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Exploration of urinary metabolite 
dynamicity for early detection 
of pregnancy in water buffaloes
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Early and precise pregnancy diagnosis can reduce the calving interval by minimizing postpartum 
period. The present study explored the differential urinary metabolites between pregnant and non-
pregnant Murrah buffaloes (Bubalus bubalis) during early gestation to identify potential pregnancy 
detection biomarkers. Urine samples were collected on day 0, 10, 18, 35 and 42 of gestation from the 
pregnant (n = 6) and on day 0, 10 and 18 post-insemination from the non-pregnant (n = 6) animals. 
1H-NMR-based untargeted metabolomics followed by multivariate analysis initially identified 
twenty-four differentially expressed metabolites, among them 3-Hydroxykynurenine, Anthranilate, 
Tyrosine and 5-Hydroxytryptophan depicted consistent trends and matched the selection criteria of 
potential biomarkers. Predictive ability of these individual biomarkers through ROC curve analyses 
yielded AUC values of 0.6–0.8. Subsequently, a logistic regression model was constructed using 
the most suitable metabolite combination to improve diagnostic accuracy. The combination of 
Anthranilate, 3-Hydroxykynurenine, and Tyrosine yielded the best AUC value of 0.804. Aromatic 
amino acid biosynthesis, Tryptophan metabolism, Phenylalanine and Tyrosine metabolism were 
identified as potential pathway modulations during early gestation. The identified biomarkers were 
either precursors or products of these metabolic pathways, thus justifying their relevance. The study 
facilitates precise non-invassive urinary metabolite-based pen-side early pregnancy diagnostics in 
buffaloes, eminently before 21 days post-insemination.

Livestock is crucial for global food security and livelihoods. Although demand for animal products is anticipated 
to increase significantly in the near future, the ensuing climate change will intensify the competition for resources, 
further demanding enhancement in productivity as well as efficiency from animal husbandry practices. The 
buffaloes, contributing about half of total milk production and 18.85% to meat production, are the backbone of 
Indian livestock sector1. Moreover, buffalo are gradually preferred as livestock species for dairy farming due to 
their inherent advantages, such as improved feed conversion efficiency and higher economic returns in terms 
of higher fat, milk and meat production. Considering 2003 as the base year, an approximately 18% increase is 
expected in the buffalo population by the year 20232. In India, the buffalo population in 2003 was reported to 
be 97.9 million and that has increased to 109.85 million in 2019, gaining almost 12% as per the outcome of the 
20th Livestock Census by the Department of Animal Husbandry & Dairying (DAHD), Govt. of India3. Among 
all buffalo breeds, Murrah is termed as ‘black gold’ in India due to high lactation yields and efficient adaptation 
to the dry plane topography. According to the statistics of Breed Survey 2013 by DAHD, Govt. of India, the 
share of Murrah was 44.39% (48.25 million) of the entire Indian buffalo population (108.70 million) in 20124.

The production profile of livestock is a flipside of their reproductive performance. Early pregnancy diagnosis 
alongside the factors regulating the smooth progression of healthy pregnancy are important aspects for opti-
mizing production as it can reduce the calving interval by identifying the non-pregnant animals, their timely 
treatment and rebreeding to optimise the postpartum interval. Early and accurate pregnancy diagnosis is pivotal 
to avert the economic loss exerted through undesired extension of the open period by delayed insemination in 
non-pregnant animals and slaughtering of the pregnant animals resulting from improper pregnancy diagnosis5,6. 
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The most commonly employed pregnancy diagnosis methods in buffaloes include per-rectal palpation that 
can detect pregnancy accurately but not earlier than 32 to 35 days post-insemination, while the other method, 
transrectal ultrasonography, serves the purpose only after 25 days of insemination7,8. As the estrous cycle repeats 
after 21 days and both the aforesaid methods are unable to detect pregnancy within 21 days of post-insemination, 
so escape of at least one estrous cycle in case of every unsuccessful conception stands inevitable. Further, the 
probability of escaping the estrous cycle in buffaloes is higher than other bovines as 15–73% of buffaloes present 
silent heat symptoms, particularly in the summer season5,9. So, the necessity of an alternate pregnancy diagnostic 
method in buffaloes before 21 days of post-insemination is still well-perceived and vividly justifies the objective 
of the current study.

Nuclear magnetic resonance (NMR) spectroscopy is a non-destructive technique to elucidate the structures 
and dynamics of molecules present in a biofluid. In NMR, the atomic species of the analytes under a static 
magnetic field exhibit differential nuclear spins when a second, time-dependent magnetic field is applied per-
pendicular to the static one, resulting in transitions of nuclear magnetic energy levels of the atomic species, 
yielding typical resonance spectra corresponding to the existing atomic species10. NMR-based urinary metabo-
lite profiling has been depicted as one of the most basic, yet efficient techniques to be extensively employed in 
biomarker discovery of diverse patho-physiological states across species11–20. In cattle, the most notable change 
in maternal metabolite profile was recorded around day 14–19 of implantation, when the process of maternal 
recognition of pregnancy took place with attachment of the filamentous blastocyst to the placental surface along 
with increased utero-placental blood flow with marked changes in the level of associated metabolites in blood 
and urine21,22. However, a promising outcome in NMR-based introspection of cervical mucous from dairy cows 
after 5 to 15 days of breeding has been reported to predict the pregnancy outcome with 94–98% efficiency based 
upon the assessment of peak asymmetry indices23. Maternal plasma metabolite dynamics during progression of 
healthy pregnancy in sheep has been explored through 1H NMR analysis. At four different time-points of gesta-
tion (50, 70, 90, and 110 days), thirteen significantly varying metabolites pertaining to amino acid metabolism 
and lipid metabolism have been identified, thus depicting the potential of this analytical modality to elucidate 
pregnancy-induced metabolic adjustments24. Serum metabolite biomarkers for early detection of pregnancy and 
prediction of litter size in sheep has recently been explored through liquid chromatography coupled with tandem 
mass spectrometry and NMR analysis. The elucidated panel of biomarkers has depicted prediction efficiency as 
early as 50 days post-breeding with area under the curve (AUC) values 0.81–0.9325.

