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Transcranial current stimulation (tCS) techniques have been shown to induce

cortical plasticity. As an important relay in the motor system, the cerebellum

is an interesting target for plasticity induction using tCS, aiming to modulate

its excitability and connectivity. However, until now it remains unclear, which

is the most effective tCS method for inducing plasticity in the cerebellum.

Thus, in this study, the effects of anodal transcranial direct current stimulation

(tDCS), 50 Hz transcranial alternating current stimulation (50 Hz tACS), and

high frequency transcranial random noise stimulation (tRNS) were compared

with sham stimulation in 20 healthy subjects in a within-subject design. tCS

was applied targeting the cerebellar lobe VIIIA using neuronavigation. We

measured corticospinal excitability, short-interval intracortical inhibition (SICI),

short-latency afferent inhibition (SAI), and cerebellar brain inhibition (CBI) and

performed a sensor-based movement analysis at baseline and three times

after the intervention (post1 = 15 min; post2 = 55 min; post3 = 95 min).

Corticospinal excitability increased following cerebellar tACS and tRNS

compared to sham stimulation. This effect was most pronounced directly

after stimulation but lasted for at least 55 min after tACS. Cortico-cortical and

cerebello-cortical conditioning protocols, as well as sensor-based movement

analyses, did not change. Our findings suggest that cerebellar 50 Hz tACS is

the most effective protocol to change corticospinal excitability.

KEYWORDS
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Abbreviations: AMT, active motor threshold; ANOVA, analysis of variance; CBI, cerebellar brain
inhibition; CS, conditioning stimulus; EMG, Electromyography; FDI, first dorsal interosseous
muscles; IMU, inertial measurement units; ISI, interstimulus interval; KL-divergence, Kullback-
Leibler divergence; M1, primary motor cortex; MEP, Motor evoked potential; NIBS, Non-invasive
brain stimulation; ProMPs, Probabilistic Movement Primitives; RMT, resting motor threshold; tACS,
transcranial alternating current stimulation; tCS, transcranial current stimulation; tDCS, transcranial
direct current stimulation; (hf-)tRNS, (high-frequency) transcranial random noise stimulation; TMS,
transcranial magnetic stimulation; TS, test stimulus; SAI, short-latency afferent inhibition; SICI,
short-latency intracortical inhibition.
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Introduction

The cerebellum plays an important role in sensorimotor
integration, cognitive tasks, and emotional processing (Stoodley
and Schmahmann, 2009), rendering it an interesting target
region for non-invasive brain stimulation (NIBS) to alter
its excitability and connectivity. Beside repetitive transcranial
magnetic stimulation, transcranial current stimulation (tCS)
paradigms are NIBS techniques, which are based on the
application of a low-intensity current flow between two
electrodes. The tCS technique currently most commonly used
is transcranial direct current stimulation (tDCS). However,
the effects of tDCS show large inter- and intra-individual
variability (Batsikadze et al., 2019). Therefore, other methods
including transcranial alternating current stimulation (tACS)
and transcranial random noise stimulation (tRNS) might be
interesting alternatives (Naro et al., 2017; Miyaguchi et al., 2020).

TACS has already been used for cerebellar stimulation with
frequencies ranging from 5 Hz to 300 Hz with different results
(Naro et al., 2016, 2017; Miyaguchi et al., 2019, 2020; Wessel
et al., 2020; Schubert et al., 2021; Spampinato et al., 2021).
One reason for using different frequencies is related to the fact
that different target cell populations have different oscillatory
properties. It has been shown that when using low intensities,
stimulation frequencies close to the endogenous oscillation
frequency induce the strongest spiking resonance at a cellular
level (Reato et al., 2010). When using higher intensities, effects
can also be induced at subharmonics, and the power of the
endogenous frequency may be modulated (Reato et al., 2010,
2013). As Purkinje cells have an endogenous firing rate of about
50 Hz (Raman and Bean, 1999) and play an important role
in coordination, 50 Hz seems to be a promising frequency to
influence movements and coordination, especially when using
low intensities. However, concerning 50 Hz, previous studies
revealed different results. Whereas motor performance of the
upper limb was reported to be improved after offline tACS (Naro
et al., 2017), online tACS it did not improve or even impaired
the acquisition of a motor skill when used online (Wessel et al.,
2020; Giustiniani et al., 2021). Also, neurophysiological results
differed between studies: While Naro et al. (2016) found a
reduction of cerebellar brain inhibition (CBI) and an increase
of motor evoked potential (MEP) amplitudes, other studies
showed no changes in cortical excitability (Spampinato et al.,
2021). Reasons for these differences are probably related to
the use of different protocols including on-/offline stimulation,
which is very relevant because of the known state-dependency
of tACS effects (Feurra et al., 2013), stimulation duration, and
different methods to investigate CBI.

