our model has addressed other limita-

tions of existing models that may be more substantial. Our improvements to household

secondary attack rate estimates, including factoring out non-household community acquisi-

tions and tertiary transmissions, inclusion of overdispersion estimates, and careful consider-

ation of the impact of imperfect test sensitivity and specificity, have produced improved

insights into this important measure. While the likelihood equations resulting from our model

are somewhat complicated, we have demonstrated that the complications introduced by

including 7 unknown model parameters are justified by systematically comparing its perfor-

mance against simpler models, using criteria that seek to balance goodness of fit with simplic-

ity. Furthermore, we have provided full mathematical specification and computational code

for reproducibility. The ability to explicitly calculate the likelihood for our model is an advan-

tage for optimization speed and further mathematical analysis, and extensions to the epidemi-

ological household model can readily be simulated to explore potential improvements.

In conclusion, we found evidence of a relatively high secondary attack rate and high over-

dispersion in transmission of SARS-COV-2 in Utah households during a time when overall

community prevalence was low. Other published household secondary attack rates may be

underestimated without accounting for imperfect test sensitivity and specificity. Controlla-

bility of the virus may depend on mitigating transmission from a minority of highly infectious

individuals in large households and other household-like locations where several people con-

gregate indoors for extended periods.
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