Pregnancy is a remarkable effectual stage; making an animal acclimatized to certain systemic changes ana-
tomically, physiologically and metabolically to ensure apt fetal development26. Precise, timely and uninterrupted 
delivery of oxygen, nutrients, hormones, and biophysical cues from the mother to fetus is essential for optimum 
fetal growth27. Diligent introspection over the last three decades has vividly revealed that maternal nutrition 
perturbation (under/over) can affect the fetal growth and development in the intrauterine environment28. Further, 
early embryonic and foetal losses in high-producing bovines has been enumerated to be around 56%. Subse-
quently, by day 42 of pregnancy, conception and implantation in bovine (cow and buffaloes) is successfully com-
pleted and the embryonic mortality falls below 5% afterwards29. This clearly urges in-depth introspection into the 
events of maternal metabolic reprogramming with more emphasis towards the early stage of pregnancy. Because 
the maternal metabolite trajectory can be valuable for evaluating foetal growth alongside feto-maternal asso-
ciations, interactions and associated physio-pathological alterations24,30. The unearthed knowledge can extend 
the scope for metabolite maneuvering through precise maternal management to curtail early pregnancy loss. 
Despite such profound significance, the knowledge database regarding the maternal metabolite dynamicity in 
the early stage of pregnancy is inadequate in most of the bovine species, including buffaloes. Urine is a preferred 
biofluid for metabolite analysis as it provides a non-invasive collection method, serves as the repository of diverse 
metabolites released from the complex feto-maternal metabolic network and has already facilitated biomarker 
discovery in a similar context31. Besides requiring minimal sample preparation, NMR spectroscopy is an ideal 
modality for metabolite analysis in biological fluids as it extends a perfect blend of ample robustness, considerable 
sensitivity along with proficient reliability for urinary metabolomics introspection32 and demonstrates differential 
presence of biomolecules in relation to pathophysiological changes33. Thus, the current investigation has been 
carried out to explicate the maternal urinary metabolite dynamicity during early pregnancy in buffaloes as well 
as to identify the potential early pregnancy diagnostic metabolomics signatures through NMR analysis in a need-
based and timely manner. This may satisfy the quest for metabolic biomarkers of early pregnancy diagnosis as 
well as deciphering the optimum metabolic profile of healthy pregnancy and elucidating key regulated metabolic 
pathways during early gestation.

Results and Discussion
Identification of the differentially expressed urinary metabolites.  A total of twenty-four metabo-
lites were identified through 1H NMR analysis in the urine samples of pregnant and non-inseminated control 
animals on different days of estrous cycle/pregnancy (Table 1). Among them, twenty metabolites were consist-
ently detected in the urine samples of pregnant as well as control animals on all the relevant experimental days. 
The four metabolites: 1,6-Anhydro-β-D-Glucose, Fumarate, Maleate and Tyramine that were not consistently 
detected in the urine samples of pregnant as well as control animals at all the different experimental days were 
excluded from univariate statistical analysis. However, Tyramine was exclusively detected in the pregnant ani-
mals only after 18 days of pregnancy with a consistently up-regulating trend during the subsequent experimental 
days. Among the twenty consistently detected urinary metabolites, 1-Methylhistidine, 3-Hydroxykynurenine, 
3-Indoxysulfate, Anthranilate, Phenylalanine, Tryptophan, Tyrosine and 5-Hydroxytryptophan were depicted 
statistically significant (P < 0.05, FDR 0.05) differentiating pattern in ANOVA analysis at day 10 and day 18 
between pregnant and control animals (Table 1). Moreover, within the pregnant group, the concentrations of 
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Table 1.   Comparative analysis of the urinary metabolites identified and quantified from pregnant and non-
pregnant groups of Murrah Buffalo heifers using NMR Spectrometry. Mean with different superscripts (a, b, c 
and d) within the row i.e. between different days of pregnancy and (x, y) between the row i.e. between pregnant 
and non-pregnant on same days for a particular group differ significantly (p < 0.05). Preg. (pregnant), NP (non-
pregnant) and ND (not detected).

Name of Metabolite Status

Level in urine (microMol); day post insemination/estrus

0 10 18 35 42

1,6-Anhydro-β 
-D-Glucose

Preg 27.05 ± 5.17 ND ND 1,741.6 ± 78.72 1,467.05 ± 81.59

NP 40.93 ± 6.01 95.40 ± 5.22 39.90 ± 5.13 – –

1-Methylhistidine
Preg 84.58ax ± 0.95 757.68bx ± 46.06 1,070.41cx ± 48.52 248.10d ± 9.68 779.48b ± 121.35

NP 95.24ay ± 1.79 426.35by ± 20.29 753.28cy ± 32.00 – –

3-Hydroxykynurenine
Preg 1,023.83a ± 37.60 1,091.81ax ± 93.65 1,481.46bx ± 10.88 1,671.86c ± 24.98 1,938.16d ± 25.70

NP 1,004.81a ± 24.54 749.83by ± 42.31 451.00cy ± 12.61 – –

3-Indoxysulfate
Preg 176.78a ± 22.81 1,083.88bx ± 15.65 874.86cx ± 35.94 651.06d ± 102.71 248.36a ± 16.20

NP 152.93a ± 21.86 347.0ay ± 38.81 591.43by ± 29.84 – –

Acetate
Preg 190.5 ± 2.40 682.58 ± 71.98 287.01 ± 23.47 509.93 ± 96.67 493.70 ± 80.28