In contrast to tACS, during tRNS the current alternates
with randomized frequencies ranging from 0.1 to 640 Hz.
In a recent study, 20 min of left primary motor cortex
(M1) tRNS stimulation was more efficient in increasing motor
cortex excitability compared to tDCS and 140 Hz tACS

(Inukai et al., 2016), which was probably mediated by the high-
frequency spectrum (> 100 Hz) (Terney et al., 2008). Due to
its high efficacy when applied to M1, positive findings following
the application to other brain regions including the dorsolateral
prefrontal cortex (Pena et al., 2019) and its possible differential
effect regarding location and frequency of the stimulation
(Campana et al., 2016), tRNS might be a promising tool for
cerebellar stimulation. Given the limited experience with tRNS
and its mode of action, the expected effects are currently largely
unclear, so its use has to be considered exploratory.

To our knowledge, due to the high variability of study
protocols and modes of application used in different studies no
standardized comparison has been carried out between tDCS,
tACS, and tRNS in the same study population (Kumari et al.,
2019; Antal et al., 2022). To fill this gap, we directly compared
anodal tDCS, 50 Hz tACS, and high-frequency tRNS (hf-tRNS)
with sham stimulation as to their efficacy to induce plasticity in
the cerebellum.

We examined the size of MEPs because MEPs reflect
corticospinal excitability, which has been shown to be increased
following tACS (Naro et al., 2017). To investigate the excitability
of the cerebello-thalamo-cortical pathway, we included CBI as
an additional readout. To test CBI, a conditioning stimulus is
applied to the cerebellum before stimulating the contralateral
M1, which decreases cortical excitability reflected in reduced
MEP amplitudes (Ugawa et al., 1995; Werhahn et al., 1996).
This effect is thought to be mediated by the activation of
Purkinje cells reducing the excitatory drive of dentato-thalamo-
cortical pathways (Celnik, 2015). CBI can thus be taken as a
marker of Purkinje cell excitability, which is likely modulated
by tCS, e.g., following 50 Hz tACS (Naro et al., 2017). We
also tested short-interval intracortical inhibition (SICI), where
a subthreshold conditioning stimulus over M1 precedes a
suprathreshold pulse given to M1 by 1 to 6 ms (Berardelli
et al., 2008). It is a measure of GABA A-ergic mediated
M1 inhibition and has been documented to be modifiable
by cerebellar tDCS and a conditioning cerebellar TMS pulse,
but not by 50 Hz tACS (Daskalakis et al., 2004; Ates et al.,
2018; Spampinato et al., 2021). The effects of tRNS on SICI
are currently unclear. Because of the important role of the
cerebellum for sensorimotor processing (Dubbioso et al., 2015;
Yildiz et al., 2018) we also included short-latency afferent
inhibition (SAI) where a peripheral nerve is stimulated before
stimulation of the contralateral M1 (Chen et al., 1999) as a
readout. Finally, to capture tCS effects on motor performance,
we measured arm movements using inertial measurement
units (IMUs). In previous studies, kinematic measurements
including IMUs or optoelectronic devices have successfully
been used to investigate patients with cerebellar dysfunction
including those with ataxia and dystonia (Bologna et al.,
2016; Krishna et al., 2019). Thus, to capture the effects
of the different tCS techniques on the excitability/activity
of the cerebellum and interconnected pathways we used a
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comprehensive battery of behavioral and neurophysiological
measures.

Materials and methods

Study design, participants, and
questionnaire

We investigated 20 healthy, right-handed subjects (12
female, mean age 23 years; range: 20–31 years) without self-
reported neurologic or psychiatric disorders. All of them were
examined at four different time points to evaluate the effects
of three different cerebellar tCS techniques (i.e., anodal tDCS,
50 Hz tACS, and high-frequency tRNS) in comparison to
sham stimulation. The interval between interventions was at
least 1 week to avoid carry-over effects. Measurements were
performed at the same time of the day (either at 9 am or 1
pm) in every session of each subject. The order of interventions
was randomized between subjects. The subjects were blinded
regarding the used tCS method.

Every session began with a training of the motor task, as
described below. Before and three times after tCS (pre = before
stimulation; post1 = 15 min; post2 = 55 min; post3 = 95 min)
(see Figure 1A) we determined resting and active motor
thresholds (RMT and AMT) and MEP amplitudes. We also
performed dual-pulse paradigms to evaluate SICI, SAI, and CBI.
In addition, three-dimensional (X, Y, Z) acceleration profiles
of wrists and hands during a motor task were analyzed using
sensors. Measurements were performed in the same order at
all time points as follows: (i) MEP, RMT, and AMT; (ii) paired
pulse measurements; (iii) movement task. All conditioned MEPs
were collected in randomized order within one measurement.
Cerebellar stimulation was performed on the right side, e.g.,
contralateral to the left M1 stimulation. The movement analyses
were performed bilaterally.

