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Abstract: The capability of sensors to identify individuals in a specific scenario is a topic of high
relevance for sensitive sectors such as public security. A traditional approach involves cameras;
however, camera-based surveillance systems lack discretion and have high computational and storing
requirements in order to perform human identification. Moreover, they are strongly influenced by
external factors (e.g., light and weather). This paper proposes an approach based on a temporal
convolutional deep neural networks classifier applied to radar micro-Doppler signatures in order to
identify individuals. Both sensor and processing requirements ensure a low size weight and power
profile, enabling large scale deployment of discrete human identification systems. The proposed
approach is assessed on real data concerning 106 individuals. The results show good accuracy of the
classifier (the best obtained accuracy is 0.89 with an F1-score of 0.885) and improved performance
when compared to other standard approaches.

Keywords: deep learning; gait recognition; low-power radar; micro-Doppler; human ID

1. Introduction

A challenging and critical task in the video-surveillance domain is quick and accurate
individual identification. Traditional approaches involving cameras only, namely, camera-
based surveillance systems, lack discretion (privacy issues) and have high computational
and storing requirements in order to perform human identification. Moreover, the perfor-
mance of such systems depends on external factors (i.e., light and weather). For this reason,
it would be highly desirable to integrate them with different kinds of sensors that can
provide reliable performance also in adverse scenarios. These limitations can be exceeded
by adopting radar sensors that require a smaller amount of data, are able to see through
the walls, and are not affected by environmental conditions. Moreover, since radar sensors
have low cost and low power consumption they represent a promising solution not only for
future application in the surveillance context but also in other sectors (i.e., low Size Weight
and Power radars are very diffused in the automotive industry). Basing on the above
assumptions, several low power frequency-modulated continuous-wave (FMCW) radar
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algorithms for surveillance applications have been proposed in recent studies [1–4]. In
Refs. [5,6], authors discuss the advantages of radar micro-Doppler (MD), highlighting how
Doppler information generated by the movement of the target is useful for its identification
and for the subsequent micro-motion analysis. The micro-Doppler classification capabilities
are also confirmed in several other studies [7–12]. Since data produced by a FMCW data
is particularly suitable for neural-networks processing, it is worthwhile investigating the
adoption of Deep Learning (DL) algorithms for the gait-based human recognition using
micro-Doppler signatures as features [13–16]. DL-based approaches extend classical ma-
chine learning ones using deeper neural networks that are capable of learning directly from
more complex data, leading to better end-to-end classification and prediction performances.
DL, taking inspiration by the way information is processed in biological nervous systems
and their neurons, represent the data hierarchically, through several levels of abstraction
corresponding to various artificial perceptrons [17]. For this reason, the DL approaches are
based on deep neural networks composed of sets of hidden layers: in each step, the input
data is transformed into a slightly more abstract and composite one. The hierarchical and
conceptual representation of the layers is very useful to perform pattern classification,
recognition, and feature learning.

In this paper, the temporal convolutional networks (TCNs) are used to identify indi-
viduals based on their gait dynamics. TCNs are a kind of deep neural networks with a
convolution architecture design characterized by casualness and an output sequence of
constant length [18]. Given their architecture, TCNs are particularly suitable to the gait
recognition since in this context the causal relationships of the gait signal evolution can
be learned. It is worth to highlight that the main contribution of this work is represented
by the proposed TCN architecture which is composed of a two-level hierarchical attention
layer stack as done in [19] for Recurrent Neural Netoworks (RNNs). Informally, a neural
attention mechanism gives a neural network the capability to focus on a subset of its inputs
(or characteristics).

This work builds upon a prior work published in [20] and extends the preliminary
analysis to more complex scenarios with more individuals acquired in different envi-
ronments. This allows us to verify the robustness, the scalability, and portability of the
proposed methodology. Moreover, differently from [20], in this study the spectrograms are
obtained using three different Hamming windows of 0.5, 1, and 2 milliseconds with 98%
overlap. The 3 different window sizes will be used in different testing setups to assess the
influence of the time-frequency resolution trade-off. Furthermore, the used radar presents
a longer wavelength thus allowing for the identification of individuals at higher distances.