NP 522.81 ± 358.93 262.63 ± 32.16 162.91 ± 14.50 – –

Anthranilate
Preg 25.66a ± 0.21 616.3bx ± 18.08 909.86cx ± 17.72 1,336.53d ± 31.19 2,018.70e ± 72.34

NP 22.22a ± 0.92 315.15by ± 20.06 199.31by ± 10.34 – –

1,3-Dihydroxyacetone
Preg 61.91a ± 9.40 418.70b ± 62.78 856.38cx ± 77.67 278.63ab ± 38.23 432.91b ± 81.59

NP 63.85a ± 7.22 617.96b ± 46.08 213.48ay ± 12.10 – –

Chlorogenate
Preg 210.18a ± 6.14 667.5a ± 117.65 1,034.26bx ± 13.60 190.20ac ± 40.50 1,235.95b ± 267.64

NP 206.15 ± 10.67 217.73 ± 14.93 334.41y ± 32.59 – –

EthyleneGlycol
Preg 151.30a ± 14.38 1,179.75bx ± 193.32 516.56c ± 18.03 337.20ac ± 15.56 187.11a ± 27.46

NP 148.30a ± 11.71 212.56ay ± 14.91 611.06b ± 18.52 – –

Fumarate
Preg 119.86 ± 11.87 ND ND 190.20 ± 12.99 80.75 ± 7.43

NP 95.93 ± 6.33 200.90 ± 11.17 233.75 ± 16.19 – –

Glycolate
Preg 104.56a ± 5.76 7,203.95bx ± 480.40 1,362.43c ± 118.16 7,512.48b ± 544.73 551.13ac ± 55.43

NP 90.76 ± 9.65 184.71y ± 24.16 601.05 ± 32.66 – –

Leucine
Preg 37.55a ± 8.60 163.73bx ± 33.26 93.48ac ± 10.07 167.58b ± 4.71 142.90cb ± 18.00

NP 30.30 ± 4.76 80.50y ± 9.24 96.25 ± 9.31 – –

Melatonin
Preg 184.03ab ± 20.10 202.73ac ± 41.69 245.75acx ± 32.39 165.48ab ± 11.61 97.01ab ± 7.06

NP 164.68 ± 17.78 139.40 ± 12.20 70.48y ± 9.25 – –

Maleate
Preg 43.98 ± 7.08 ND ND 671.28 ± 45.64 1,106.28 ± 129.13

NP 51.60 ± 10.91 226.56 ± 39.20 450.15 ± 36.79 – –

Phenylalanine
Preg 1,623.46a ± 25.38 2,185.03bx ± 58.18 1,710.83ax ± 17.29 284.18c ± 16.89 195.91c ± 8.91

NP 1,624.55 ± 15.15 1,567.69y ± 19.37 1,506.54y ± 28.49 – –

Protocatechuate
Preg 531.38a ± 17.65 438.53abx ± 11.61 415.66b ± 38.96 142.05c ± 11.42 112.30c ± 4.18

NP 509.90a ± 24.11 662.45by ± 26.32 362.80c ± 29.06 – –

Quinolinate
Preg 42.62a ± 1.38 413.05a ± 22.98 575.53a ± 50.80 761.96a ± 19.33 1,116.46b ± 32.34

NP 650.52 ± 1.07 499.55 ± 26.56 550.96 ± 35.25 – –

Serotonin
Preg 21.09a ± 0.30 250.30bx ± 18.52 432.80c ± 25.19 859.50d ± 37.15 1,045.96e ± 54.59

NP 18.32a ± 0.21 581.96by ± 25.92 309.80c ± 34.36 – –

Tryptophan
Preg 290.08a ± 9.68 338.96abx ± 21.11 454.35bx ± 43.67 176.90a ± 21.15 213.41a ± 21.09

NP 270.25a ± 17.68 640.30by ± 37.88 303.03ay ± 26.32 – –

Tyrosine
Preg 87.70a ± 10.21 371.18bx ± 25.29 314.73bx ± 7.89 530.58c ± 15.87 816.13d ± 26.26

NP 91.03a ± 8.06 120.71aby ± 5.73 164.71by ± 15.74 – –

5-Hydroxytryptophan
Preg 37.06a ± 8.97 796.35bx ± 27.59 931.33bx ± 30.78 1,804.15c ± 92.91 2,174.05d ± 44.60

NP 42.11a ± 3.97 416.48by ± 19.21 219.95ay ± 19.29 – –

Histidine
Preg 223.38a ± 21.05 483.98bx ± 41.54 181.93ac ± 18.55 97.16c ± 8.06 53.08c ± 6.87

NP 205.71a ± 21.71 756.15by ± 39.99 190.05a ± 12.42 – –

Valerate
Preg 51.26a ± 11.50 607.43bx ± 94.14 453.00c ± 35.48 597.76bc ± 72.34 791.45b ± 20.20