After each tCS session, all participants completed
a questionnaire addressing the side effects of cerebellar
stimulation in general (vertigo, change in coordination ability),
of tCS (local heat, skin sensations), and of TMS (headache). All
side effects had to be evaluated on a visual analog scale from 0 to
10 with 0 indicating “no effect” and 10 “the strongest imaginable
effect.”

Additionally, the participants were asked on their last day,
which day they believed to be the day of sham stimulation, and
which measurement day was the most/the least comfortable.
The questionnaire is available as Supplementary material.

Neuronavigation

To precisely target the stimulation site previously identified
in an individual T1-weighted MRI scan, we used the Brainsight

neuronavigation system (Rogue Research, Montreal, Canada)
in combination with the Polaris camera (Northern Digital,
Ontario, Canada). The stimulation site for M1 was marked
at the hand knob, but was always verified by determining
the neurophysiological “motor hot spot,” i.e., the location
where TMS pulses administered at a suprathreshold intensity
consistently produced the largest MEPs.

For cerebellar stimulation, we chose lobule VIIIA, because
it has been shown to be important for the execution of motor
tasks and learning processes (Stoodley and Schmahmann, 2009;
Guell and Schmahmann, 2020). Due to its superficial location,
it is reachable via TMS and tCS and has already been used as a
target in other TMS studies (Popa et al., 2013).

Transcranial magnetic stimulation
measurements

Experimental setup
The experimental setup for TMS was similar to previous

published TMS studies (Weissbach et al., 2015, 2017). Each
subject was seated in a comfortable position with the arms
positioned on a pillow if necessary to avoid muscle tension.
Additionally, participants were regularly instructed to relax their
body with open eyes. Electromyography (EMG) was measured
over the right first dorsal interosseus muscles (FDI) by Ag/Ag-
Cl disk surface electrodes in a belly tendon montage. The earth
electrode was fixed at the wrist. A D360 amplifier (Digitimer
Limited, Welwyn Garden City, Hertfordshire, United Kingdom)
was used to filter (20 Hz and 2 kHz) and amplify EMG signals.
With a laboratory interface (Micro 1401; Cambridge Electronics
Design (CED), Cambridge, United Kingdom) the EMG signal,
which was sampled at 5 kHz, was digitized and recorded. Data
was stored on a personal computer using the SIGNAL software
(Cambridge Electronic Devices, Cambridge, United Kingdom).

Single-pulse and conditioned transcranial
magnetic stimulation

TMS pulses were generated by two Magstim 2002 and
one Magstim 200 magnetic stimulator (Magstim Company,
Whitland, Dyfed, United Kingdom). Left M1 and right
cerebellum were stimulated by a 70 mm figure-of-eight-shaped
coil (Magstim Company, Whitland, Dyfed, United Kingdom).
For cerebellar stimulation, the coil was positioned tangentially
to the scalp with the handle directed upward, as it has frequently
been used in previous studies to examine CBI (Carrillo et al.,
2013; Brusa et al., 2014; Koch et al., 2014; Benussi et al.,
2018, 2019). We did not opt for a double-cone coil, since our
participants did not tolerate such stimulation due to pain and
discomfort.

MEPs were generated by a suprathreshold intensity evoking
an MEP of about 1 mV. Before and after the intervention,
the same stimulator output was used for the measurements
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FIGURE 1

Study design. (A) Experimental setup: In every session the timetable was as shown here. Before and after the plasticity induction the same
measurements were performed. After the whole day, a questionnaire was answered. AMT, active motor threshold; RMT, resting motor
threshold; MEP, motor evoked potential; SICI, short-interval intracortical inhibition; SAI, short-latency afferent inhibition; CBI, cerebellar brain
inhibition; tACS, transcranial alternating current stimulation; tDCS, transcranial direct current stimulation; (hf-)tRNS, (high-frequency)
transcranial random noise stimulation. (B) Experimental setup for behavioral task. (C) Setup for transcranial current stimulation.

of unconditioned MEPs. RMT was defined as the lowest
intensity capable to produce 5 out of 10 MEPs with an
amplitude between 50 and 100 µV at a resting FDI. AMT was
defined as the lowest possible intensity required to produce
5 out of 10 MEPs > 150 µV at an activated FDI with 10%
of maximum voluntary contraction using a Martin-Balloon-
Vigorimeter (KLS Martin, Tuttlingen, Germany). Cerebello-M1
interaction was probed with an interstimulus interval (ISI) of
5 ms and an intensity of the CP of 90% RMT (Carrillo et al.,
2013; Brusa et al., 2014; Koch et al., 2014; Benussi et al.,
2018, 2019). For the unconditioned MEPs, as reference for the
conditioned MEPs, the test stimulus (TS) intensity was adjusted
to produce an amplitude of 1 mV before and after plasticity
induction.

