
ORIGINAL RESEARCH
published: 21 January 2020

doi: 10.3389/fimmu.2019.03047

Frontiers in Immunology | www.frontiersin.org 1 January 2020 | Volume 10 | Article 3047

Edited by:

Margarita Dominguez-Villar,

Imperial College London,

United Kingdom

Reviewed by:

Benoit L. Salomon,

Institut National de la Santé et de la

Recherche Médicale

(INSERM), France

Raffaele De Palma,

University of Campania Luigi

Vanvitelli, Italy

*Correspondence:

Hans J. P. M. Koenen

Hans.Koenen@radboudumc.nl

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 30 August 2019

Accepted: 12 December 2019

Published: 21 January 2020

Citation:

Urbano PCM, He X, Heeswijk Bv,

Filho OPS, Tijssen H, Smeets RL,

Joosten I and Koenen HJPM (2020)

TNFα-Signaling Modulates the Kinase

Activity of Human Effector Treg and

Regulates IL-17A Expression.

Front. Immunol. 10:3047.

doi: 10.3389/fimmu.2019.03047

TNFα-Signaling Modulates the
Kinase Activity of Human Effector
Treg and Regulates IL-17A
Expression
Paulo C. M. Urbano 1, Xuehui He 1, Bennie van Heeswijk 1, Omar P. S. Filho 2, Henk Tijssen 1,

Ruben L. Smeets 1, Irma Joosten 1 and Hans J. P. M. Koenen 1*

1 Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen,

Netherlands, 2Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands

Maintenance of regulatory T cells CD4+CD25highFOXP3+ (Treg) stability is vital for proper

Treg function and controlling the immune equilibrium. Treg cells are heterogeneous and

can reveal plasticity, exemplified by their potential to express IL-17A. TNFα-TNFR2

signaling controls IL-17A expression in conventional T cells via the anti-inflammatory

ubiquitin-editing and kinase activity regulating enzyme TNFAIP3/A20 (tumor necrosis

factor-alpha-induced protein 3). To obtain a molecular understanding of TNFα signaling

on IL-17 expression in the human effector (effTreg, CD25
highCD45RA−) Treg subset,

we here studied the kinome activity regulation by TNFα signaling. Using FACS-sorted

naïve (naïveTreg, CD25
highCD45RA+) and effTreg subsets, we demonstrated a reciprocal

relationship between TNFα and IL-17A expression; effTreg (TNFαlow/IL-17Ahigh) and

naïveTreg (TNFαhigh/IL-17Alow). In effTreg, TNFα-TNFR2 signaling prevented IL-17A

expression, whereas inhibition of TNFα signaling by clinically applied anti-TNF antibodies

led to increased IL-17A expression. Inhibition of TNFα signaling led to reduced TNFAIP3

expression, which, by using siRNA inhibition of TNFAIP3, appeared causally linked to

increased IL-17A expression in effTreg. Kinome activity screening of CD3/CD28-activated

effTreg revealed that anti-TNF-mediated neutralization led to increased kinase activity.

STRING association analysis revealed that the TNF suppression effTreg kinase activity

network was strongly associated with kinases involved in TCR, JAK, MAPK, and

PKC pathway signaling. Small-molecule-based inhibition of TCR and JAK pathways

prevented the IL-17 expression in effTreg. Together, these findings stress the importance

of TNF-TNFR2 in regulating the kinase architecture of antigen-activated effTreg and

controlling IL-17 expression of the human Treg. These findings might be relevant for

optimizing anti-TNF-based therapy and may aid in preventing Treg plasticity in case of

Treg-based cell therapy.
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HIGHLIGHTS

- Naïve and effector CD4+ regulatory T cells have a reciprocal
IL-17A–TNFα relationship; effTreg (TNFlow/ IL-17Ahigh) and

naïveTreg (TNFhigh/ IL-17Alow).
- TNFα-TNF receptor-2 signaling regulates IL-17A expression
via ubiquitin-editing TNFAIP3/A20 protein in effTreg.

- TNFα suppresses T-cell receptor and Janus kinase protein
activity and promotes IL-17A expression in effTreg.

- siRNA-mediated TNFAIP3 inhibition of effTreg, similar to
TNFα signaling inhibition by anti-TNF treatment, leads to
enhanced IL17A expression.

- TNFα signaling regulates the kinase architecture of antigen-
activated effTreg.

INTRODUCTION

Regulatory CD4+CD25highFOXP3+ T cells (Treg) are essential
for human immune homeostasis (1). Human Treg cells
reveal heterogeneity and contain multiple cell subsets that
are characterized by differential expression of maturation,
activation, and migration markers (2). At birth, the majority
of the Treg are naïve (3), while later in life, the frequencies
of CD45RA− memory (effector) Treg increase at the
expense of naïve Treg frequencies (4). Naïve (naïveTreg)
and effector (effTreg) Treg have distinct transcriptional,
proteomic, metabolic, as well as enhancer and promoter
landscapes (5–7).

