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Key Points

• Symptomatic diverticular disease patients can be separated into low (LSDD) and high (HSDD) somatization

groups based on Patient Health Questionnaire-12 (PHQ-12 SS)

• During anticipation of pain greater deactivations occur in somatosensory, emotional, and descending noxious

inhibitory control pain regions in the asymptomatic (ADD) compared to the symptomatic diverticular disease

(SDD) and irritable bowel syndrome (IBS) groups

• There are fewer anticipatory differences between the ADD and LSDD and the IBS and HSDD groups, suggesting

that the LSDD and HSDD grouping identifies DD patients with predominantly peripheral vs central factors,

respectively.

Abstract

Background The relative importance of peripheral

nerve injury or central pain processing in painful

diverticular disease (DD) is unclear. Functional mag-

netic resonance imaging (fMRI) has demonstrated that

dysfunctional central pain processing predominates in

irritable bowel syndrome (IBS). This study aims to

identify anticipatory changes in symptomatic DD

(SDD) compared to asymptomatic DD (ADD) and

IBS patients. Methods Gastrointestinal symptoms and

somatization were evaluated via the Patient Health

Question-12 Somatic Symptom and the SDD group

divided into low (≤6 [LSDD]) and high (≥7 [HSDD])

somatization. Cued painful cutaneous thermal stim-

uli were delivered to the left hand and foot during

fMRI. Fixed effect group analysis of the ‘cued’ antic-

ipatory phase was performed. Key Results Within the

right posterior insula, greater deactivation was found

in the ADD compared to other groups. In emotion

processing centers, anterior and middle insula, greater

activation was identified in all patient compared to

the ADD group, and in LSDD compared to IBS and

HSDD groups. In comparison, amygdala deactivation

was greater in ADD than the IBS and HSDD groups,

and in LSDD vs HSDD groups. Descending nocicep-

tive control centers, such as the superior medial

frontal and orbitofrontal cortex, also showed greater

deactivation in the ADD and LSDD compared to the

HSDD and IBS groups. Conclusions & Inferences The

HSDD group have altered anticipatory responses to

thermal pain, similar to IBS group. The LSDD are

similar to ADD group. This suggests underlying

differences in pain pathophysiology, and the need for

individualized treatment strategies to target the cause

of their chronic pain.
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Depression Score; HSDD, high somatization score

symptomatic diverticular disease; IBS, irritable bowel

syndrome; INS, insula; lat, lateral; LSDD, low soma-

tization score symptomatic diverticular disease; MCC,

mid-cingulate cortex; mPFC, medial prefrontal cortex;

PCS, pain catastrophizing score; PFC, prefrontal cor-

tices; PHQ-12 SS, Patient Health Questionnaire-12

Somatic Symptom; PHQ-15, Patient Health Question-

naire-15; pINS, posterior insula; RFX, random effects;

SDD, symptomatic diverticular disease; SPMMRC, Sir

Peter Mansfield Magnetic Resonance Centre; THAL,

thalamus; VAS, visual analog score.

INTRODUCTION

Colonic diverticulosis (DD)1 is the most common

structural abnormality of the colon, yet our under-

standing of how it causes symptoms is rudimentary. It

is responsible for substantial morbidity and mortality,

with 254 179 hospital admissions, 1 493 865 outpa-

tient visits in 2002 in the USA,2 and 23 000 deaths per

year in Europe.3 Studies suggest its incidence and/or

complications4 are increasing5–8 with an associated

increase in cost.9

While the acute complications of DD are well

recognized, chronic painful symptomatic diverticular

disease (SDD), in the absence of acute diverticulitis, is

a poorly understood complication which causes much

distress. Risk factors for developing SDD include a

previous episode of inflammation, such as diverticuli-

tis, adverse psychological conditions,4 low levels of

physical activity,10 high BMI,11 and smoking.12 We and

others have previously shown that SDD is associated

with changes in colonic innervation, including

increases in tachykinins, substance P, acetylcholine,

nitric oxide, endocannabinoids, and galanin in the

submucosal plexus and circular muscle,13,14 and

increases in neuronal angulation and density.13 This

suggests an underlying peripheral nerve response to

inflammation, which by analogy with animal stud-

ies,15 would be expected to result in hypersensitivity to

colorectal distension.