For SAI, TMS pulses were preceded by conditioning
electrical pulses of the right index finger with an ISI of 25 ms.
A pair of ring electrodes was placed with the cathode at the
proximal part of the right index finger and the anode 2 cm
distally at the middle part of the finger. Electrical stimulation
was performed using a Digitimer Constant Current DS7A
Stimulator (Digitimer Limited, United Kingdom) and consisted
of a brief pulse (0.1 ms duration, 500 V) with an intensity
of threefold the individual’s sensory perception threshold. The
threshold was defined as the lowest current intensity that was
regularly detected by the subject (Tokimura et al., 2000; Ganos
et al., 2014; Weissbach et al., 2015, 2022; Turco et al., 2021).
The target MEP amplitude was 1 mV. For SICI measurements, a

conditioning stimulus (CS) (100% AMT) was applied with an ISI
of 3 ms before a suprathreshold TS that was set to elicit an MEP
response of about 1 mV as described before (Brown et al., 2019).
Given that the AMT is lower than the RMT and SICI was tested
at rest, CS with 100% AMT did not induce MEP, so we ensured
that the CS was subthreshold (as required by the definition of
SICI) (Berardelli et al., 2008).

Sensor-based movement analysis

For movement analysis, all participants performed an easy
task, where they had to alternately touch two fixed points,
which were 30 cm apart from each other. We opted for this
task because we wanted to avoid additional learning/plasticity
effects. Additionally, for sensor-based analysis it is important
to limit the degrees of freedom. The task was adapted
from the finger-nose test of the Scale for the Assessment
and Rating of Ataxia (SARA), which is frequently used to
measure clinical cerebellar symptoms in ataxia patients. To
capture the participants motion trajectories, IMUs (aktos-
t sensor, myon, Schwarzenberg, Switzerland), were fixed on
both hands and wrists (see Figure 1B). The participants
were instructed to perform repetitive tapping with both
hands (one after the other) between two fixed sensor-pads
(which provided a binary signal indicating a physical contact;
distance: 30 cm) in two different directions (horizontal/vertical)
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and two different velocities (representing different difficulty
levels; 1,5 Hz; as fast as possible). In every task, 30 tapping
cycles were performed. Every task was recorded separately.
We recorded eight different tasks at each time point. For
further analysis, we used Probabilistic Movement Primitives
(ProMP) (Paraschos et al., 2013), which are widely used
in modeling robot motions (Paraschos et al., 2017; Gomez-
Gonzalez et al., 2016) and human motions (Lim et al.,
2005; Kohlschuetter et al., 2016). In contrast to conventional
approaches (Bologna et al., 2016; Kwak et al., 2020; Markovic
et al., 2020), ProMPs, as a Machine Learning approach,
can effectively learn the features describing the trajectory
shape automatically. Compared to other deterministic models
providing only the mean values, a probabilistic characterization
is more informative and robust. The general principle of
ProMPs is as follows: It assumes a weighted combination
of a set of pre-specified basis functions distributed in
time (i.e., features). The weights of each feature can be
directly learned from the demonstrations and be fitted to
trajectories featuring arbitrary shapes. To demonstrate the
level of difference between two sets of trajectories, which
corresponds to the comparison sets we would investigate,
further probabilistic distance measures can be applied to
the learned feature space. Before using ProMPs to analyze
the trajectories, data were post-processed using segmentation,
alignment, and normalization over time. With the learned
weights of ProMPs as a feature representation, we performed
a symmetric version of Kullback-Leibler divergence (KL-
divergence) (Johnson and Sinanovic, 2001) between sets of
trajectories to measure the effect of plasticity induction
[for details see Xue et al. (2021)]. The KL-divergence
describes the difference between two probability distributions.
Additionally, we used the standard deviation to measure the
exactness of movements. All in all, the ProMPs are used to
find distinct differences in the three-dimensional movement
patterns, although the features are not directly convertible in
specific movements themselves, but an abstract description of
movement properties.

Transcranial current
stimulation/plasticity induction

Anodal tDCS, 50 Hz tACS, and high frequency tRNS (with
frequencies between 100 and 640 Hz) were used and compared
to sham stimulation.

For all tCS methods, we used the same electrode montage:
Using the Brainsight neuronavigation system the anode was
placed to target the right cerebellar lobule VIIIA, the cathode
was placed on the right cheek (masseter muscle) (see Figure 1C).
This montage [“Celnik-Montage”; (Galea et al., 2009)] was
frequently used in the past (Wessel et al., 2016; Jackson et al.,
2019; Spampinato et al., 2021) and has been shown to generate

an efficient and side-specific electric field (Rezaee and Dutta,
2019).

Stimulation was performed with a DC-Stimulator plus
(neuroCare, Munich, Germany) for 20 min with an intensity of
1 mA, transmitted over 3 cm × 3 cm rubber electrodes evenly
covered with conductive paste (Ten20 conductive electrode
paste; Weaver and Company, United States), so current density
was 0.11 mA/cm2.