Effector Treg cells were shown to express pro-inflammatory
cytokines such as the autoimmune associated pro-inflammatory
cytokine IL-17A, but also naïve Treg was found to produce
IL-17A albeit at lower frequencies (5, 8). IL-17A-producing
Treg have been observed in human inflammatory diseases
such as psoriasis and IBD, suggesting that they contribute
to the inflammatory process as has been demonstrated in
mouse models (9–14). Although some cues that regulate IL-
17A expression by Treg have been identified, including mTOR
inhibition (15), CD28 superagonist stimulation (16), and platelet
microparticle interaction (17), our mechanistic understanding
of IL-17A expression by Treg is limited, let alone that this
information is available for naïve and effector Treg. Recently,
it has been elucidated that TNFR2 signaling is vital to establish
Treg stability by promoting FOXP3 expression and inhibiting
secretion of pro-inflammatory cytokines like IL-17A and IFNγ

(18, 19). In conventional CD4+ memory T cells, inhibition
of TNFR2 signaling by anti-TNF led to reduced expression of
the anti-inflammatory regulator tumor necrosis factor-alpha-
induced protein 3 (TNFAIP3, also known as A20), and as
a consequence, this resulted in increased IL-17A expression
(20). TNFAIP3/A20 acts as a ubiquitin-editing enzyme that
regulates multiple other signaling pathways such as IL-17R (21)
signaling and kinase activity [e.g., PKC (22), TCR (23), and
MAPK (24)].

TNF-TNFR2 signaling appears essential for human
Treg expansion and proper function and additionally
an autologous TNFα signaling feedback loop has been
proposed that regulates IL-17A expression in human Treg

(18, 19, 25–29). Anti-TNF therapy is successfully used for
the treatment of severe chronic inflammatory diseases such
as inflammatory bowel diseases, psoriasis, psoriatic arthritis,
and rheumatoid arthritis (30–33). Paradoxically, it has been
observed that in 0.6–5% of the patients treated with anti-
TNF medication, this might unintentionally trigger specific
forms of immune pathology, suggesting that inhibition of
anti-TNF therapy affects Treg function (34–37). If and how
naïve and effector Treg are affected by inhibition of TNFα is
not known.

We hypothesize that TNFα signaling controls IL-17A
expression in Treg by interfering at the level of kinase
activity, which we here explored in effTreg. We demonstrate
that inhibition of TNFα signaling by anti-TNF in vitro
led to increased IL-17A expression. Down-regulation of
the anti-inflammatory mediator TNFAIP3 played a role
in this process. Comprehensive kinome analysis revealed
that inhibition of TNFα signaling in effTreg unexpectedly
led to an increase of a kinase activity network containing
TCR-linked kinases and immune signaling pathway such
as the JAK. Small-molecule-based inhibition of these
pathways prevented the anti-TNF-induced IL-17A expression
in effTreg.

RESULTS

naïveTreg and effTreg Cells Reveal a
Reciprocal IL-17A—TNFα Relationship
To investigate the link between TNFα and IL-
17A expression in naïve and effector Treg, FACS-
sorted naïveTreg (CD4+CD45RA+CD25+) and effTreg
(CD4+CD45RA−CD25high) (Figure 1A) derived from healthy
volunteers were stimulated with PMA plus ionomycin, and
subsequently TNFA, IL17A, IL17F, and RORC (RORÈt)
expression was accessed by RT-qPCR (Figure 1B). As compared
to effTreg, naïveTreg expressed significantly lower levels of
IL17A, IL17F, and RORC (p = 0.0005, p = 0.0093, and p =

0.0016, respectively), while TNFA expression was higher (p
= 0.0002) (Figure 1B). Next, we compared the fold change
in gene expression between the Treg subsets and observed
a reciprocal gene expression signature for TNFA, IL17A,
IL17F, and RORC (Figure 1C). Correlation analysis revealed a
reciprocal relationship between TNFA and IL17A (r = −0.50),
IL17F (r = −0.42), and RORC (r = −0.68) (Figure 1D). As
expected, a strong positive correlation between IL17A/IL17F
(r = 0.81), IL17A/RORC (r = 0.74), and IL17A/RORC (r
= 0.54) was observed. The inverse relationship was also
confirmed at the protein level upon PMA plus ionomycin
stimulation (Figure 1E) or αCD3/CD28 stimulation of FACS-
sorted Treg (Figure 1F). As compared to effTreg, naïveTreg
hardly produced IL-17A, but showed an increased production
of TNFα. Analysis of conventional T cells further supported
the uniquely high production of IL-17A in these effTreg,
as the numbers of IL-17A/FOXP3-positive cells in FACS-
sorted naïve or memory CD4+CD25− T cells were very
low (Figure S1).

Frontiers in Immunology | www.frontiersin.org 2 January 2020 | Volume 10 | Article 3047

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Urbano et al. TNFα Prevents memTreg Producing IL-17A

FIGURE 1 | Reciprocal TNFα and IL-17A expression in human naïveTreg and effTreg cells. (A) An example of the FACS sorting strategy of naïveTreg and

effTreg based on CD4, CD45RA, and CD25 expression (I. dotplots), post-sorting analysis (II. dotplots) and confirmation of FOXP3 expression in the sorted cell population