Like SDD, there is a well-recognized subgroup of

IBS, postinfectious IBS (PI-IBS), where symptoms and

mucosal changes occur after an inflammatory episode,

such as gastroenteritis.16 However, psychological fac-

tors, such as neuroticism and depression increase the

risk of developing PI-IBS.17 Anxiety, depression, and

somatization, are also important to a lesser extent in

SDD, and other conditions. The Patient Health Ques-

tionnaire-12 Somatic Symptom scale (PHQ-12 SS) has

been used to assess somatization in SDD and IBS.18

The PHQ-12 SS is a modified version of the PHQ-15,

but with three questions concerning gastrointestinal

symptoms excluded. Using a PHQ-12 SS score of

greater than six, 67% of IBS and 55% of SDD patients

have values above the normal range.18

These findings suggest that in both groups there are

some individuals who have a predominantly postin-

flammatory disorder, possibly mediated by peripheral

nerve hypersensitivity, with few other symptoms (i.e.,

low somatization or PHQ-12 SS score), and others who

have a more central cerebral-based pain processing

disturbance as indicated by a high somatization or

PHQ-12 SS score.19

There have been no studies characterizing central

brain responses in DD, but we have previously found

that somatization is a risk factor for developing DD

symptoms, suggesting that alterations in pain process-

ing may be present.4 Alteration in somatization and

pain processing has been identified in patients with

IBS.20,21 Although there are some similarities between

DD and IBS, there are also key differences, such as

older age of onset, lesser female predominance, and the

lack of pain relief after defecation in SDD.4,22 We

hypothesize that the SDD group, like IBS, can be

separated into low (low somatization score SDD;

LSDD) and high (high somatization score SDD; HSDD)

somatizers based on the PHQ-12 SS score.

Prior studies have suggested that the anticipation of

pain may involve a network of brain areas. This

includes the posterior insula, and anterior cingulate

cortex (ACC) and anterior insula, key areas associated

with somatosensory and emotional pain processing

pathway and interoception.23,24 In addition, affective

brain regions of orbitofrontal cortex and amygdala, and

the mid-cingulate cortex (MCC) are of interest as these

are implicated in fear processing and nociception.25 So

also is the ventrolateral prefrontal cortex which is

involved in the cognitive modulation of pain26 and

diffuse noxious inhibitory control (DNIC)27 in bottom-

up modulation of the neural activity underlying pain

together with the anterior and MCC.

The aim of this study was to identify differences in

cerebral responses to the anticipation of pain in the

SDD group based on PHQ-12 SS somatization score,

and to determine if high somatization was associated

with an IBS-like response to anticipation of pain.

MATERIALS AND METHODS

Subjects

Study participants with IBS, ADD, and SDD were identified and
recruited from gastrointestinal medicine and surgery clinics and
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databases of interested patients held at the Nottingham Digestive
Diseases Centre (NDDC) NIHR BRU. Confirmation of the partic-
ipants’ gastrointestinal diagnosis and the initial screening ques-
tions for inclusion and exclusion criteria (Table 1) were addressed
by structured telephone questionnaire, before the study day.
Detailed inclusion and exclusion criteria have been included in
Table 1 to provide clarity in comparison with other studies as
suggested in a recent review.35 Sinceour SDDpatientshada rangeof
bowel habits our IBS cohort was recruited solely on the basis of the
Rome III criteria of recurrent abdominal pain/discomfort regardless
of bowel habit. All study participants had structural imaging as part
of their hospital diagnosis, either with flexible sigmoidoscopy or
colonoscopy, CT, or barium enema. The study was approved by the
Nottingham Regional Ethics Committee (09/H0403/43).

Sample size estimation

Based on the literature and our previous work,36,37 we estimated
that to show a >30% difference in functional magnetic resonance
imaging (fMRI) response between groups, which is conventionally
considered to be the minimal clinically significant difference,
with a 80% power using alpha <0.05 would require n = 12
subjects. We aimed to recruit 20 subjects in each group to allow
for a possible 40% drop-out rate and/or poor compliance with
fMRI protocol.

Questionnaires

Participants completed validated questionnaires on gastrointesti-
nal habits,14 Hospital Anxiety and Depression scores (HAD),38

somatic symptoms (PHQ-12 SS)18,39 and pain catastrophizing
score (PCS)40 the day before the scan session. None of the
participants’ usual medications or food were withheld before the
visit except for ondansetron (IBS participants).30,41

Study protocol

A Medoc PATHWAY System (Medoc, Israel) was used to deliver
thermal stimulation using a MR-compatible CHEPS (Contact
Heat-Evoked Potential Stimulator) 27-mm-diameter thermode
probe (Fig. 1A and B). Although no formal handedness question-
naires were performed, participants were asked to identify their
dominant hand based on the types of activities they preferentially
used it. The thermode was placed on the dorsum of the left non-
dominant hand or foot and maintained in place using a Velcro
strap and tubi-grip bandage. Thermal sensitivity measures were
undertaken outside of the MR scanner. To identify the unpleasant
but tolerable temperature at which to perform the study (moder-
ate pain temperature [MPT]), participants were asked to rate a
series of temperature on visual analog score (VAS). This is a score
of 0 to 10, where 0 = ‘no pain’ and 10 = ‘most severe pain ever