NP 59.36a ± 4.75 168.21aby ± 20.62 372.70b ± 30.35 – –

Tyramine
Preg ND ND 147.17 ± 16.36 683.33 ± 18.60 714.83 ± 21.05

NP ND ND ND – –
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these eight metabolites viz. 1-Methylhistidine, 3-Hydroxykynurenine, 3-Indoxysulfate, Anthranilate, Phenylala-
nine, Tryptophan, Tyrosine and 5-Hydroxytryptophan at day 10 and day 18 differed significantly (P < 0.05) from 
their concentrations at 0 day with exceptions in case of 3-Hydroxykynurenine at day 10, Tryptophan at day 10 
and Phenylalanine at day 18 where the variations were non-significant from their day 0 value in pregnant ani-
mals. However, the filtering the criteria of the differentially expressed metabolites for potential early pregnancy 
biomarker identification were set as minimum twofold metabolite up/down-regulation from day 18 onwards in 
pregnant samples with respect to metabolite concentration of control animals at all day points except day 0, along 
with a consistent trend in metabolite up/down-regulation upto 42 days of pregnancy. The day 0 was escaped as it 
was the day of estrus, showing the typical receptive behavioural pattern of the animals to easily differentiate from 
pregnancy. Four differentially expressed metabolites were viz. 3-Hydroxykynurenine, Anthranilate, Tyrosine 
and 5-Hydroxytryptophan satisfied all the aforesaid criteria of the potential early pregnancy detection biomarker 
and were subjected to Receiver Operating Characteristic (ROC) curve analyses. Among these four metabolites, 
anthranilate and 5-Hydroxytryptophan matched all the criteria as well as depicted a prominent up-regulating 
trend as early as day 10 of pregnancy with an over tenfold increase with respect to their respective day 0 levels. 
Despite being differentially expressed, 1-Methylhistidine, 3-Indoxysulfate, Phenylalanine, and Tryptophan were 
excluded from ROC curve analysis as they were not consistently up/down-regulated till 42 days of pregnancy.

Multivariate analysis of the urine metabolites.  Principal component analysis (PCA) employed five 
principal components, PC1 (43.3%), PC2 (19.3%), PC3 (12.9%), PC4 (9.6%) and PC5 (5.8%) to elucidate the 
overall metabolic differences between the pregnant and non-pregnant samples at different time-points (day 0, 
day 10, day 18, day 35 and day 42). In PC1 vs PC2 vs PC3 analysis, samples from the pregnant and non-pregnant 
animals overlap only at day 0 (denoted as P-0 day and NP-0 day, respectively in Fig. 1); while the pregnant ani-
mal samples at day 10, day 18, day 35 and day 42 (denoted as P-10 day, P-18 day, P-35 day, P-42 day, respectively 
in Fig. 1) as well as non-pregnant animal samples at day 10 and day 18 (denoted as NP-10 day and NP-18 day, 
respectively in Fig. 1) segregated as different clusters that clearly depicted inter-group as well as inter-day vari-
ations in metabolite profile in PCA synchronized 3D plot. One of the non-pregnant females at day 0 clustered 
with all the samples from non-pregnant females on day 10 as evidenced from Fig. 1 may be due to the individual 
variations appearing from the inclusion of buffaloes having estrous cycles with 1, 2 or 3 follicular waves in the 
same group. Although 2-wave cycles are the most usual, but animals with a 1-wave or 3-wave follicular growth 
pattern also exists and influences the length of the luteal phase as well as the estrous cycle34. Further, variability in 
follicular phase is also common to buffaloes, like shy breeders might underline such individual variation35. The 
2D score plot of PLS-DA analysis incorporating Component 1 (42.6%), Component 2 (13.4%) also presented a 
similar pattern as in PCA analysis, depicting prominent separate clusters of inter-groups as well as inter-day var-
iations except on day 0 (Fig. 2). The hierarchical clustering of the differentially expressed metabolites depicted in 
the heat map also represented that metabolites only in the day 0 samples of pregnant and non-pregnant animals 
mingled with each other, while the metabolites in the other group as well as the day-specific samples orient them 
in different distant clads in the dendrogram (Fig. 3). Further, the score plot of the OPLS-DA analysis represented 

Figure 1.   Principal component analysis (PCA) of the five principal components PC1 (43.3%), PC2 (19.3%), 
PC3 (12.9%), PC4 (9.6%) and PC5 (5.8%) revealing the overall metabolic differences between the pregnant and 
non-pregnant samples at different time-points (day 0, day 10, day 18, day 35 and day 42).
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more prominent variation in the metabolite profile between pregnant and the non-pregnant samples, while the 
superimposed area of both the ellipses indicated the overlapped metabolite profile of the pregnant and the non-
pregnant samples at the day 0 time-point (Fig. 4). Permutation validation suggested no over fitting of the OPLS-
DA model with Q2 of 0.606 and R2Y of 0.691, p < 0.01. Variable Importance in Projection (VIP) score of the 
metabolites through OPLS-DA analysis elucidated that 5-hydroxytryptophan (1.28094), Tyrosine (1.2463) and 
Anthranilate (1.24374) were having VIP score above 1 and depicted high abundance ratio in pregnant samples 
(corresponding heat-map) among the four differentially expressed metabolites identified as the potential early 
pregnancy detection biomarker through ANOVA (Fig. 5).

Further, correlation analyses among the four differentially expressed potential metabolite biomarkers depicted 
that 5-Hydroxytryptophan was positively correlated with Tyrosine (r = 0.80956; P < 0.001) and Anthranilate 
(r = 0.97457; P < 0.001) while inversely correlated with 3-Hydroxykynurenine (r = − 0.33014; P = 0.021927). Evi-
dently, 3-Hydroxykynurenine depicted a non-significant correlation with Tyrosine (r = 0.00041668; P = 0.99776) 
and inverse correlation with Anthranilate (r = − 0.29251; P = 0.043641) (Fig. 6). Serotonin is a key metabolite 
of tryptophan metabolism, was found to be positively correlated with Anthranilate (r = 0.67772; P < 0.001) 
and 5-Hydroxytryptophan (r = 0.70339; P < 0.001) while inversely correlated with 3-Hydroxykynurenine 
(r = − 0.49279; P < 0.001). Quinolinate, another product of tryptophan metabolism, depicted an inverse correla-
tion with 3-Hydroxykynurenine (r = − 0.32987; P = 0.022042) and non-significant correlation with Anthranilate 
(r = 0.1152; P = 0.43558) and 5-Hydroxytryptophan (r = 0.095816; P = 0.5171). Whereas Tryptophan was depicted 
with a weak positive correlation with 3-Hydroxykynurenine (r = 0.42364; P = 0.0026965) and a strong inverse 

Figure 2.   The 2D score plot of PLS-DA analysis incorporating Component 1 (42.6%) and Component 2 
(13.4%) depicting prominent separate clusters of inter-group as well as inter-day variations except at day 0.
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correlation with Anthranilate (r = − 0.60769; P < 0.001) and 5-Hydroxytryptophan (r = − 0.62684; P < 0.001) 
(Fig. 6).