(Continued)
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FIGURE 1 | (III. histograms). Conventional CD4+CD45RA−CD25− naïve T cells (Tnaïve), and CD4+CD45RA−CD25− memory T cells (Tmem) were sorted and displayed

for comparison of FOXP3 expression levels (III). (B) RT-qPCR gene expression of TNFA, IL17A, IL17F, and RORC in naïveTreg and effTreg after 20 h of PMA and

ionomycin stimulation (n = 12). (C) Heatmap displaying the fold change of transcripts expression in effTreg within different donors (rows). naïveTreg were used as

reference to calculate the fold change. (D) Multiple correlation matrix depicting the correlation of gene expression in both Treg subsets (naïveTreg [open dots] and effTreg

[closed dots]). Sample distribution (histogram) is shown, linear regression is also plotted (red lines), whereas p-value significance and r-values are displayed based on

Pearson correlation test. Y and X axes depict the log10-fold change of TNFA, IL17A, IL17F, and RORC expression. Each column represents a gene; in every

intersection (rows), we observe the correlation between genes. (E) Presence of the cytokines TNFα and IL-17A in culture supernatant after overnight stimulation of

Treg subsets using PMA and ionomycin. Cytokines were measured using Luminex (n = 14). (F) Presence of TNFα and IL-17A in culture supernatants of

αCD3/CD28/rhIL-2 activated Treg subsets after 5 days of culture (n = 3, mean ± SEM). For statistical analysis, Wilcoxon matched-pairs signed-ranks test (B,E), or

two-way ANOVA followed by a Bonferroni post-hoc test (F) were used. *p < 0.05, **p < 0.01,***p < 0.001, ns, not significant.

TNFα-TNF Receptor-2 Signaling Regulates
IL-17A Expression via Ubiquitin-Editing
TNFAIP3/A20 Protein in Effector CD4+

Regulatory T Cells
Under the stimulation conditions mentioned above, effTreg, but
not naïveTreg, demonstrated a clear capacity to produce IL-
17A; therefore, we focused our further experiments primarily
on effTreg. To analyze if TNFα signaling regulates IL-17A
expression in effTreg, FACS-sorted effTreg were stimulated with
αCD3/CD28-beads plus rhIL-2 and supplemented with either
soluble recombinant human (rh)TNFα or the anti-TNFα agent
etanercept (ETN, here referred to as anti-TNF), which is a
fusion protein of TNF receptor 2 and IgG1 Fc, which neutralizes
TNFα and prevents TNFα signaling. Supplementation of rhTNFα
as compared to supplementation of anti-TNF, resulted in a
significant reduction of IL-17A expressing FOXP3+ effTreg
(p 3.19e-07) (Figure 2A). At the transcriptional level, we
demonstrated that supplementation of rhTNFα suppressed IL-
17A, IL-17F, and RORC gene expression in effTreg (Figure 2B).
These data support the idea that TNFα signaling controls IL-17A
expression in effTreg.

TNFα binding to its receptors (TNFR1 and TNFR2)
leads to a cascade of intracellular events that culminate
in NFκB translocation to the nucleus and subsequent
transcription of NFκB target genes NFKBIA (encode Iκβα),
NFKB1 (encode p50), and NFKB2 (encode p52) (38, 39).
Therefore, we analyzed the effect on the expression of NFκB
target genes in effTreg after αCD3/CD28 stimulation with
and without supplementation of rhTNFα or anti-TNF.
Supplementation with rhTNFα led to a significant increase
of NFKBIA and NFKB2 expression, indicating that TNFα
signaling promotes the expression of NFκB target genes, an
indication of NFκB activation during Treg activation, while
anti-TNF suppressed the NFκB pathway (Figure 2C). We
previously found that TNFα signaling enhanced TNFAIP3
(tumor necrosis factor-induced protein 3) expression in
conventional T cells (20). TNFAIP3 encodes the ubiquitin-
editing enzyme A20, which in turn regulates NFκB activity.
Here, we also observed that TNFα signaling regulated TNFAIP3
expression in effTreg (Figure 2D). To demonstrate causality
between suppression of TNFAIP3 and enhanced expression
of IL-17A, we carried out a small interfering RNA assay
(siRNA) to inhibit TNFAIP3 transcription. siRNA-mediated
TNFAIP3 inhibition of effTreg, similar to TNFα signaling

inhibition by anti-TNF treatment, led to enhanced IL-17A gene
expression (Figures 2E,F).

As TNFα can bind to both TNFR1 and TNFR2, we
measured the expression of these receptors on freshly isolated

effTreg and demonstrated that they expressed TNFR2, but
TNFR1 was hardly detected (Figure 2G). The latter agrees with
previous studies (20, 40) and suggests that TNFα-mediated
regulation of IL-17A expression in effTreg might be primarily
mediated via the TNFR2. To examine this, αCD3/CD28-
stimulated effTreg were cultured in the absence and presence of
a specific TNFR2 agonist for 5 days. TNFR2 agonist stimulation
led to a reduction in the percentages of IL-17A expressing
FOXP3+ cells (Figure 2H). This indicates that IL-17A expression
in effTreg subsets is regulated via TNFα-TNFR2 signaling.
Together, these data suggest that TNFα signaling via TNFR2
promotes the expression of the anti-inflammatory mediator
TNFAIP3/A20, which seems to prevent IL-17A expression in
regulatory T cells, as ablation of TNFα signaling suppresses
TNFAIP3/A20 and results in increased IL-17A expression in
human Treg.