For tDCS and tRNS, fade in/out was set to 10 s, for 50 Hz
tACS to 100 cycles (2 s) because it was technically not possible
to set it on 500 cycles. Setting down fading in/out on 2 s for
tDCS/tRNS was not possible due to painful sensations. Apart
from that, all stimulation parameters were the same to generate
comparable stimulation conditions.

For sham stimulation, we used tDCS, which faded out after
60 s of stimulation, a method that has previously been used
(Gandiga et al., 2006; Jackson et al., 2019).

During the stimulation, the participants remained seated,
with eyes open, having the possibility to eat or drink something,
and were allowed to ask questions.

Data analysis and statistical analysis

MEP peak-to-peak amplitudes were measured in each trial.
Conditioned/dual-pulse MEPs were expressed as a percentage
of unconditioned MEPs. For statistical analysis, multifactorial
analysis of variance with repeated measures (ANOVA) using
the factors INTERVENTION (sham, tACS, tRNS, tDCS) and
TIME (pre, post1, post2, post3) was performed. If ANOVA
resulted in a significant p-value (p≤ 0.05) for INTERVENTION,
follow-up ANOVA was performed separately for each method
with the factor TIME performing Bonferroni-Holm-corrected
student t-test for post hoc testing. For dual-pulses, an additional
ANOVA using the factors INTERVENTION (sham, tACS,
tRNS, tDCS), TIME (pre, post1), and CONDITIONING
(conditioned, unconditioned) was performed to analyze the
effect of the CS.

For sensor data, we calculated the standard deviation of all
averaged trajectories as a marker for exactness and performed
an ANOVA with those data using the following factors:
INTERVENTION (sham, tACS, tRNS, tDCS), TIME (pre, post1,
post2, post3), DIRECTION (horizontal, vertical), VELOCITY
(fast, slow), and HAND (right, left). To better distinguish the
effects, we also calculated separated ANOVAs for right- and
left-hand experiments as well as fast and slow movements with
the same factors except for HAND or VELOCITY, respectively.
To test for potential effects over time between interventional
blocks we performed a multifactorial ANOVA comparing
pre-interventional data using the factors DAY (Day 1–4),
VELOCITY (fast/slow), HAND (right/left), and DIRECTION
(vertical/horizontal). For further analysis, we fit the sensor
data using ProMPs and characterized the difference between
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two sets of trajectories using symmetric KL-divergence for
each participant, each post-stimulation phase, each stimulation
approach, and each experimental configuration, respectively.
By that, we detected corrupted data (datasets where technical
problems occurred) and outliers defined as cases, where
symmetric KL-divergence value exceeded the confidence level
of 3σ rules. Due to the unfavorable distribution of outliers (4%,
but in 30% of the subjects) we did not perform ANOVA with
KL-divergences but narrowed descriptive statistics using mean
values and standard error.

To analyze the recognition of sham as well as the most/least
comfortable stimulation we performed X2 Goodness of fit test
with 5 variables (sham, tACS, tRNS, tDCS, n.a.), hypothesizing
a balanced frequency.

Ethical statement

The experimental procedure was approved by the local
Ethics Committee of the University of Lübeck and performed
according to the ethical standards laid down in the Declaration
of Helsinki. Informed and written consent was obtained from
all participants.

Results

Effects on unconditioned motor
evoked potentials and motor
thresholds

Raw data for RMT, AMT, and TS (MEP) are given in
Supplementary Table 1.

Multifactorial ANOVA of MEP amplitudes showed a main
effect of TIME [F(2.36) = 19.56, p ≤ 0.001, η2

p = 0.507],
INTERVENTION [F(3) = 3.60, p = 0.019, η2

p = 0.159], and
an interaction of INTERVENTION and TIME [F(9) = 2.75,
p = 0.005, η2

p = 0.126] indicating that the interventions have
different effects on corticospinal excitability. Analyzing the
interventions separately, ANOVAs revealed time effects for
tACS [F(3) = 8.65, p < 0.001, η2

p = 0.313], tRNS [F(3) = 8.68,
p < 0.001, η2

p = 0.314] and tDCS [F(2.01) = 6.5, p = 0.004,
η2

p = 0.255], but not for sham [F(3) = 0.198, p = 0.897,
η2

p = 0.010]. Post hoc test revealed an increase of unconditioned
MEP amplitudes after tACS (p = 0.001) and tRNS (p = 0.002)
compared to the baseline measurements at post1. tACS effects
persisted up to 55 min after stimulation (post2 compared to
pre; p = 0.022). Sham stimulation had no effect. There was
no significant effect comparing post1/2/3 to pre for tDCS (see
Figure 2).