Analysis of predictive ability of the potential biomarkers.  The predictive ability of the individual 
potential biomarkers as identified through ANOVA was analysed by calculating their Receiver Operating Char-
acteristic (ROC) area under the curve (AUC) value through classical univariate ROC curve analysis. The ROC 
AUC values were 0.824 for Tyrosine with Sensitivity: 0.733 (0.583–0.867) and Specificity: 0.833 (0.638–1) at 95% 
confidence interval (CI); 0.82 for Anthranilate with Sensitivity: 0.667 (0.5–0.8) and Specificity: 0.889 (0.722–1) 
at 95% CI; 0.787 for 5-Hydroxytryptophan with Sensitivity: 0.667 (0.432–0.867) and Specificity: 0.889 (0.722–1) 
at 95% CI and 0.613 for 3-Hydroxykynurenine with Sensitivity: 0.6 (0.449–0.767) and Specificity: 0.722 (0.556–
0.889) at 95% CI (Fig. 7 and Table 2). The possibility of improvement in the prediction efficiency was also verified 
by employing a combination of more than one manually selected discriminatory metabolite via logistic regres-
sion analysis. However, a combination of the four features, viz. Anthranilate, 3-Hydroxykynurenine, Tyrosine, 
and 5-Hydroxytryptophan (the frequency % in LASSO modeling were 100, 80, 40, and 20 respectively) did not 
improve the predictive ability yielding ROC-AUC value of 0.785, 95% CI: 0.61–0.912 (Fig. 8a). The average pre-
dictive accuracy of the metabolite combination was found to be 0.691 based on 100 cross validations (Fig. 8b). 
The best ROC-AUC value of 0.804, 95% CI: 0.685–0.922 was achieved by combining Anthranilate, 3-Hydrox-

Figure 3.   Hierarchical clustering of the differentially expressed metabolites depicted in the heat map. Only 
metabolites from the day 0 samples of pregnant (P) and non-pregnant (NP) group mingled with each other 
while the metabolites of the other group-specific samples at different days orient them in different distant clads 
in the dendrogram.
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ykynurenine, and Tyrosine with average predictive accuracy of 0.703 based on 100 cross validations (Fig. 9a 
and b). A logistic regression (LR) model was derived with the three selected compounds using the tenfold Coss 
Validation. The equation of the LR model: logit(P) = log(P/(1 − P)) = 2.103 + 0.146 3-Hydroxykynurenine + 0.402 
Tyrosine + 0.517 Anthranilate, where the numeric value of each named metabolite in the equation is the concen-
tration after log transformation and auto-scaling. The performance of the LR Model in tenfold Cross Validation 
yielded an AUC value of 0.794, 95% CI: 0.667–0.922, Sensitivity: 0.733 (0.733 ~ 0.892) and Specificity: 0.778 
(0.586 ~ 0.970) (Fig. 10).

Metabolic pathway impact and functional analysis.  Based on the urinary metabolite profile of preg-
nant and non-pregnant samples, metabolic pathway analysis was performed using MetaboAnalyst 5.0 to elu-
cidate the most relevant pathways modulated in response to pregnancy. The impact value of those pathways 
above 0.1 derived from pathway topology analysis was identified as the most potent pregnancy-associated path-
way modulations. According to the impact values, five metabolic pathways, vizly Phenylalanine, tyrosine and 
tryptophan biosynthesis, Tryptophan metabolism, Phenylalanine metabolism, Histidine metabolism and Tyros-
ine metabolism were identified as the most relevant pathways to be regulated in the early stage of pregnancy 
(Fig. 11). Further, the pathway analysis also depicted these five pathways encompassing several key metabolites 
that were identified in the current study and also held different levels of significance in pathway modulation, 

Figure 4.   Score plot of OPLS-DA analysis depicting prominent variations in metabolite profile between 
the pregnant (P) and non-pregnant (NP) samples; the superimposed area of both the ellipse indicated the 
overlapped metabolite profile of the two groups at the day 0 time-point.
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such as Phenylalanine, Tyrosine, Tryptophan, Anthranilate, 5-Hydroxytryptophan, Serotonin, Melatonin, His-
tidine, 1-Methylhistidine, Tyramine, Fumarate, etc. and significantly, the potential biomarkers predicted in the 
current study were also in accordance with the observation (Table 3) (Figure S1–S5). In coherence with our find-
ing, pregnancy-associated plasma metabolite alteration due to modulation in phenylalanine, tyrosine and tryp-
tophan biosynthesis pathways was also reported in pregnant multiparous holestein cows during early gestation36. 
This is also very well-correlated with the observations in correlation analysis of these potential metabolite bio-
markers. Anthranilate, 3-Hydroxykynurenine, and 5-Hydroxytryptophan are the products of tryptophan metab-
olism which is keenly associated with successful completion of mammalian pregnancy because of (i) increased 
maternal demand, (ii) fetal growth and development, (iii) involvement in serotonin for signaling pathways, (iv) 
kynurenic acid (KA) for neuronal protection, (v) quinolinic acid for NAD+ synthesis, (vi) other kynurenines 
(Ks) for suppressing fetal rejection37–39 (Fig. 12). The metabolic pathway modulations as well as urinary detec-
tion of phenylalanine, tyrosine and the products of the tryptophan metabolism such as 3-hydroxykynurenine, 
5-hydroxytryptophan, anthranilate, quninolate, serotonin and melatonin depicted in the current study was also 
in consonance with the findings of metabolomics introspection in holestein cows during early gestation where 
tyrosine metabolism was reported to be modulated on day 17 and day 45 of pregnancy while phenylalanine, 
tyrosine and tryptophan biosynthesis was reported to be altered on day 45 of pregnancy36. Probably, elevation 
in tryptophan utilization takes place during pregnancy yielding several derivatives as well as certain organic 
acids through the serotonin pathway and the kynurenine pathway. Concentration of 5-hydroxytryptophan, a 
serotonin pathway intermediate, was found to be increased in fetal cotyledons of buffaloes with advancement 
of pregnancy40. Further, tryptophan hydroxylase-1 expression was found to be induced by pregnancy through 
lactogenic signaling resulting in elevated synthesis of 5-hydroxytryptophan in pancreatic islets that promoted 
insulin producing beta cell proliferation (Fig. 12). Thus, elevated production of 5-hydroxytryptophan and sub-
sequent serotonin synthesis prevent maternal hyperglycemia and modulate energy metabolism to accommodate 
the foetal burden41. Melatonin, the downstream product of the serotonin pathway, was also observed to increase 