TNFα Suppresses T-Cell Receptor and
Janus Kinase Protein Activity and
Regulates IL-17A Expression in Effector
Regulatory T Cells
TNFAIP3/A20 has been demonstrated to regulate critical proteins
involved in TCR (23), TNFα (41), IL-17R (21), andWnt signaling
(20, 42). Recently, we demonstrated that the prevention of
TNFα signaling in conventional CD4+ memory T cells leads
to inhibition of TNFAIP3/A20 expression, which subsequently
leads to enhanced IL-17A expression (20). TNFAIP3/A20 has
been shown to regulate kinase activity (21, 23). To better
understand kinase regulation by TNFα signaling in effTreg,
we here profiled the activity of ∼300 kinases in FACS-sorted

effTreg following stimulation with αCD3/CD28 beads in the
absence or presence of anti-TNF or rhTNFα. Subsequently, we
analyzed the threonine/serine and tyrosine kinase activity using
a multiplex human kinase activity array. This kinome array
employs ∼300 peptide substrates with known phosphorylation
sites and provides a reliable and high-throughput kinase profiling
tool for further pathway elucidation (seeMaterials and Methods)
(43). We found 30 unique and differentially activated kinases
following anti-TNF vs. rhTNFα supplementation comparison
(Figure S2). For the kinase activity profiling, we focused on
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FIGURE 2 | TNFα-TNFR2 signaling reduces IL-17A expression in activated effTreg, conceivably via the anti-inflammatory regulator TNFAIP3/A20. (A) Flow cytometry

of intracellular IL-17A expression in FOXP3high effTreg that were stimulated with αCD3/CD28/rhIL-2 for 5 days in the absence or presence of rhTNFα or anti-TNF

(n = 15). (B) RT-qPCR gene expression of IL-17A, IL-17F, and RORC, (C) NFκB target genes NFKB1, NFKB1A, NFKB2 (n = 5), and (D) TNFAIP3 (n = 8) at day 4 of

culture. (E,F) TNFAIP3 and IL-17A gene expression of non-targeting-gene control (NTC) and siTNFAIP3 effTreg after 6 days under αCD3/CD28/rhIL-2 stimulation (n =

3). (G) Histogram depicting the expression of TNFR1 and TNFR2 on effTreg directly after FACS sorting (n = 9). (H) Flow cytometry of IL-17A expression in FOXP3high

effTreg that were stimulated with αCD3/CD28 beads plus rhIL-2 with or without TNFR2 agonist for 5 days (n = 9). All data are shown as mean ± SEM. For statistical

analysis, a Friedman test followed by Dunn’s multiple comparison test (A), a two-way ANOVA followed by a Bonferroni posttest (B,C), and a Wilcoxon matched-pairs

signed-rank test (D,G,H) were used. *p < 0.05, **p < 0.01,***p < 0.001, ****p < 0.0001, ns, not significant.
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the two most extreme states of TNF pathway signaling and
addressed the differential kinase activity profile following effTreg
activation following TNF vs. anti-TNF supplementation. The
obtained kinome data were visualized using a volcano plot that
shows the fold change of kinase activity and the associated level of
significance (p-values) (Figure 3A, left panel; raw data Table S1).
We found that inhibition of TNFα signaling, as compared to
the supplementation of rhTNFα, in activated effTreg significantly
promoted the activity of multiple kinases (red symbols indicate
p < 0.05). The ranked log2-fold changes of kinase activity
are shown in the right panel of Figure 3A. Notably, several
of the kinases were related to TCR signaling [CD3ζ (CD247),
CD3ε, ZAP70, and Lck] (44). Also, cell cycle regulating (CALM,
CD28, GSK3B, MAPK3, PGR, and JAK3) (45, 46) and apoptosis
(ANXA2, Annexin V) (47)-related kinases were induced.

To obtain a more comprehensive understanding of the kinase
network and cellular pathways regulated by neutralization of
TNFα, the kinases that were significantly activated following
anti-TNF mAb treatment were analyzed using STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins). STRING is
a web-based biological resource (https://string-db.org) of known
and predicted protein–protein interactions enabling prediction
of the functional protein association network of a group of given
proteins by estimating the likelihood of meaningful biological
interactions (48). In our analysis, we used the highest confidence
interaction score (0.900) to associate all kinases that were
significantly activated following anti-TNF treatment as listed
in the right panel of Figure 3A. STRING association analysis
demonstrated that inhibition of TNFα signaling in activated

effTreg involved prominent immune signaling pathways such
as the PKC, p38-MAPK, and JAK pathways, which were all
linked to TCR signaling [CD3ζ (CD247) and CD3ε] (Figure 3B).
Previously, these pathways were shown to be associated with the
induction of IL-17A expression (49–52).

To validate if the predicted pathways were indeed involved
in rhTNFα-induced suppression of IL-17A expression in effTreg,
FACS-sorted effTreg were activated in the presence or absence
of anti-TNF and specific kinase inhibitors of JAK/STAT
(Tofacitinib), PKC (AEB071, Sotrastaurin), or p38 MAPK
(UR13870). For the inhibition of TCR signaling, an Lck inhibitor
(A420983) was applied. We demonstrated that suppression of
JAK, and Lck kinases, but not PKC and p38, prevented the
expression of IL-17A expression in effTreg that were activated
under TNFα signaling inhibiting or not (Figure 3C). In fact,
suppression of JAK and Lck inhibited the expression of IL-17
similar to the TNF supplementation condition. The inhibitors
tested did not affect FOXP3 expression (Figure S3).