Table 1 Study Inclusion and Exclusion criteria

Inclusion criteria

Participants must

have either

Symptomatic diverticular disease with short-lived recurrent abdominal pain on 3 or more days a month and at least

one or more colonic diverticulum identified on endoscopy, barium enema, or CT scan

Asymptomatic diverticular disease, with no abdominal pain and at least one or more colonic diverticulum identified

on endoscopy, barium enema or CT scan

Irritable bowel syndrome, which has been diagnosed by a gastroenterologist at the hospital using ROME II or III

criteria

Age 18–85 years

Handedness Right

Informed consent Yes

Exclusion criteria

General: Pregnant or lactating women

Severe co-morbidity; for example, heart failure, respiratory failure, alcoholism, or drug dependence

Participation in any other study on Nottingham University campus in the last 3 months

No restrictions on the use of HRT, contraceptives medications, or timing of menstrual cycle with the study day

were imposed

Metallic implants

or objects

Cardiac pacemaker

Implanted cardiac defibrillator

Metallic heart valves

Aneurysm clips

Carotid artery vascular clamp

Neurostimulator

Insulin or infusion pump or implanted drug infusion device

Non-removable cochlear, otologic, or ear implant

Shot or shrapnel inside the body

Metallic fragments in the eye

Medications Inability to stop NSAIDs (non-steroidal anti-inflammatory agents), antibiotics or immunosuppressant drugs or taking

antiepileptic, gabapentin, long-term opiates, or antipsychotic medications 28

Participants taking ondansetron were included in the study, but the medication was not taken until after the

study 29–32

No exclusions for patients taking antihypertensive medications, diuretics, alcohol,33 or caffeine 34 prior to the study

Inflammatory conditions Presence of other gastrointestinal conditions such as ulcerative colitis, Crohn’s disease and Celiac disease,

malignancy, cirrhosis, current hematological malignancy, untreated peptic ulcer disease, Polymyalgia rheumatic

Abdominal surgery Previous abdominal surgery (other than appendectomy, hysterectomy, cholecystectomy and sterilization,

hernia repair)

Neurological conditions Previous diagnosis of neurological conditions, for example, stroke, cerebral malignancy, essential tremor,

Parkinson’s disease and Parkinson plus syndromes, motor neuron disease, dementia, storage disorders,

Wilsons disease e.t.c. Peripheral neuropathy (e.g., diabetic, alcohol, stroke)

Other Claustrophobia, broken skin
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experienced’. This test was repeated with different temperature
until a VAS score of 6–7 was given. This temperature was
designated to be the MPT and used as the individualized painful
stimulus for the study.

Functional magnetic resonance imaging data were acquired on a
3 T Philips Achieva MR scanner using a 32-channel receive coil.
Participants viewed a projection screen in front of the magnet bore
using a mirror attached to the receive coil. Participants were
instructed to focus on the small blue cross projected on the screen
which changed to a white cross to give a visual anticipation ‘cue’
prior to any stimulus. Participants were asked to pay attention to
the screen and to the heat stimulus when delivered. Two pseudo-
randomized thermal stimulation paradigms shown in Fig. 1B were

delivered based on published studies.25–28 Each paradigm was of 8–
9-min duration and applied to the left hand and foot. The paradigms
included theMPT and a standardized temperature of 45 °C for each
participant. However, not all participants could tolerate this
temperature, and it was reduced by 0.5–2 °C for some participants.
Stimuli which had an anticipation cue of only 2–3 s were also
incorporated into the paradigms, to prevent participants predicting
the commencement of each stimulus. These shortened cues and
stimuli were called ‘blanks’. The order of which paradigm was
applied towhichbody sitewas randomizedprior to commencement
of the study. A 15-min breakhalfway through the studywasused to
prevent fatigue and reduced concentration. The participants then
returned to the scanner, where the study was completed.

A

B

Figure 1 (A) Study flow diagram and Basic.

(B) Paradigm design.