For AMT, multifactorial ANOVA revealed an effect of
TIME [F(1.87) = 12.29, p ≤ 0.001, η2

p = 0.393], and an
interaction of TIME and INTERVENTION [F(4.15) = 2.99,

FIGURE 2

Analysis of MEPs. MEPs mean values pre and post interventions
are shown. Error bars representing the standard error of the
mean. ∗Represents a p-value < 0.05, ∗∗ represents
p-value < 0.01 and ∗∗∗ p-value < 0.001 in
Bonferroni-Holm-corrected t-test. Significant increase of MEP
after tACS at post1 compared to pre (p = 0.001) and post2
compared to pre (p = 0.018). Significant increase of MEP after
tRNS at post1 compared to pre (p = 0.002). MEP, motor evoked
potential; FDI, first dorsal interosseous muscles; tACS,
transcranial alternating current stimulation; tDCS, transcranial
direct current stimulation; tRNS, transcranial random noise
stimulation. post1 = 15 min; post2 = 55 min; post3 = 95 min
post intervention.

p = 0.022, η2
p = 0.136]. No effect for INTERVENTION was

found [F(3) = 1.53, p = 0.217, η2
p = 0.074].

For RMT ANOVAs did not show any effects.
Taken together, tACS increased corticospinal excitability

and the effect persisted for at least 1 h, while the effect of tRNS
persisted at least for 15 min.

Effects on conditioned motor evoked
potentials

Raw data for TS (SICI, SAI, CBI) are given in
Supplementary Table 1.

Comparing the absolute amplitudes of conditioned and
unconditioned MEPs for SICI, SAI and CBI prior to the
intervention a conditioning effect was present for SICI
[F(1) = 91.125, p ≤ 0.001, η2

p = 0.827] and SAI [F(1) = 47.0314,
p≤ 0.001, η2

p = 0.712] but not for CBI [F(1) = 2.2164, p = 0.153,
η2

p = 0.104].
Multifactorial ANOVA of the conditioned MEPs relative to

the TS revealed, that there was no effect on SICI regarding
the factors TIME [F(3) = 1.031, p = 0.386, η2

p = 0.051] or
INTERVENTION [F(3) = 0.367, p = 0.777, η2

p = 0.019] nor
interaction of factors [F(9) = 1.741, p = 0.671, η2

p = 0.038]. Also,
for SAI there was no effect of TIME [F(3) = 2.560, p = 0.064,
η2

p = 0.119] or INTERVENTION [F(3) = 0.742, p = 0.531,
η2

p = 0.038] or interaction of factors [F(9) = 1.653, p = 0.104,
η2

p = 0.080]. The same was the case for CBI. There was no
effect of TIME [F(3) = 1.014, p = 0.393, η2

p = 0.051] or
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INTERVENTION [F(3) = 0.226, p = 0.878, η2
p = 0.012], and

no interaction of factors [F(9) = 0.398, p = 0.935, η2
p = 0.021].

To sum up, SICI, SAI, and CBI were not modulated by any
type of intervention (see Figure 3A–C).

Effects on movement trajectories

Regarding movement analysis, the standard deviation of
movement trajectories was sensitive enough to represent
expected differences in movement accuracy depending on
velocity, handedness, and time (represented in significant
effects regarding the factors TIME, HAND, VELOCITY, and
DIRECTION; all significant results of the ANOVAs are
presented in Supplementary Table 2, and estimated marginal
means in Supplementary Image 1). However, there was no
significant effect of the cerebellar stimulation INTERVENTION
[F(3) = 0.4618, p = 0.710, η2

p = 0.026] (see Figure 4).
Regarding the bioinformatic modeling, in all experiments

symmetric KL-divergences were between 0.5 and 2, which
cannot be interpreted as a pronounced discrepancy, whereas
a moderate level of difference should register the divergent
value larger than 5. We also applied a sliding window approach
on the time-normalized trajectories to examine the plasticity
effect in a millisecond scale, i.e., a fractional part of the time-
normalized trajectories. Also, in the sliding window approach,
no significant effect of stimulation and no learning effect

between the sessions was found in line with the observations in
standard deviation.

The ANOVA regarding effects over time revealed a
significant main effect for the factor DAY [F(1.9) = 12.073,
p < 0.001, η2

p = 0.482] and the interaction of DAY and
VELOCITY [F(1.81) = 9.487, p = 0.001, η2

p = 0.422]. This effect
can be explained by an increasing inaccuracy over time in the
fast movements condition, while the performance in the slow
movement condition did not change (Supplementary Image 1).
Since there is no improvement in performance, this finding
speaks against a learning effect over time.

Taken together, there was no specific effect of any
stimulation method on the movement trajectories.