Next, we performed a functional ontology enrichment
analysis of the most significant biological process networks,
processes, and diseases by submitting the kinase data that we
identified in activated effTreg following supplementation vs.
inhibition of TNFα to MetaCoreTM database analysis. Significant
enriched MetaCoreTM GO process networks involved immune
response-TCR signaling, cell cycle regulation, and lymphocyte
proliferation (Figure 4A). The most significantly enriched
MetaCoreTM Go processes based on the submitted kinases
were kinase signaling pathways via transmembrane receptor

protein tyrosine, signal transduction processes, and tyrosine
phosphorylation and modification (Figure 4B). Furthermore,
there was an enrichment of cell communication and cell
development processes. MetaCoreTM Go diseases indicated a
strong enrichment of autoimmune disease, next to other
pathological conditions ranging from the nervous system,
nutritional, and metabolic disorders (Figure 4C). Together,
these data demonstrated that CD3 and CD28 activation of

effTreg in the absence of TNF-signaling by anti-TNF treatment
promotes tyrosine kinase activity of relevant TCR-associated
signaling pathways.

DISCUSSION

Human Treg can express the pro-inflammatory cytokine IL-
17A under specific conditions; a phenomenon referred to as
Treg plasticity (5, 8). The molecular mechanisms regulating this
phenomenon are not well-understood. In our current work, we
demonstrate that TNFα signaling regulates IL-17A expression
in effTreg by controlling a kinase activity network that includes
TCR linked kinases and other prominent immune signaling
kinase pathways such as the JAK pathway. Also, TNFα-mediated
regulation of the anti-inflammatory mediator TNFAIP3/A20
appeared crucial to control IL-17A expression by effTreg. TNFR2
is the main receptor for TNFα signaling in Treg. TNFR2
stimulation has been demonstrated to support Treg stability
(18, 19, 25, 53), whereas the effect of TNF signaling on the
stability of Treg is ambiguous (54, 55). Here, we show that TNFR2
is highly expressed on human effTreg, and TNF-TNFR2 signaling
in effTreg acts as a negative regulator of IL-17A expression by
controlling TCR and JAK signaling.

STRING association analysis revealed that inhibition of TNFα
signaling is associated with increased TCR associated signaling
of CD3ζ, CD3ε, ZAP70, and Lck, indicating that TNFα signaling
in effTreg functions as a rheostat of TCR signal transmission.
Although information of TNFα stimulation on the TCR signaling
in Treg is lacking, it has been shown in CD4+ T cells of
both mice and man that TNFα stimulation results in specific
down-regulation of TCRζ expression and impaired TCR/CD3
signaling, including phosphorylation of the TCRζ, CD3ε, ZAP-
70 tyrosine kinase, and linker for activation of T cells (LAT)
(56). TCR signaling is essential for both effector and regulatory
T cells (57). Treg have a more extensive TCR repertoire than
effector T cells, and TCR signaling is crucial for proper Treg
function (58–61). Signaling via the T cell antigen receptor of Treg
is critical for FOXP3 expression and their suppressive activity.
Mutations resulting in signaling-deficient TCRζ chains led to
increased Treg numbers with higher suppressive activity (62–
64). Reduced TCR signaling will alleviate downstream signaling
and favor Treg cell lineage commitment. TNFα signaling, as we
demonstrate here, seems to safeguard TCR-related kinase activity
in effTreg and stabilize Treg function as illustrated by preventing
IL-17A expression. Note that anti-TNF had a mild effect on the
induction of IL-17A expression in effTreg, which is in contrast
to its clear induction of IL-17A in conventional memory T cells
(20). This phenomenon may be caused by the poor intrinsic
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FIGURE 3 | TNFα signaling in effTreg suppresses TCR and JAK kinase activity, leading to regulation of IL-17A expression. effTreg were stimulated with αCD3/CD28

beads and rh-IL-2 in the presence of rhTNFα or anti-TNF. On day 4, phosphoserine/threonine kinase (STK) and phosphotyrosine kinase (PTK) activity of cells were

(Continued)
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FIGURE 3 | Analyzed using a kinome activity array. (A) Left panel: Volcano plot showing the fold change in kinase activity and adjusted p-values (red symbols, p <

0.05; n = 4) in STK and PTK kinase activity. Right panel: Fold change in the kinases identified by comparing anti-TNF with rhTNFα conditions. Of note, TNFα was

used as reference to calculate the fold change. Green texts indicate unique kinases that show increased activity upon comparison of anti-TNF to rhTNFα conditions;

Blue texts represent kinases with enhanced activity upon comparison of comparing anti-TNF to the control (αCD3/CD28 stimulated without rhTNF or anti-TNF). (B)

Cumulative STRING© protein network analysis based on the identified kinases listed in (A). (C) Flow cytometry of intracellular IL-17A expression in FOXP3high effTreg.