© 2016 The Authors.
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fMRI data acquisition

The image acquisition used for the fMRI study was a single-shot,
double-echo, gradient echo echo-planar imaging (EPI), with echo
times (TE) of 25/50 ms, a 80 9 77 matrix of 40 contiguous 3-mm
isotropic slices covering the whole brain. One hundred and
seventy-seven dynamic scans were acquired during a single
thermal stimulation paradigm in which thermal stimulation was
applied to the foot or the hand. Axial images were aligned along the
AC–PC axis to aid the minimization of susceptibility artifacts in
the orbito-frontal cortex arising from the nasal cavity. Other scan
parameters were SPIR fat suppression and a 80° flip angle to match
the Ernst angle for the repetition time (TR) of 3s. A T1-weighted
MPRAGE anatomical image (256 9 256 matrix, 160 slices, 1-mm
isotropic resolution, TE/TR = 3.8/8.2 ms, 8° flip angle, 5 min
acquisition time) was collected at the end of the fMRI session.

Psychometric data analysis

A PHQ-12 SS score of ≤6 (Low somatization score SDD; LSDD)
or ≥7 (High somatization score SDD; HSDD) was used to
separate the SDD patients into two groups based on our previous
work.18 Participant questionnaire data were analyzed in SPSS
(version 15; IBM, Portsmouth UK) and GraphPad Prism (Version
5; San Diego, CA, USA). A Shapiro–Wilks test was performed on
the questionnaire data to test for normality. Age, bowel
frequency and HAD scores of depression and anxiety were non-
parametric, the remaining numerical data were normally dis-
tributed. Group data were compared using a Fisher-exact test,
paired t-test or Mann–Whitney U depending on the result of the

Shapiro–Wilks test, with differences being considered significant
at a p-value of <0.05.

fMRI data analysis

All fMRI images were analyzed using SPM8 (http://www.-
fil.ion.ucl.ac.uk/spm). Images were corrected for movement,
slice timing, and normalized to the MNI template, following
by spatial smoothing (8-mm kernel). A general linear model
(GLM) was used to model the heat stimuli and cue period, with
each being convolved with canonical hemodynamic response
function. For each participant, motion parameters during each
paradigm were used as covariates of no interest. Blank stimuli
were not modeled within the analysis (See Fig. 1B). First-level
fixed effects analysis was performed for each participant. Antic-
ipation data from ‘blank’ stimuli were not analyzed. Data
included in the second-level analysis was based on completed
questionnaire data being obtained, satisfactory data collection for
all of the paradigms and anatomic sites. This resulted in 14
participants per analysis group. Second-level random effects
(RFX) group analysis for the anticipation cue stimulus (uncor-
rected p < 0.001, voxel threshold 5) was performed. In addition, a
two-sample t-test was performed to compare the response to
‘cue’ events between each group (IBS, ADD and SDD) at an
uncorrected p < 0.05, and cluster threshold of 5. All active
clusters were identified using the WFU Pick Atlas (version 2.4).42

Covariates of interest such as anxiety and depression scores on
the HAD questionnaire, total PCS, and PHQ-12 SS were also
included in the GLM and significant brain activity which
correlated with these measures was assessed.

Figure 2 Diagram to illustrate participant

recruitment. Three participants withdrew

from the study: two after the sensory testing

and before scanning and one at the break

after the first scanning session.
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RESULTS

Demographics

Four hundred and twenty-six potential participants

were sent standardized information, with 74 partic-

ipants being recruited; 18 with IBS, 20 with ADD,

and 36 with SDD, 3 participants withdrew from the

study (two from the ADD and one from the LSDD

group) (Fig. 2). Key demographic details for the

second-level RFX analysis subset, are shown in

Table 2. Significant differences in age were found

between these groups with the LSDD and ADD

groups compared to the HSDD and IBS groups, who

were younger.

Questionnaires results

Participant gastrointestinal symptoms and psycholog-

ical questionnaire results Demographics and gastroin-

testinal pain symptoms in each group are shown in

Table 2. The LSDD, HSDD, and IBS groups PHQ-12 SS

scores were significantly higher (paired t-test) than the

ADD group, but the HSDD and IBS were not signifi-

cantly different. Paired t-test of BMI demonstrated a

significant difference between the LSDD and IBS

groups (p = 0.02), but no differences were found

between the other groups. The HSDD group had

significant higher PCS and HAD scores compared to

the ADD and LSDD groups, but not the IBS group. This

suggests a similarity between the IBS and HSDD

groups in terms of somatization.

fMRI results

Anticipation and pain effects Second-level analysis

demonstrated robust increases and decreases in cortical

responses to the anticipation of subsequent painful

heat at the MPT stimulus for each group (Fig. 3).

Global anticipation effects in the cue period to both

left hand and foot stimulation (uncorrected p < 0.001,

cluster threshold 5) revealed deactivation of the right

posterior insula (pINS) and the PFC in the ADD and

LSDD groups, areas which are responsible for

somatosensory pain-processing pathway and DNIC

areas, respectively (Fig. 3). For all groups, increased

activation was observed in affective pain regions,

including the anterior insula (aINS) and left ACC in

both SDD and IBS groups.