Our findings show that even if this reduces the discrimination capability of micro-
Doppler signatures (smaller Doppler bands), the neural classifier is able to perform an
efficient target recognition.

The assessment of the TCN classifier is performed on a relatively large dataset built at
the University of Glasgow, including several walking sessions from 106 subjects (targets).
The obtained results show the effectiveness of the proposed technique with respect to
other baselines.

This paper is organized into five sections. Section 2 describes the related work. Section 3
shows the proposed methodology (respectively the gait MD features model and the TCN
classifier are represented). Section 4 introduces and discusses the experiments performed
to assess the proposed method. Finally, in Section 5 the conclusions are reported.

2. Related Work

The adoption of radars as sensors to perform human identification is largely discussed
in the last years.

In particular, several approaches introduce machine learning algorithms to identify
individuals from a set of features gathered from micro-Doppler radar [21,22]. These ap-
proaches show good performance: for example, in [22], Gaussian Mixture Models [23] are
used to identify eight individuals, obtaining an accuracy greater than 90%.
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More recently, some studies propose the combination of micro-Doppler data and deep
learning algorithms for the gait-based human recognition [13–16]. However, the hierar-
chical structure of deep learning is more suitable to identify complicated patterns from
raw data (i.e., images and signals) without any feature extraction [24,25]. According to this,
in [13], a deep autoencoder is used to perform human gait recognition with micro-Doppler
radar. In this study, the best classification rate (96.2%) is obtained when a bayesian opti-
mization is performed to identify the suitable hyperparameters combination. Similarly,
Ref. [15] proposes a Deep Convolutional Neural Network (CNN) [26] approach are used
on micro-Doppler spectrograms achieving average accuracy between 97.1% and 68.9%
on the base of the number of people involved in the experiment (from 4 to 20). CNN
are also used in [16], where authors describe an approach to perform indoor gait based
human recognition from micro-Doppler signatures extracted by a low-power radar device.
The achieved classification error rate is of 24.70% on the validation set and 21.54% on the
test set. Another CNN [26] based approach is proposed in [27] where human detection is
performed by using a CNN [26] classifier on micro-Doppler spectrograms. The accuracy
achieved for human detection is 97.6%.

The above studies are also discussed in [28], where authors introduce the inception
architecture to human gait micro-Doppler features for the first time. The obtained accuracy
rate in persons recognition usind a CNN classifier is around 96.9%. With respect to the
above literature, this study proposes the adoption of a TCN classifier to identify individuals
from the micro-Doppler data. The surrounding idea is that, given their casualness in
the convolution architecture design, TCN is suitable to our context where the causal
relationships of the gait signal evolution should be learned. Finally, this paper extends the
study proposed in [20] by adding further details on the proposed approach generalizing
the obtained results on a novel more challenging dataset.

3. The Proposed Methodology
3.1. Gait MD Feature Model

The Micro-Doppler (MD) effect induced by mechanical vibrating or rotating structures
in a radar target is a very useful feature for target detection, classification, and recognition.
In fact, while the Doppler frequency induced by the target body is constant, the MD due
to the motions of target’s structures is a function of the listening time. Thus, the analysis
of the time-varying Doppler signature in the joint time-frequency domain can provide
precious information [29,30].

In Figure 1, the geometry used to analyse the micro-Doppler induced by a point-target
P, vibrating with frequency fv at distances R0 from the radar and Dv from the center
of coordinates (x′, y′, z′), is shown [30]. The list of used symbols and their meanings is
reported in Table 1. Using a simplified model in the slow-time domain, the radar received
signal can be expressed as

s(t) = ρej 4πR0
λ ej(2π f0t+4πr(t)/λ) (1)

where:

• ρ is the backscattering coefficient;
• λ is the carrier wavelength;
• r(t) = R0 + Dv sin(ωvt) cos(β) cos(αp), with ωv = 2π fv, is the range function varying

with time due to micro-motion.