Pathway inhibition validation assays applying small chemical molecules in the stimulation assay as described above (mean ± SEM, n = 7). JAKi, JAK inhibitor

(tofacitinib); Lcki, Lck inhibitor (A420983); PKCi, PKC inhibitor (AEB071); and p38i, p38MAPK inhibitor (UR13870). ANOVA Dunnett’s testing (A) and Friedman test

followed by Dunn’s multiple comparisons test (C) were used. *p < 0.05, **p < 0.001, ***p 0.0001, ns, not significant.

capacity of effTreg to produce TNFα in vitro. In fact, highly pure
FACS-sorted effTreg barely produced TNFα (41.35 pg/ml± 6.75),
whereas memory conventional T cells produced significantly
higher levels (335.7 pg/ml± 65.33, n= 4) (data not shown).

Next to TCR-derived signals, Treg integrates inputs from
cytokine, chemotactic, and metabolic cues to fulfill their function
optimally. Proximal cytokine signaling often takes place via JAK-
STAT signaling (65). IL-17A gene transcription is associated
with JAK-STAT3 signaling (66). Inhibition of TNFα signaling
using anti-TNF inhibitor ETN was associated with increased
JAK1 and JAK3 kinase activity in αCD3/CD28 stimulated effTreg.
Inhibition of JAK1 and JAK3 kinase activity by the clinically
applied JAK inhibitor tofacitinib prevented IL-17A expression
in anti-TNF-treated effTreg, suggesting that TNFα signaling is
involved in driving JAK/STAT signaling. Although TNFα is not a
prototypic JAK/STAT activating cytokine, the anti-inflammatory
molecule A20 (encoded by TNFAIP3) that is a downstream target
of TNFα signaling acts as a regulator of STAT (67, 68). The
absence of A20 in myeloid cells resulted in enhanced STAT1-
dependent inflammation (68). This relationship needs to be
confirmed in effTreg.

Although anti-TNF therapy is improving the life quality
of many patients with chronic inflammatory diseases, 10–20%
of patients do not respond to the treatment while 0.6–5% of
patients treated with TNF inhibitors reveal paradoxical immune-
mediated inflammatory side effects (36, 37). Although the
mechanism of the latter phenomenon is not fully understood,
it might be of interest to consider an additional JAK inhibitor
treatment such as tofacitinib or other JAK inhibitors to prevent
the putative IL-17A expression by Treg. Also, regarding Treg-
based immune therapy in transplantation or autoimmunity, the
clinical design has started to consider strategies to minimize the
risks of Treg plasticity (69) at the time of ex vivo production and
following in vivo administration (70, 71). Our results suggests
that TNFα-TNFR2 signaling or inhibition of JAK signaling might
favor Treg stability. Along with this line of reasoning, it has
been demonstrated that JAK inhibition (72) as well as TNFR2
stimulation (18, 19) support human Treg function and prevent
Treg plasticity.

In conclusion, we demonstrated an inverse production of
TNFα and IL-17A between human naïve and effector Treg
cells. Supplementation of rhTNFα led to a down-regulation
in the frequency of IL-17A-producing effTreg, mainly via the
activation of NFkB pathway as well as the up-regulation of
TNFAIP3/A20 expression. TNFR2 receptor seems to play a
crucial role since we hardly detected any expression of TNFR1
on effTreg and treatment of effTreg with TNFR2 specific

agonist resulted in a similar inhibition of IL-17A production.
Accordingly, inhibition of TNFα signaling using the clinically
applied anti-TNF inhibitor ETN led to decreased TNFAIP3 and
increased IL-17A expression, a phenomenon similar to what
is observed in human conventional memory CD4+ T cells.
Kinome activity screening of αCD3/CD28 stimulated effTreg
revealed that anti-TNF led to an increase in kinase activity of
multiple kinases including CD3ζ (CD247) and LcK. A functional
ontology enrichment analysis indicated that these kinases were
highly associated with different immune response signaling
pathways including TCR-, JAK-mediated pathways. We propose
that these findings might be relevant for optimizing anti-TNF-
based therapy and may aid in preventing Treg plasticity in case
of Treg-based cell therapy.

MATERIALS AND METHODS

Study Approval
The protocols of this study were performed in agreement
with the Declaration of Helsinki and in accordance with the
Radboud university medical center (Radboudumc) in Nijmegen,
the Netherlands.

Subjects
Blood buffy coats from voluntary donors were purchased from
the Sanquin Blood Bank, Nijmegen, the Netherlands. The
volunteers gave written informed consent.

Regulatory T Cell Isolation
CD4+ T cells were isolated using RosetteSep

TM
Human CD4+

T cell enrichment cocktail 25–50 µl of cocktail/ml of blood
(StemCell Technologies, Vancouver, Canada) according to the
instructions of the supplier. To sort CD4+CD25+CD45RA+

(naïveTreg) and CD4+CD25highCD45RA− (effTreg), the purified
CD4+ cells were washed and stained with anti-CD25-BV510
(M-A251, BD, New Jersey, USA), anti-CD45RA− PE (4KB5,
Dako, Brüsseler Straße, Germany), CD4-PE-Cy5.5 (13B8.2,
Beckman-Coulter, California, United States), and FACS-sorted
on a FACSAriaTM III machine (BD Biosciences, New Jersey,
United States). The gating strategy during FACS sorting, post-
sorting purity analysis, and confirmation of FOXP3 expression in
freshly sorted cell subsets are described in Figure 1A. The purity
of the sorted cell populations was 95.3± 4.1% (mean± SD).