Inter-group differences in cortical response to
anticipation

Inter-group analysis of the cortical regions associated

with anticipation was performed to assess differences

between the groups in key pain-processing regions

(uncorrected p < 0.05 voxel threshold 5) (Figs 4 and 5,

Table S1).

Somatosensory pain-processing regions (pINS, THAL)

Greater deactivation was found in the right pINS in the

ADD compared to the LSDD (Fig. 4A) and IBS groups

(Fig. 5A), and in the bilateral pINS in the ADD

compared to the HSDD group (Fig. 4B). Greater right

pINS deactivation was also seen in the LSDD

Table 2 Analysis of group demographics and questionnaire data

fMRI analysis groups (n = 14) ADD LSDD HSDD IBS

Female 6 (42.9%) 8 (57.1%) 11 (78.8%) 11 (78.8%)

Age (years), median (IQR) 61.5 (60–66.5) 62 (57.75–66.5) 54.5*,+ (51–58.75) 46.5**,+ (41.25–47.75)
Previous diverticulitis 0 50% 35.7% 0

Past psychiatric history 28.6% 7.1% 21.4% 42.9%

BMI (kg/m2), median (IQR) 26.5 (23.4–28.1) 28.0 (25.3–31.6) 30.5 (24.2–31.4) 24.4+ (23.5–27.8)
Gastrointestinal symptoms

Days/month of pain (<24 h), median (IQR) 0 3* (0–11) 15*** (5–28) 7.5*** (3.3–12)
Pain duration (h), median (IQR) 0 1.5* (0–5) 6** (3.4–2.4) 2.5** (0.8–12)

Sensory testing

Median VAS temperature HAND (°C) (range) 45.4 (39.5–49) 43.8 (41.5–47.5) 43.8 (41–48) 43.8 (40–49)
Median VAS temperature FOOT (°C) (range) 45.5 (40–48) 43.5 (42–49.5) 43.8 (40.5–47.5) 44.5 (41.5–48.5)

Questionnaire data

PHQ-12 SS, median (IQR) 2.5 (2–3) 4* (4–5) 8***,+++ (8–9) 8*,+ (5–8.75)
HAD: anxiety, median (IQR) 5.5 (3.75–7) 5.5 (3.25–7) 8.5*,+ (6.25–11.75) 7 (3–10)
HAD: depression, median (IQR) 2.5 (1–3) 2 (1.25–3.75) 6.5*,+ (4–8.75) 4.5 (2–5.75)
Pain catastrophizing score, median (IQR) 11 (2.5–14.5) 3.5 (1.25–15.5) 14.5+ (10.5–17.75) 11 (7.75–17.75)

ADD vs group *p < 0.05, **p < 0.001, ***p < 0.0001. LSDD vs group +p < 0.05, ++p < 0.001, +++p < 0.0001. ADD, Asymptomatic diverticular disease;

LSDD, Low somatization score diverticular disease; HSDD, High somatization score diverticular disease; IBS, Irritable bowel syndrome; IQR,

Interquartile range.
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compared to the IBS group (Fig. 5B) but the difference

between the LSDD and HSDD groups was not signif-

icant. Interestingly, the HSDD group showed less

bilateral pINS deactivation compared to the IBS group.

The HSDD group also demonstrated less deactivation

in the left ventral posterolateral nucleus of the thala-

mus compared to the ADD. In the LSDD group, greater

deactivations were found in the left ventral lateral

nucleus of the thalamus and pulvinar compared to the

IBS group (Fig. 5B). No difference in thalamic activity

was identified between the SDD groups.

Emotional pain processing regions (aINS, mINS, ACC,

MCC, AMYG, parahippocampus) Greater positive

activation was identified in several emotional pain

processing areas in the SDD and IBS groups compared

to the ADD group. Greater activation in the bilateral

aINS/mINS in the LSDD and left aINS in the IBS and

HSDD groups was seen compared to the ADD group

(Fig. 4C), and greater aINS/mINS activation in the

LSDD compared to IBS and HSDD groups. Between all

the groups, different areas of the mid-cingulate showed

activation. Notable differences were identified in the

left ACC in the LSDD group compared to the HSDD

group (Fig. 5C).