Side effect questionnaire

There were no relevant side effects. Only after one sham
stimulation, a headache with an intensity of 4 on the visual
analog scale was reported. Besides, one participant reported
seeing flickering light when receiving tACS, which ended
directly after the stimulation. When asked which day they
believed they had received sham stimulation [X2(4) = 5.5;
p = 0.24], as well as which method was the most [X2(4) = 4;
p = 0.406] or least comfortable one [X2(4) = 2; p = 0.736], X2

goodness of fit test revealed an even distribution of answers
between the methods. This suggests that no method was more

FIGURE 3

Analysis of SICI, SAI and CBI. Conditioned MEPs relative to the test pulses pre and post interventions are shown. Error bars representing the
standard error of the mean. There is no effect of any cerebellar intervention on SICI (A), SAI (B) or CBI (C). SICI results in an inhibition of about
50%, SAI of about 20%. CBI does not influence the MEP. MEP, motor evoked potential; SAI, short-latency afferent inhibition; SICI, short-latency
intracortical inhibition; CBI, cerebellar brain inhibition. post1 = 15 min; post2 = 55 min; post3 = 95 min post intervention.
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or less comfortable than another, and that the participants
could not identify sham stimulation as such (see Figure 5).
Taken together, all tCS interventions appeared to be safe and
well-tolerated.

Discussion

To the best of our knowledge, this is the first sham-
controlled study investigating different cerebellar tCS
techniques intra-individually. The main finding of our
study is that corticospinal excitability, reflected by the MEP
amplitudes, is enhanced by tACS and tRNS. This effect lasted
longer after cerebellar tACS stimulation i.e., for at least an hour.
We found no effect of tDCS nor effects of any intervention on
CBI, SICI, SAI, or the behavioral parameters.

Previous data on cerebellar tCS are heterogeneous. In line
with our findings, an increase of corticospinal excitability after

cerebellar tACS (Naro et al., 2016, 2017) but no change of CBI,
SAI, or SICI was described previously (Doeltgen et al., 2016;
Spampinato et al., 2021). Also, in keeping with our results, no
effect of isolated anodal tDCS on motor cortex excitability has
been found before (Behrangrad et al., 2019). However, some
studies reported effects of tACS or tDCS on CBI, SICI, and
behavioral parameters but used a study design that differed
from ours regarding coil type (double cone coil), electrode size
(larger), and stimulation parameters (Galea et al., 2009; Naro
et al., 2017; Ates et al., 2018). For tRNS, no previous data on
cerebellar application exists.

The mechanisms of how tACS and tRNS influence neural
circuits are not fully understood. However, it has been
hypothesized that tACS modulates neuronal firing rates through
locking to their frequency and phase (Battleday et al., 2014).
In a recent animal study, it has been shown that Purkinje cells
could be entrained to external stimulation at certain frequencies
(Asan et al., 2020). Probably, this represents a resonance effect

FIGURE 4

Intervention effect on movement trajectories. Estimated marginal means of standard deviation for the interaction of the factors TIME and
INTERVENTION are shown. There is no effect of intervention over time. post1 = 15 min; post2 = 55 min; post3 = 95 min post intervention.

FIGURE 5

Post measurement questionnaire. Shown are the data of the subjects who were asked to rate which stimulation they thought do be sham and
which they found most unpleasant or pleasant. In addition to the 4 interventions, the selection “I cannot decide” was possible. There was no
difference between the methods regarding those parameters. tACS, transcranial alternating current stimulation; tDCS, transcranial direct current
stimulation; tRNS, transcranial random noise stimulation; n.d., no decision, e.g., “I cannot decide”.
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as cells were stimulated with their natural/baseline frequency,
e.g., 50 Hz. In humans, it has been shown that the stimulation
effect of tACS is state-dependent, i.e., that changes of oscillatory
activity were present when participants performed a task
(Alagapan et al., 2016). Besides, effects of cerebellar 10 Hz tACS
on the learning-related alpha power and premotor-cerebellar
connectivity could be shown recently (Schubert et al., 2021).
This underlines the relevance of network activity regarding
oscillatory brain activity. However, network responses after
tACS are variable and until now difficult to predict (Reato et al.,
2010).

Two different hypotheses are postulated for tRNS effects
with neuronal oscillations playing an important role. The first is
based on the influences of natural oscillations by a phenomenon
called “stochastic resonance” (van der Groen et al., 2019), i.e.,
that a non-linear system can be amplified by means of noise,
which leads to periodic exceeding of the threshold (Gammaitoni
et al., 1998). This in turn possibly leads to a higher sensitivity
to weak external input (Moss et al., 2004). Alternatively,
it was hypothesized that neurons with a sufficiently long
time constant could be influenced by the summation of the
stimulation effect of two or more following electric stimuli. This
is particularly relevant when using hf-tRNS, which avoids the
development of biochemical homeostasis during the stimulation
due to an inconstant influence on the ion channels and
consequently membrane potentials (Fertonani et al., 2011).
Regarding neurochemical mechanisms, it has been shown that
the effect of tRNS can be suppressed by benzodiazepines and
depends on sodium channels, but not on NMDA receptors
(Chaieb et al., 2015).