Cell Culture
RPMI-1640 Dutch modified (Gibco, Massachusetts,
United States) culture medium, containing sodium bicarbonate
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FIGURE 4 | Enrichment analysis of the kinome array data. Functional ontology enrichment analysis using the MetaCoreTM database reveals (A) the distinct biological

networks, (B) the different biological processes, and (C) various diseases related to kinases identified in Figure 3. The probability of a random intersection between

the set of kinases with ontology entities was estimated with the “p” value of the hypergeometric intersection. A lower “p” value means higher relevance of the entity to

the dataset, which appears in higher rating for the entity.

and 20mM HEPES, supplemented with penicillin/streptomycin
(100U/ml), sodium pyruvate (1mM), glutamine/glutamax,
and 10% human pooled serum (HPS, Radboudumc), was
used in all experiments. After cell isolation, 2.5 × 104

cells/well were cultured in 96-well U-bottom plates and

stimulated with Dynabeads
R©

Human T-Activator CD3/CD28
(αCD3/CD28 beads, 1:5 of bead:cell ratio) (Gibco,Massachusetts,
United States) in the presence of recombinant human (rh) IL-
2 (rhIL-2, 100U/ml) (Proleukin Prometheus Laboratories,
California, United States). In some conditions, cultures were
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supplemented with rhTNFα (50 ng/ml, R&D, Minnesota,
United States), or TNFα inhibitors etanercept (5µg/ml;
ETN—Enbrel, Pfizer, New York, United States), or TNFR2
agonist (2.5µg/ml, Clone MR2-1, Hycult Biotech, Uden,
the Netherlands). To examine the effect of a pharmaceutical
inhibitor, tofacitinib (0.112µM, Pfizer, New York, United States),
PKC inhibitor Sotrastaurin (1µM), Lck inhibitor A420983
(1µM), or p38α/β kinase inhibitor UR13870 (10µM) was
pre-incubated with the FACS-sorted cells for 30min before the
addition of any stimulus. In some cases, cells were stimulated
with PMA (12.5 ng/ml) and ionomycin (500 ng/ml) for 20 h.

Flow Cytometry
Flow cytometry was performed using a 10-color Navios
Flow cytometer (Beckman Coulter, California, United States),
which is equipped with blue (488 nm), red (638 nm), and
violet (405 nm) lasers. For surface staining, the following
antibodies were used: anti-CD3-ECD (UCHT1), anti-CD45RA-
ECD (2H4LDH11LDB9), anti-CD45-KO (J33), anti-CD4-PE-
Cy5.5 (13B8.2), and anti-CD8-APC-AF700 (B9.11) (all from
Beckman-Coulter); anti-TNFR1-AF488 (16803, R&D); and anti-
TNFR2-APC (22235, R&D). For intracellular staining, the
following antibodies were used: anti-IFNγ-PE-Cy7 (4S.B3) and
anti-IL-17A-AF-660 (eBio64DEC17) (eBioscience, California,
United States). Unstained (Fluorescence Minus One, FMO)
samples were also measured to help set the gates during data
analysis. To evaluate cytokine production, we challenged the
cultured Treg subsets for another 4 h with PMA (12.5 ng/ml),
ionomycin (500 ng/ml), and Brefeldin A (5µg/ml) (Sigma-
Aldrich, Missouri, United States) before performing the FACS
staining process. Briefly, cells were stained with the fixable
viability dye-eFluo 780 (FVD, eBioscience) for 30min at
4◦C, following with surface mAb staining, cell fixation,
and permeabilization by using the Intracellular Fixation &
Permeabilization Buffer Set (eBioscience) and intracellular mAb
staining. For flow cytometry data analysis, Kaluza1.5 software
(Beckman Coulter) was used.

Small Interfering RNA Transfection
For small interfering RNA (siRNA) knockdown of TNFAIP3,
Accell SMARTpool siRNA (Dharmacon, Colorado,
United States) was used according to the manufacturer’s
instructions. Briefly, 1 × 105 effTreg cells per well were
stimulated with αCD3/CD28 beads (1:5 of bead:cell ratio) in
Accell Delivery Medium (Dharmacon) supplemented with
rhIL-2 (100 U/ml) and incubated with 1 mmol cyclophilin B
siRNA (positive control), or 1 mmol non-targeting control
siRNA, or 1 mmol TNFAIP3 siRNA for 120 h (for siRNA
sequences, see Table S2). Quantitative real-time PCR (RT-
qPCR) was performed to confirm the knockdown of the target
gene expression.

RT-qPCR
Total RNA was extracted by using the RNeasy Plus Micro Kit
(Qiagen) followed by cDNA synthesis using the SuperScript III
First-Strand Synthesis System and Oligo(dT)20 primer (Thermo
Fisher Scientific, Massachusetts, United States). TaqMan gene

expression assays were purchased from Thermo Fisher Scientific
(Table S3). RT-PCR was acquired in a 7500 Real-Time PCR
System (Applied Biosystems). RT-qPCR cycle values (CT)
obtained for specific mRNA expression in each sample were
normalized to the CT values of human HPRT1 (endogenous
control), resulting in 1CT values (log ratio of the gene
concentrations) that were used to calculate the relative
gene expression.