By taking the derivative of the time-derivative of the second phase term, the micro-
Doppler frequency induced by the vibration is

fmD(t) =
Dvωv

λ
cos(β) cos(αp) cos(ωvt). (2)

This simplified model could be generalized to more complex scenarios. However, it is
worth noticing that an object or any structural object’s component may have oscillatory mo-
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tion, which can be referred to as micro-motion, including any oscillatory motion in addition
to the bulk motion of the object. For the case at hand, human articulated motion is com-
posed by a superposition of different motions of the human body parts. A global human
walk model based on empirical mathematical parameterizations has been derived in [31].
Specifically, the motion is described by 12 trajectories, 3 translations, and 14 rotations,
five of which are duplicated for both sides of the body, as shown in Figure 2.

Figure 1. Observation geometry.

Table 1. List of used symbols and their meanings.

R0 range from center of (x’,y’,z’) to radar in (x,y,z)
rt range from point-target to radar in (x,y,z)

Dv range from point-target to center of (x’,y’,z’)
fv vibration frequency
α azimuth angle of the center of (x’,y’,z’)
β elevation angle of center of (x’,y’,z’)

αp azimuth angle of P relative to center of (x’,y’,z’)
βp elevation angle of P relative to center of (x’,y’,z’)

The spectrogram is the most common tool used for the representation of the micro-
Doppler signatures. It is obtained through the calculation of the square module of the
short-time Fourier transform (STFT) of the received signal

χ(τ, f ) = |STFT(s)|2 =

∣∣∣∣∫ +∞

−∞
s(t)h(t− τ)e−j2π f tdt

∣∣∣∣2, (3)

where h(·) is the window function. In practice, the STFT is performed using the fast Fourier
transform (FFT), so both the signal and the window function are discrete and quantized.
Moreover, basically, the STFT can be interpreted as the Fourier transform of the “windowed”
signal s(t)h(t− τ). The resolution of the STFT is determined by the window size and there
is a trade-off between the time resolution and the frequency resolution: a larger window
implies a higher-frequency resolution but a poorer time resolution. The Gabor transform is
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a typical short-time Fourier transform using Gaussian windowing and has the minimal
product of the time resolution and the frequency resolution.
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Figure 2. Human walking trajectories.

As an example, the micro-Doppler signature of the simulation for the translations and
the rotations in one cycle of walking motion (i.e., from right heel strike to right heel strike)
is shown in Figure 3. From figure’s inspection, it can be noticed that each forward swing
of the leg produces large spikes and the movement of the torso which is the strongest
component underneath the leg swings tends to have a slightly sawtooth shape because the
speeding up and slowing down during the swing.



Sensors 2021, 21, 381 6 of 15

Finally, real radar measurements would present a strong clutter component due to
background objects and not of interest moving objects. Stationary background objects can
be easily suppressed by removing the zero Doppler component. Unwanted moving objects
may also be filtered out thanks to the different ranges and speeds.

The main steps for a data analysis using a radar for gait MD feature extraction are
shown in Figure 4. The first step consists in collecting data from the radar and processing
it calculating the spectogram. In the next step, MD signatures are pre-processed through
clutter and noise reduction.

Figure 3. Micro-Doppler (MD) signature of Human Walk [29].

Figure 4. MD Feature extraction.

Figure 5 shows the spectrograms of a 25.5 s window of two users given as input to
the TCN network. As can be seen from the figure, identifying the distinctive features
of the spectrogram that belong to a given user is not a simple task, surely for a human
but even by means of classic machine learning approaches (e.g., decision trees or support
vector machines). To learn the patterns and dynamics of the detected walkers, larger neural
networks are needed, since they are capable of extracting complex features by recombining
and processing them using larger numbers of layers. Our decision to use TCN is based on
the fact that this kind of neural network is characterized by causalness in the convolution
architecture design making it suitable to our classification problem where the relationships
among the spectrogram sequences and the walking target should be learned. However,
the proposed variant also includes a two-stage attention layer structure allowing to better
capture both lower and higher dynamics that characterize micro-doppler signatures.
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(a) User 1P38 spectrogram (b) User 1P50 spectrogram

Figure 5. Spectrograms of two walkers.