Greater deactivation was seen in the AMYG in the

ADD compared to the HSDD group (Fig. 4B) and the

hippocampus in the ADD compared to the HSDD and

IBS groups (Fig. 5A). Interestingly no difference was

detected in these regions between the ADD and LSDD

groups (Fig. 4A). However, greater left AMYG and right

hippocampus deactivation was seen in the LSDD

compared to the HSDD group (Fig. 5C). Hippocampal

and parahippocampus deactivation was greater in the

ADD and LSDD groups than the IBS group (Fig. 5A).

Greater hippocampal deactivation was found in the IBS

compared to the HSDD group.

DNIC regions (PFC) Greater deactivation was seen in

the superior and superior medial frontal and parts of

the medial frontal gyrus and orbito-PFC in the ADD

compared to the IBS, LSDD, and HSDD groups

(Figs 4 and 5A). Small areas of mid frontal gyrus

activation were seen in the ADD compared to the

HSDD group and in the LSDD group compared to the

IBS and HSDD groups. In comparison greater activa-

tion of the superior frontal and inferior orbito or

operculo frontal cortex were seen in the IBS and

HSDD groups compared to the ADD groups (see

Tables S1 and S2).

Covariates analysis of cue stimulus

Increasing PHQ-12 SS scores were found to correlate

with greater deactivation of the parahippocampus and

greater positive activation in the mPFC and MCC and

Figure 3 Global BOLD effects for

anticipation of a painful stimulus applied to

the left hand or left foot for the ADD, LSDD,

HSDD and IBS groups. Negative BOLD

effects are depicted in the blue color

spectrum while positive BOLD effects are

show in the red–yellow spectrum.
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right AMYG/hippocampus (Table S2). In contrast,

decreasing PHQ-12 SS scores correlated with greater

deactivation of the AMYG, hippocampus, pINS, and

the lateral and orbito-PFC.

The anxiety component of the HAD score positively

correlated with the activation of emotional processing

regions, including greater left aINS and right AMYG

activity, while decreasing anxiety scores correlated

with deactivation of the right AMYG and left hip-

pocampus. In comparison, the depression component

of the HAD score positively correlated with greater

activation of the left hippocampus, ACC and PCC,

while decreasing depression score correlated with

greater activation of the MCC and greater deactivation

of the ACC, right AMYG, parahippocampus and left

hippocampus. Similar findings were identified for the

increasing PCS scores which correlated with parahip-

pocampus deactivation, while decreasing PCS scores

correlated with left aINS, ACC and PFC activation, and

hippocampal deactivation.

DISCUSSION

This study has demonstrated changes during anticipa-

tion in the somatosensory and emotional pain-proces-

sing regions and DNIC regions, which alter across

ADD, LSDD, HSDD, and IBS groups. Greater deacti-

vations were seen in the pINS in the ADD compared to

the LSDD, HSDD, and IBS groups (Fig 4). The pINS is

key in discriminative-sensory pain processing.43 Deac-

tivation of the pINS during anticipation has been

identified in healthy volunteers compared to IBS

patients,21 which supports our findings that greater

deactivations are characteristic of the group with lesser

symptoms. Greater pINS deactivation is correlated

with decreasing PHQ-12 SS score but it did not

correlate with scores of catastrophizing, anxiety, or

depression. Similar findings have been reported in

other studies of somatization, although in this study,

significant correlations with somatization score was

not confirmed.44 A reduction in pINS, and in aINS,

THAL, and hippocampal responses, in IBS patients has

been identified after hypnotherapy compared to educa-

tional interventions,45 which may be related to better

coping methods in treated individuals, and may

explain the link with somatization.

Greater deactivation of the thalamus was found in

the ADD and IBS groups compared to HSDD group, and

in the LSDD group compared to IBS group. The

thalamus is also a key area in the somatosensory

pain-processing pathway, forming part of the spinotha-

lamic tracts with fibers running to the pINS46 and

motor responses to pain. In our study the ventral

posterolateral thalamic nucleus, which receives signals

from the spinothalamic tracts and projects to the

primary somatosensory cortex,47 was demonstrated to

A

B

C

Figure 4 Areas which have statistically more significant deactivation

in the ADD group than (A) the LSDD group and (B) the HSDD group.

(C) shows areas for which positive activations in the LSDD and HSDD

groups is statistically more significant than the ADD group.

Deactivations are depicted in the blue color spectrum while

activations are show in the red–yellow spectrum.
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deactivate in the ADD compared to the HSDD group.