Probably, cerebellar tACS and tRNS reduce the inhibitory
output of the cerebellum, which leads to an increase of
excitability in cerebello-thalamo-cortical pathways. This was
reflected by an increase of unconditioned MEP amplitudes in
the present study. In animal studies, it has been shown that
the cerebello-dentato-cortical pathway can have both inhibitory
and excitatory effects on the motor cortex, mediated by different
interneurons (Na et al., 1997; Holdefer et al., 2000). In addition
to classical CBI that is thought to be caused by activation
of Purkinje cells, which in turn inhibit the excitatory effect
of cerebello-thalamo-cortical pathways and therefore lead to
a decrease of corticospinal excitability, it has recently been
hypothesized that a stronger activating effect of parallel fibers on
Purkinje cells could also lead to an increase of CBI (Celnik, 2015;
Spampinato et al., 2021). Taking this into account, there are
different explanations for the excitability changes in our study.
The stimulation could directly interact with the firing rate of
the Purkinje cells. Even if one predicts a short-term increase
in their activity due to a resonance effect after 50 Hz tACS,
the long-lasting after effect could be a result of a trans-synaptic
long-term depression-like effect, resulting from the modulation
in network activity over 20 min and subsequent biochemical
changes (D’Angelo, 2011). Alternatively, 50 Hz oscillations

could interfere with the firing rates of granule cells. Granule cells
are the only neurons with an excitatory output to the Purkinje
cells and the molecular layer interneurons (D’Angelo, 2011).
The stimulation could negatively influence their activating
output over parallel fibers on the Purkinje cells, as their natural
frequency lies in the theta band (5–7 Hz) (Gandolfi et al., 2013).
This could also lead to an increase of corticospinal excitability
due to the reduction of inhibitory influence of Purkinje
cells on cerebello-thalamo-cortical pathways. The possibility
of influencing Purkinje cells and/or inter-connected neuronal
circuits non-invasively potentially has high clinical relevance,
because especially the pathophysiology of alcohol-responsive
movement disorders, e.g., essential tremor and myoclonus
dystonia, seems to be related to activity of these cell types (Frucht
and Riboldi, 2020; Madelein van der Stouwe et al., 2020). All
these models explain an effect of stimulation of the cerebellum
via direct or indirect cerebello-neocortical projections. In our
study, we found an increase of MEP amplitudes but no effect
on intracortical excitability in the motor cortex nor an effect
on sensorimotor integration. The mechanism leading to the
increase in MEP amplitudes may have occurred at the cortical
level or in cerebellar spinal projections. This cannot be answered
unequivocally based on the available data. As spinal excitability
measures including direct current motor cortex stimulation,
H-reflex and F-response were not measured in our study,
the site of effective stimulation cannot be determined with
certainty.

When interpreting our results, some limitations need to be
considered. Given the lack of previous studies testing the effects
of tRNS on the measures determined in the present study, the
tRNS effects we found should be considered preliminary and
have to be replicated in future studies. Regarding CBI, we aimed
to compare cerebellar interventions in a representative sample.
Therefore, it was important not to pre-select our participants.
In a pilot study in our laboratory on CBI with a double-cone
coil used for cerebellar conditioning and also in other published
studies using this coil (Kassavetis et al., 2011), subjects did not
tolerate the procedure due to pain and discomfort. Therefore, we
used another published CBI protocol using a figure-of-eight coil,
and no participant had to be excluded in our study. Although
other studies (Carrillo et al., 2013; Brusa et al., 2014; Koch
et al., 2014; Benussi et al., 2018, 2019) with similar experimental
conditions found CBI, this was not the case in the present study.
In general, it is still unclear if figure-of-eight coils are capable
of activating Purkinje cells in the cerebellar cortex (Hardwick
et al., 2014; Fernandez et al., 2018). Therefore, we cannot make
any conclusions on the effect of cerebellar interventions on CBI.

Regarding SICI, in view of time constraints only one
conditioning intensity was tested, so that recruitment curves
could not be determined. Using lower intensities or recruitment
curves might have revealed different effects.

We could show that the sensors detected variability
changes of hand movements concerning speed, direction,
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handedness, and time course. However, there were no
intervention-specific changes of behavioral performance. This
is probably explained by the fact that the task we used
was too simple and not specific enough to target cerebellar
function. A sequence learning task might have been more
sensitive. Including such a task, however, might have caused
interference effects of (cerebellar) learning and plasticity
induced by tCS. Even though we tried to avoid such effects, a
possible influence of the motor task we used on our readouts
cannot be excluded.

Conclusion

Taken together, corticospinal excitability increased after
cerebellar tRNS and tACS, but not following cerebellar tDCS.
The effects of tACS lasted up to 1 h, i.e., longer than those
of cerebellar tRNS. These findings are relevant for clinical
applications of tCS.
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