Figure 5.   Variable Importance in Projection (VIP) score of the metabolites through OPLS-DA analysis; as 
potential early pregnancy detection biomarkers 5-hydroxytryptophan, Tyrosine and Anthranilate showed VIP 
score above 1 and depicted high abundance ratio in pregnant samples (corresponding heat-map).
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the expression of antioxidant enzymes in placenta42, improves placental efficiency, birth weight of the foetus 
and reduces oxidative and hypoxic stress43. So, enhanced tryptophan utilization through the serotonin pathway 
possibly exerted a positive effect on pregnancy establishment and progression in buffaloes. Kynurenine pathway 
is another principal route of tryptophan metabolism which is associated with immune regulation and provid-
ing a tolerogenic environment in the placenta, inducing vasodilation, neovascularization at the feto-maternal 
surface and regulating oxygen homeostasis44. Therefore, the kynurenine pathway holds paramount importance 
to facilitate establishment and progression of healthy pregnancy, particularly during early gestation by prevent-
ing fetal rejection as well as facilitating nutrient supply to the fetus and providing anti-oxidant response by the 
pathway enzymes and metabolites (e.g. 3-hydroxykynurenine, xanthurenic acid, 3-hydroxyanthranilic acid, and 
kynurenic acid) in the placental micro-environment44. The degree of relevance of the pathway in pregnancy 
establishment and progression can be justified by the instance that blocking the first and rate-limiting enzyme 
of the pathway indoleamine 2,3-dioxygenase (IDO) by an IDO-inhibitor 1-methyltryptophan at the onset of 
pregnancy led to fetal loss in mice while the treatment after pregnancy establishment resulted various pregnancy 
complications45–48. Anthranilate and 3-Hydroxykynurenine, the two potential pregnancy diagnostic biomarkers 
depicted in the current study, are kynurenine pathway metabolites; evidently, elevated urinary concentration 
of these metabolites in pregnant samples might be obvious due to induction of kynurenine pathway influenced 

Figure 6.   Correlation analyses of the differentially expressed metabolites depicting different degree of 
association among them (denoted with the color ladder at top-right).
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by strong placental IDO expression during pregnancy (Fig. 12)47,49,50. An elevation in urinary concentration of 
tyrosine in pregnant samples that was depicted as another potential pregnancy diagnostic biomarker in the cur-
rent study might be due to reduction in tyrosine metabolism and pregnancy associated selective aminoaciduria 
as reported during early gestation26,51. Decreased urinary tyrosine output was also reported to be associated with 
fetal growth restriction22. Further, reduced tyrosine level in maternal circulation was reported to be beneficial for 
pregnancy as high doses of tyrosine can lower serum progesterone level, resulting in fetal loss in mice52. Reduc-
tion in circulatory tyrosine also prevents downstream catecholamine production and negates the probability of 
uterine contraction associated with pregnancy loss36. Tyrosine can either be converted to L-DOPA by tyrosine 
hydroxylase and subsequently to catecholamines or may produce tyramine by tyrosine decarboxylase. As cat-
echolamine over-production is derogatory to sustain the pregnancy, hence, there is a maximum probability of 
elevation in tyramine production and its urinary output. The exclusive detection of tyramine in the pregnant 
animals only after 18 days with a persistent upward trend during the subsequent period in the current study also 
indicated the same.

So, the outcomes of the present investigation provide the foundation for a novel and accurate urinary metab-
olite-based early pregnancy diagnosis paradigm in buffaloes to improve the reproductive and productive per-
formance of these animals. Since the metabolomics marker candidates for pregnancy from buffalo urine have 

Figure 7.   The predictive ability of the individual potential biomarkers based on ROC AUC values along with 
with Sensitivity and Specificity at 95% CI. The black dots in the boxplot of the selected metabolite (at right 
side) represented its’ concentrations in all samples. The notches indicated difference in the selected metabolite 
concentration between the groups; if the notches did not overlap, the medians were likely different. The mean 
concentration of each group was denoted with a yellow diamond over lying on the respective notch. The optimal 
cutoff was indicated with a horizontal red line on the boxplot.

Table 2.   Predictive ability of the individual potential biomarkers based on ROC curve analysis.

Metabolite P-value Fold Change log2 (FC) ROC-AUC value

Tyrosine 0.0015266 0.2959 − 1.7567 0.824

Anthranilate 0.000348184 0.1823 − 2.4557 0.82

5-Hydroxytryptophan 0.00035073 0.1969 − 2.3443 0.787

3-Hydroxykynurenine 0.73042 0.5101 − 0.97126 0.613
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been elucidated in the current study, it paves the way to develop specific colorimetric or sensor-based assay for 
pen-side diagnosis of pregnancy in these animals. The advantage of such diagnostics may be perceived in terms 
of non-invasive detection, being cost-effective and be performed by farmers without requiring special technical 
expertise. The current 1H NMR-based biomarker discovery was carried out employing six buffaloes in each group 
(pregnant and non-pregnant) at different time points that satisfied the criteria of univariate and multivariate 
statistical analyses in MetaboAnalyst 5.0 program. Similarly, 1H NMR-based metabolomics approach was under-
taken to effectively diagnose subclinical ketosis in Holstein cows using six animals each in diseased and control 
groups53. Association between the udder health and milk metabolite profile was also elucidated using NMR 
spectroscopy employing ten animals divided into two groups based on somatic cell count, each group consisted 
of five animals54. Despite the encouraging results of the initial study, validation of the results in a larger popula-
tion is advocated for the development of metabolite-based pen-side early pregnancy diagnostics in buffaloes.