3.2. The TCN Classifier

Figure 6 depicts the classification process realized in this study. The figure shows
a TCN classifier trained by a set of micro-doppler time windows W. These windows
are extracted from the spectrograms, like those shown in Figure 5, and used for neural
networks training process. Each set of windows (represented by a row of the table in the
lower part of the figure) is computed as a feature vector representing a single instance
associated with a multinomial label Th, which specifies the person identity (target attribute).
The spectrograms sliding windows are given as input to the network and are propagated
through the layers of the TCN with a dilation factor that doubles on each layer.

Figure 6. Temporal convolutional network (TCN) classifier architecture.
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In the training step, in order to perform validation, a 10-fold cross-validation is
used [32]. Finally, the trained classifier is assessed on a the test set composed of data
gathered from walking sessions never used before. The classifier is realized with a TCN
architecture [18] that uses a 1D fully-convolutional network (FCN) architecture.

In the proposed architecture, three types of layers are considered: an input layer,
a hidden layer, and an attention layer. The input layer is the neural network entry point
and includes a node for each set of considered features at a given time.

The hidden layers are instead made of artificial neurons (they are also called “per-
ceptrons”). The output of each neuron is computed as a weighted sum of its inputs and
passed through an activation function or a soft-plus function. In the proposed architecture,
a different number of hidden layers can be used: all the hidden layers have the same length
as the input layer. However, a padding of length (kernel size-1) is added to enforce the
layer length coherence and keep subsequent layers at the same length as the previous ones.
This architecture allows us to ensure that at each evaluation, the output is obtained by
considering only the current and the previous samples. Moreover, the architecture employs
dilated convolutions that enable an exponentially large receptive field on the base of a
dilation factor d f (a sort of fixed step) between every two adjacent filters. At the increase
of the layer number, the dilation factor grows exponentially. However, when the kernel
size is kl , the data used at the lower layer is (kl − 1)d and still grows exponentially at
the increasing of the network layers. The classification is finally performed on the last
sequential activation of the last layer (output layer) which synthesizes the information
extracted from the complete input sequence into a single feature vector and produces the
requested output.

Moreover, while this representation can be very reductive with respect to the high
number of complex relationships, a hierarchical attention mechanism [19] is added across
the network layers similarly to [33–35]. Attention layers model the relationships regardless
of their distance in the input or output sequences.

Looking at Figure 6, for the TCN having n hidden layers, the weights matrix Li ∈ RK×T

is defined as:
Li = [li

1, ..., li
T ], (4)

where i is the layer number containing the convolutional activations (with i = 1, . . . , n),
K is the filters’ number at each layer and T is the length of the window.

Moreover, we can define the layer attention weight mi ∈ R1×T as:

mi = softmax(tanh(wT
i Li)) (5)

where wi ∈ RK×1 are the trainable parameter vectors. For the layer i, the corresponding
set of convolutional activations is computed as ai ∈ RK×1 = f (Liβ

T
i ) where f (·) is one

activation function among ReLU, Mish and Swish [36] and βi are the weights of the
attention layer. Finally, the convolutional activations A ∈ RK×n = [a1, ..., ai, ..., an] of
the hidden layers allow to compute the representation of the last sequence to ensure the
final classification:

α = softmax(tanh(ωTA)) (6)

y = f (AαT) (7)

where ω ∈ RK×1 and α ∈ R1×K are respectively the vector of weights and the output of the
high-level attention layer, and y ∈ RK×1 is the neural network final. Notice that, the batch
normalization [37] is also added to improve the training of deep feed-forward neural
networks. In the training step, we tested different combinations of architectural parameters
(i.e., number of layers, batch size, optimization algorithm, and activation functions) to
optimize the classifier’s performance. The training is also performed with a cross-entropy
loss function [38], optimized thought a stochastic gradient descent (SGD) technique. The
adopted momentum is equal to 0.09 while the fixed decay is 1 × 10−6. The learning
performances are also improved by configuring the SGD into all experiments with Nesterov
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accelerated gradient (NAG) correction (this allows to avoid excessive changes in the
parameter space) [39].