1CT=Mean CT −Housekeeping gene Mean CT

Then, we performed an exponential conversion of 1CT, namely,
2−1CT using the following formula:

2∧(exponential)− ∆CT

2−1CT representing the relative gene expression was used
in Figures 1B,E,F.

effTreg stimulated in the absence of anti-TNF or rhTNFα were
used as a baseline to calculate the relative gene expression in fold
change (11CT) for effTreg stimulated in the presence of rhTNFα
vs. ETN treatment.

11CT= Mean ∆CT −Mean ∆CT reference sample (control)

Subsequently, we performed an exponential conversion of
∆∆CT, namely, 2−11CT using the following formula:

2−11CT = 2∧(exponential)− ∆∆CT

2−11CT representing the relative gene expression in fold change
was employed for Figures 2B–D. In Figures 1C,D, log10 11CT

was employed. The Relative Quantification app (Thermo Fisher
Scientific cloud) was used for data analysis.

Measurement of Cytokines Secretion
The cell culture supernatants were analyzed for the presence
of IL-17A, IFNγ, and TNFα using Bio-Plex Pro Human Th17
Cytokine Assays (Bio-Rad, California, United States) according
to the manufacturer’s instruction. The cytokine concentrations
were measured using a Luminex100 machine (Luminex Corp.,
Texas, United States). The lowest limit of detection was <1.870
pg/ml for IL-17A, <2.411 pg/ml for IFNγ, and <2.231 pg/ml
for TNFα.

Protein Kinase Chip Assay
After sorting and stimulations of cells, samples were frozen for
further analysis. The protein isolation was performed according
to the manufacturer’s instruction (P1160, PamGene International
B.V., ’s-Hertogenbosch, the Netherlands). Kinase activity was
measured with PamGene’s Protein Tyrosine Kinase (PTK)
PamChip (Cat. number 86402) and Serine Threonine kinase
(STK) PamChip (Cat. number 87102). Each PTK PamChip array
contains 196 peptides immobilized on a porous membrane,
whereas each STK PamChip array contains 144 peptides (see
the full list of peptides at www.pamgene.com). The peptide
sequences (13 amino acids long) harbor phosphorylation sites,
defined based on literature or derived from computational
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predictions and are correlated with one or multiple upstream
kinases. A fluorescently labeled anti-phospho-Tyr antibody
(PY20) is used to detect the phosphorylation activity of tyrosine
kinases present in the sample. For the STK assay, an antibody
mix is used to detect the phosphorylated Ser/Thr, and the
2nd FITC-conjugated antibody is used in a detection mix to
quantify the phosphorylation signal. BioNavigator software 6.3
(PamGene) was used to determine signal intensities, peptide
quality control (QC) and preselection (phosphorylation kinetics,
or increase in signal over time, in 25% of the arrays analyzed),
Log 2 transformation, ANOVA-Dunnett’s testing, and data
visualization. Mapping and pathway elucidation analysis were
performed using METACORETM (Clarivate Analytics, PA, USA)
and STRING (73). As described by the GeneGo manufacturer’s
report, the analysis consists in matching the protein IDs of
possible targets for the “common,” “similar,” and “unique” sets
with protein IDs in functional ontologies in MetaCore (73). The
lower p-value means a higher relevance of the entity to the
dataset, which shows a higher rating for the entity.

Statistics
Statistical analysis was performed using GraphPad Prism 5.0
for Windows (GraphPad Software, San Diego, California, USA)
and R. For experiments with more than two groups of matched
samples, we used non-parametric Friedman test followed by
Dunn’s Multiple Comparison Test, whereas for experiments
with only two groups of matched samples, we employed non-
parametric Wilcoxon matched-pairs signed-rank test.
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Figure S1 | Expression of IL-17A in Conventional and regulatory T cells. Sorted

naïve T cells (CD4+CD45RA+CD25−), memory T cells (CD4+CD45RA−CD25−),

naïve Treg (CD4+CD45RA+CD25low) and effector Treg (CD4+CD45RA−CD25high)

were stimulated with anti-CD3/CD28 bead plus rhIL-2. Cells were harvested on

day 5 and intracellular FOXP3 and IL-17A expression were detected by FACS

staining.

Figure S2 | Kinome data analysis. Kinase activity of effTreg following αCD3/CD28

bead plus rhIL-2 activation in the absence or presence of anti-TNF or rhTNFα.

Significant changes of kinase activities are presented in a Venn diagram (A, left

panel) and a bar plot that ranked based on the log2 fold-change of kinase

activities. (B,C) Bar graphs showing significant changes of kinase activity between

anti-TNF and αCD3/CD28 control (B) or rhTNF and αCD3/CD28 control (C).

Figure S3 | The Janus kinase, Lck, PKC and p38 MAPK inhibitors do not affect

FOXP3 expression in effTreg. effTreg were stimulated with αCD3/CD28 beads in the

presence or absence of rhTNFα or anti-TNF or small chemical molecules such as

JAK inhibitor (tofacitinib), Lck inhibitor (A420983), PKC inhibitor (AEB071) and

p38MAPK inhibitor (UR13870) for 5 days. Flow cytometry analysis of intracellular

FOXP3 expression (n = 5). Data are shown as mean ± SEM.

Table S1 | Kinome Log 2-transformed dataset.

Table S2 | Target genes used for siRNA interference.

Table S3 | Primers used for RT-qPCR.
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