This observation agrees with healthy volunteer studies

of placebo analgesia in rectal pain, where responders to

placebo analgesia were noted to have a reduction in

thalamic response48 and animal models.49 In the LSDD

group, deactivation of the ventral lateral nucleus and

pulvinar were observed compared to the IBS group. The

ventral lateral nucleus outputs projections to the

motor cortex, and may be involved in motor responses

to pain. The pulvinar has connections to the ACC,

prefrontal cortex, and AMYG,50–52 which has been

shown have heightened connectivity with the pINS

during pain anticipation in patients with major depres-

sive disorder (MDD).53 Similarly positive correlation

between scores for neuroticism and thalamus activity

during pain anticipation in healthy volunteers has also

been identified.54 Deactivation in the pINS, pulvinar,

and posterolateral thalamus is suggestive of prepara-

tion for anticipated pain in our ADD and LSDD groups,

which is reduced or absent in our chronic pain groups.

The affective processing regions demonstrated

greater activation during anticipation in our IBS and

SDD groups compared to the ADD group (Fig. 4). The

aINS is a key area in affective pain processing and is

important for interoception,55 emotional awareness,55

and risk prediction.56 Greater activation of the aINS

during anticipation has also been found in healthy

volunteers57 and other pain groups, such as anorexia

nervosa and IBS.58,59 Anxiety can influence INS activ-

ity during anticipation60,61 as was also demonstrated in

our study (Table S2). This suggests a greater emotional

response to impending pain processing in our SDD and

IBS groups.

There was a lack of deactivation in the MCC and

ACC in our chronic pain groups (HSDD and IBS)

compared to the ADD group (Fig. 4). The ACC and/or

MCC have previously been identified in studies of

healthy volunteers25,57 and IBS pain anticipation21,62

and it is thought that cingulate cortex activation may

be related to attention,63 affective processing of painful

stimuli, reward probability and risk,64 and information

flow between somatic and emotional brain regions.65,66

A reduction in ACC and MCC activation during

anticipation of pain has also been identified in IBS

patients during placebo67 and longitudinal studies with

repeated stimulations.62 Anxiety also influences MCC

A

B

C

D

Figure 5 Inter-Group Analysis: Areas which have statistically more

significant deactivation or activation during the cue stimulus in the

(A) LSDD than the HSDD group, (B) the LSDD than the IBS group, (C)

the ADD than the IBS group, and (D) the IBS compared to the HSDD

group. Deactivations are depicted in the blue color spectrum while

activations are show in the red–yellow spectrum.
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activation during ‘cued’ sham gastric distensions.68

This may be why deactivation in the MCC was

negatively correlated with HAD anxiety score in our

study. The ACC may also be important before the

anticipation phase, as resting-state functional connec-

tivity between the ACC and medial PFC has been

correlated with changes in ‘cued’ pain score.69 Thus,

greater ACC activation and a failure to deactivate the

MCC during anticipation may suggest alteration in

connectivity between the somatic and emotional brain

regions in our chronic pain groups.

Differences were identified in other affective areas,

with greater deactivations in AMYG and hippocampal

areas in the ADD group compared to the LSDD, HSDD,

and IBS groups (Fig 4). These areas have been reported

by other groups in healthy volunteers during pain

anticipation.21,70 In our study IBS showed less deacti-

vation in the AMYG and hippocampus than LSDD

and ADD groups. Several studies in IBS have reported

greater AMYG or hippocampal activation during antic-

ipation59,71 which decreases with increased study

familiarity62 (longitudinal studies) and reduced anxi-

ety. Deactivations of the AMYG and hippocampus

were related to both PHQ-12 SS, anxiety, depression,

and PCS scores. Higher PHQ-12 SS scores were asso-

ciated with less deactivation of the right amygdala and

bilateral hippocampus regions, suggesting that these

areas play an important role in controlling pain

sensation. The PHQ-12 SS and PCS scores also posi-

tively correlated with the deactivation of the bilateral

parahippocampus and positive activation of the right

AMYG/hippocampus. Anxiety score was positively

correlated with greater left amygdala activity, and both

depression and anxiety score were negatively corre-

lated with right AMYG and left hippocampal deacti-

vation. These findings agree with anticipation studies

in MDD patients, where AMYG activity was corre-

lated with perceived helplessness scores.72 Minimal

differences in hippocampal activity between high- and

low-anxiety states have been identified in people with

chronic daily symptoms.43 Thus, greater deactivation

in the AMYG and hippocampus may represent reduced

anxiety and somatization in the ADD and LSDD in the

face of expected pain, that is, better coping, compared

to the IBS and HSDD groups. This may underlie some

of the differences in anticipatory brain responses71 and

underlying pathophysiology and treatment strategies

for our LSSD and HSDD groups, and gives light on the

differences in underlying pathophysiology and possible

treatment strategies.

Descending noxious inhibitory control regions

showed important differences across patient groups.