Figure 8.   (a) The predictive ability of the combination of Anthranilate, 3-Hydroxykynurenine, Tyrosine, and 
5-Hydroxytryptophan based on ROC AUC values along with with Sensitivity and Specificity at 95% CI. (b) The 
average predictive accuracy of the metabolite combination based on 100 cross validations.

Figure 9.   (a) The predictive ability of the combination of Anthranilate, 3-Hydroxykynurenine, and Tyrosine 
based on ROC AUC values along with with Sensitivity and Specificity at 95% CI. (b) The average predictive 
accuracy of the metabolite combination based on 100 cross validations.
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Material and Methods
Ethical approval.  The experiments conducted for the present study were approved by the Institute Animal 
Ethics Committee (IAEC), Registration no. 406/GO/RBi/L/01/CPCSEA of the Central Institute for Research on 
Buffaloes, Hisar vide letter IAEC-CIRB/19–20/A/007. The committee works under the supervision of the Com-
mittee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), which is a statutory 
Committee of the Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry 
and Dairying, Government of India constituted under the Prevention of Cruelty to Animals (PCA) Act, 1960. 
All animals used in the experiment were maintained on scientific lines at the animal farm and were not subjected 
to any extra discomfort during sample collection for the purpose of this study.

Animal selection.  Apparently, healthy normal cyclic Murrah Buffalo heifers (n = 26), that were loose 
housed and maintained under uniform management conditions at the organised farm of the Central Institute 
for Research on Buffaloes (CIRB), Hisar, India were employed for the present study. We declare that all methods 
performed in the current study were in accordance with the ARRIVE guidelines (https://​arriv​eguid​elines.​org). 
The heifers were confirmed to be in estrus through visual observations and aided by a teaser bull, were subse-
quently scanned with ‘B mode’ ultrasound scanner equipped with an intra-operative 7.0 MHz micro-convex 
multi-frequency transducer for the presence of large dominant ovarian follicle (> 12 mm size). The animals also 
exhibited good uterine tone and cervical discharge to be selected for the experiment. Twenty (n = 20) heifers 
were inseminated artificially (refereed as AI) using frozen-thawed semen and the remaining six (n = 6) animals 
were maintained as control. The day of estrus/AI was designated as day 0. After insemination, all the animals 
were monitored for returning to estrus as well as scanned ultrasonographically on days 35 and 42 for ascertain-
ing pregnancy status. From the inseminated animals, eight animals became pregnant, from which six pregnant 
heifers (n = 6) which sustained healthy pregnancy across day 42 were randomly selected and were designated as 
‘pregnant’ group while six non-inseminated normal cyclic animals (n = 6) which repeated their estrus cyclicity 
after 21 days (day 0 of the next cycle) of the last estrus were selected as the ‘non-pregnant’ group. All the methods 
were performed in accordance with the relevant guidelines and regulations.

Figure 10.   The performance of the logistic regression model constructed by using the combination of 
Anthranilate, 3-Hydroxykynurenine, and Tyrosine based on ROC AUC values along with with Sensitivity and 
Specificity at 95% CI in tenfold Cross Validation.

https://arriveguidelines.org
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Sample collection and processing.  Approximately 250 ml naturally micturated urine samples were col-
lected from all the inseminated animals on days 0, 10, 18, 35 and 42. The animals were retrospectively diagnosed 
as pregnant through rectal ultrasonography carried out from day 35 onwards. Similarly, the urine samples were 
collected from the non-inseminated animals only on days 0, 10 and 18 as they returned to estrus after 21 days. 
The reason behind considering day 0 was to check the status when all animals were non-pregnant while day 
10 was chosen in order to get mid diestrus in non-pregnant animals and day 10–18 is the period of conceptus 
attachment. Further day 18 was taken as sometimes some buffaloes may come in estrous during the period as 
the cycle mostly varies in the range of 18–21 days. Day 35 was the time point to vividly elucidate the pregnancy 
status through ultrasonography and day 42 is the stage for completion of implantation and thus substantial 
reduction in embryonic mortality.

The urine samples were centrifuged and cleaned through 0.45 µM syringe filters (Sigma-Aldrich, USA). 
These samples were either processed afresh and/or stored at − 80 °C. As pregnancy could only be retrospectively 

Figure 11.   Summary of the metabolic pathway analysis and their impact on pregnancy with MetaboAnalyst 
5.0. (a) Phenylalanine, tyrosine and tryptophan biosynthesis, (b) Tryptophan metabolism, (c) Phenylalanine 
metabolism, (d) Histidine metabolism, (e) Tyrosine metabolism.

Table 3.   Results of pathway analysis with MetaboAnalyst 5.0 indicating potential metabolic pathways to be 
regulated in the early stage of pregnancy.