The DNIC contains many regions including the

hypothalamus, AMYG, ACC, periaqueductal gray,

and DLPFC.73 The role of the frontal cortex in the

DNIC is complex and not well understood. The DLPFC

is a functional area mainly found in the medial frontal

gyrus (mPFC), but can include parts of the superior

frontal gyrus (Brodmann’s areas 8, 9, 10, and 46).74 The

mPFC/DLPFC is thought to aid control over atten-

tional, emotional, and descending inhibitory or facility

processes in pain.75 The mPFC and ACC also interact

with the AMYG, PAG, and nucleus accumbens.76 In

our study, greater superior, superior medial, and mPFC

(which includes the DLPFC), orbito-FC, and AMYG

deactivation was seen in the ADD and the LSDD group

compared to the HSDD and IBS groups. This agrees

with a meta-analysis of pain anticipation, where

deactivations of the superior frontal gyrus were iden-

tified.77 In comparison, greater superior frontal gyrus,

inferior orbitoFC, and MCC activation was identified

in the HSDD and IBS groups compared to the ADD.

This again agrees with other studies where activation

in the DLPFC was identified during pain anticipation

in patients with fybromyalgia, MDD, and recovering

anorexics.58,78 Descending noxious inhibitory control

regions have been observed to be absent in IBS groups

compared to healthy controls,21 which may contribute

to visceral hypersensitivity in these patients. Regions

of the Superior, superior medial, and/or medial frontal

gyrus deactivations were also correlated with decreas-

ing PHQ-12 SS, PCS, and depression scores in our

study, which has also been demonstrated in healthy

volunteer studies of self-reported anxiety.75 This

change in the PFC activity may be important in future

studies assessing the effect of medications in SDD, as

anticipatory PFC activity can predict greater symptom

improvement after 5HT3R antagonist Alosetron in IBS

patients.78,79

Limitations

Firstly, the participants for this study were recruited

through clinics and advertisements and no attempt

was made to age or sex match the groups resulting in

groups with characteristic ages and sex for each

medical condition. No attempt was made to control

for stage of menstrual cycle,80,81 oral contraceptive,

testosterone levels,82–84 or hormone replacement ther-

apy use,85,86 for the duration of chronic pain symptoms

or for periods of pain exacerbation or remission due to

practical considerations. Although this increases the

generalizability of our results as it more accurately

reflects the patient population, we also acknowledge

that there are known differences in fMRI pain process-

ing between genders,87,88 age89–91 groups, and hor-
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monal mechanisms,82–86 which may have influences

our results. However, we did control for factors, such

as increased risk of cardiovascular disease, which may

alter blood flow dynamics and cause confounding and

we also excluded patients on medications which are

thought to the effect of blood flow dynamics such as

antiepileptic, antipsychotic, and anxiolytic medica-

tions, such as gabapentin.28,92,93 Even with these

measures, the age difference between the groups maybe

important as age-related changes in brain volume in

areas involved in pain processing31,89 and DNIC

responses31 have been identified. Similar changes to

brain volume and pain processing have also been

associated with pain duration, which may also have

affected our results.94–96 Visceral and cutaneous hyper-

sensitivity is known only to affect a subset of patients

with IBS.97 In our study, we did not investigate or

select our patients based on this phenomenon. This

again may have influenced our results as we may not

have had sufficient power to detect altered cutaneous

sensitivity between our groups.

Clinical implications

This study has demonstrated differences in anticipated

pain processing between diverticular patients with low

and high somatization score which has implications for

clinical management. There were similar cortical pat-

terns of activity between the HSDD and IBS in whom

central abnormalities of pain processing predominate.

Our results are compatible with our hypothesis that

LSDD results from a predominantly peripheral patho-

physiological pain process, while HSDD is predomi-

nantly central.22 Several studies in healthy volunteers

and/or patients with central changes in pain processing,

such as IBS, have shown responses to centrally acting

medications or techniques such as hypnotherapy or

meditation techniques.97,98 These may be useful treat-

ments which should be evaluated in patients with SDD

with high somatization scores. The PHQ-12 SS scale is

a simple 12-item scale which could be readily admin-

istered in the clinic to identify such patients who may

have suboptimal outcomes with surgical intervention

but might respond to psychological therapies or

medical treatments.

CONCLUSIONS

This is the first study to identify differences in

anticipatory pain processing between ADD and SDD.

Our study suggests that by classifying SDD patients

into high- and low-somatization groups, it is possible

to identify altered anticipatory responses to thermal

pain. This suggests underlying differences in pain

pathophysiology in these groups, and that SDD

patients need individualized treatment strategies to

target the causes of their chronic pain.
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