Pathway Name P value Impact FDR Relevant metabolites

Phenylalanine, tyrosine and tryptophan biosynthesis 0.0010745 1.0 0.0017583 Phenylalanine, tyrosine, tryptophan,

Tryptophan metabolism 2.5426E-4 0.408 5.7207E-4 Melatonin, Serotonin, Quinolinate, Anthranilate, 3-hydroxykynurenine, 5-Hydroxy-
tryptophan

Phenylalanine metabolism 0.0010745 0.357 0.0017583 Phenylalanine, tyrosine

Histidine metabolism 6.9527E-5 0.221 2.0858E-4 1-methylhistidine, histidine

Tyrosine metabolism 5.1469E-6 0.189 2.3161E-5 Phenylalanine, Tyrosine, Tyramine
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diagnosed by ultrasonography at day 35 level, so, all the samples were stored at − 80 °C only except the day 42 
samples that were processed afresh. So, all the samples of other day stage of both the pregnant and non-pregnant 
group went through similar freezing and processing method. Each urine sample (400 μl) was mixed with a buffer 
solution (230 μl) containing 0.2% sodium azide (NaN3), 0.2 M disodium hydrogen phosphate (Na2HPO4), 0.2 M 
sodium dihydrogen phosphate (NaH2PO4) and 70 μl of 1 mg/ml sodium 3-trimethylsilyl-(2, 2, 3, 3-D4) propi-
onate (TSP) in heavy water (D2O) and vortexed for 30 s. The mixture was allowed to stand for 5 min followed 
by centrifugation at 12,000 × g for 5 min at 4 °C to remove any precipitate. Aliquots of the supernatant (600 μl) 
were transferred into 5 mm NMR tubes.

Acquisition of 1H NMR spectra.  Briefly, 1H NMR spectra of the urine samples were acquired using a 
Bruker Avance 400 spectrometer (Bruker Biospin, Rheinstetten, Germany) operating at 400.11 MHz and 298 K. 
The acquisition of 1H NMR spectra of the urine samples were performed during both the recycle delay (1 s) and 
mixing time (tm, 100 ms) using a standard 1D pulse sequence with water pre-saturation (recycle delay-90°-t1-
90°-tm-90°-acquisition; XWIN–NMR 3.5). For each sample, 65,536 Free induction decays (FIDs) were collected 
into 32 K data points using a 90° pulse length of 13.46 μs with an acquisition time of 4.08 s to obtain 16 scans 
with a spectral width of 8012.82 Hz. FIDs were zero-filled to twice the size and exponentially multiplied with 
a line broadening factor of 0.3 Hz before fourier transform. All the 1H pulse frequency spectra were automati-
cally phase and baseline corrected and calibrated to the peak of TSP (δ 0.00) using TopSpin software version 3.2 
(Bruker Biospin, Germany).

Processing of 1H NMR data.  All the NMR spectra (spectral region δ 10 to 0.5) were imported into 
MestReNova software 6.0.2–5475; referenced and corrected for phase and baseline distortion using Mestrelab 
Research: Analytical Chemistry Software Solutions (Santiago de Compostela, Spain). The spectral regions δ 
4.0 to 5.4 were removed prior to the median fold change normalisation as it indicated residual water and urea 
resonances. Spectral assignments and metabolite quantification were performed using the ‘Profiler and Library 
Manager’ modules in Chenomx NMR Suite 8.40 (Chenomx Inc, Edmonton, Canada)55. Spectral signal from a 
known concentration of TSP was considered as the reference for metabolite quantification. Additionally, spiking 
with amino acids in some samples was also performed for further confirmation. Data normalization by sum and 
Pareto data scaling (mean-centering and division by the square root of standard deviation of each variable) was 
carried out to minimize the bias arising from samples of different days and replicate variability.

Univariate statistical analysis.  Among the twenty four identified metabolites, twenty metabolites 
(n = 20) which were consistently detected in the urine samples of 6 pregnant as well as 6 non-inseminated control 
animals at all the relevant experimental days were subjected to univariate analysis by two-way ANOVA using the 

Figure 12.   Potential pathway modulations of tryptophan metabolism and the derived metabolites during early 
gestation in Murrah buffaloes. The figure is created in BioRender.com.
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SPSS software (version 20.0; SPSS, Inc., Chicago, IL, USA)56. Data were represented as metabolite concentra-
tion ± standard error (SE) and the level of significant differences in metabolite concentrations were considered 
at P < 0.05. The normalized data by sum and Pareto data scaling were used for the statistical analysis to extend 
equal weightage to all the variables irrespective of their absolute value.

Multivariate statistical analysis.  The metabolite data normalized by sum and Pareto data scaling (mean-
centering and division by the square root of standard deviation of each variable) were subjected to principal 
component analysis (PCA) for examination of the intrinsic variation in the NMR data set and similarities in 
variables. Subsequently, Partial Least Squares Discriminant Analysis (PLS-DA) was performed to maximize the 
class discrimination using the MetaboAnalyst 5.0 program (https://​www.​metab​oanal​yst.​ca) equipped with func-
tions of the R software57. Score plots and heatmaps of the urinary metabolite data were also generated to enumer-
ate the variations in pregnant and non-pregnant animals at different days of introspection. Further, Orthogonal 
Partial Least Squares Discriminant Analysis (OPLS-DA) and enumeration of Variable Importance in Projection 
(VIP) score of the metabolites contributing to the group difference between the pregnant and non-pregnant 
samples was also performed. Receiver operating characteristic–Area Under Curve (ROC-AUC) analysis was 
carried out employing MetaboAnalyst software to analyze the cut-off values of the metabolites diagnostically 
relevant to determine the pregnancy or open status of the animals at different days of the experiment. Pathways 
related to the profoundly varied metabolites were also subsequently analysed.

Metabolic pathway analysis.  Metabolic pathways related to the profoundly varied metabolites were sub-
sequently analysed through MetaboAnalyst 5.0. The Pathway Analysis program employed a combination of 
pathway enrichment analysis and pathway topology analysis to precisely identify the most relevant metabolic 
pathways involved in the establishment and progression of healthy pregnancy. The KEGG-metabolic pathway 
library of Bos taurus was used to elucidate the course of pregnancy-associated metabolite dynamicity.
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