4. Validation and Assessment
4.1. Dataset Construction

The dataset selected in this work is the public dataset acquired by the University
of Glasgow (http://researchdata.gla.ac.uk/848/) containing C-band (carrier 5.8 GHz)
micro-Doppler signatures of different human activities performed by different subjects in
different environments [40]. The dataset has been acquired from individuals of male and
female sex, left and right handed, aged between 21 and 98 years old and with an height
interval between 149–198 cm. Each subject in the dataset performs the following activities
3 times: walking back and forth, sitting down on a chair, standing up, bending to pick
up an object, drinking from a cup or glass and in some cases falls were also simulated.
In this work only the acquisitions containing the subjects walking back and forth were
considered, thus all the other activities were discarded and are not considered in this work.
Compared with the dataset used in [20], this dataset is more challenging as presents data
acquired with a lower carrier frequency (5.8 GHz vs. 77 GHz used in [20]) from a large
number of subjects and in different environments. The total number of different individuas
is 106 with a total number of 318 observations available from the various walking sessions.
For each activity a spectrogram computed according to Equation (3) is obtained using three
different Hamming windows of 0.5, 1 and 2 millisecond window with 98% overlap. The 3
different window sizes will be used in different testing setups to assess the influence of the
time-frequency resolution trade-off. The MD signal is finally re-organized into windows
with a length of 25.5 s of data with an overlap of 1 s, for the generation of both the validation
and test set.

4.2. Experimental Settings

The proposed experiment aims to evaluate the effectiveness of our approach to identify
a single walker with respect to the other ones. To this aim, the performances of the
proposed classifier are evaluated by computing its precision, recall, F1, Accuracy, and Area
Under Curve (AUC) [41] on a real dataset suitable for the feature model described in
Section 3. In the assessment step, the best combination of the parameters reported in
Table 2 is computed exploiting a Sequential Bayesian Model-based Optimization (SBMO)
approach implemented by using a Tree Parzen Estimator (TPE) algorithm [42]. Table 2 lists
the considered hyperparameters and their evaluated ranges. As an activation function,
the ReLU is evaluated since it is widely adopted. However, it is known that the ReLU
activation function suffers from the so-called “dead” units problem. The dying ReLU
problem happens if the input becomes too large causing the gradient to update the weights
in a way that the summation, and thus the input, will always be less than zero for the
remaining of the entire training session. Since ReLU is defined as g(x) = max(0, x), if the
input is always less than zero, it could just as well have been g(x) = 0. But since the gradient
of a constant function is still zero, the weights won’t be updated anymore leading to the
neuron effectively dying being trapped in a bad local minimum. For this reason, in this
study also Swish and Mish are activation functions are also evaluated. However, they are
recently proposed [36,43] since they are not affected by the “dead neurons” issue and give
better performance in the case of the vanishing gradient problem.

For the network size, two levels (small and medium) are evaluated. The small size
network has a maximum of 1.5 mln of learning parameters whereas a medium network has
a number of parameters greater than 1.5 mln and lower of 7 mln. Looking at the learning
rate, we consider a range between 5 and 15. These values are normalized with respect to the
used optimization algorithm. For example, when the SGD optimizer is used, the learning
rate ranges between 0.09 and 0.12.

http://researchdata.gla.ac.uk/848/
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Table 2. Hyper-parameters Optimization space.

Hyperparameters Acronym Optimized Ranges and Sets

Activation function AF {ReLU, Swish, Mish}

Batch size BS { 32, 64, 128, 256 }

Learning rate LR [0.09, 0.15]

Network size NS {Small, Medium, Large}

Number of layers L { 6, 7, 8, 9 }

Optimization algorithm OA {SGD, Nadam, RMSprop}

Window size WS {64, 128, 256}

The table also reports the evaluated number of layers (from 6 to 9) and the batch size.
For the last one, three standard and widely used sizes (64, 128, and 256) are evaluated.
Notice that for the batch size we observed that when it is greater than 256 the training
process became less stable (this also influence the accuracy result).

Moeover, to minimize the loss, the three evaluated optimization algorithms are: the
Stochastic Gradient Descent (SGD) [44], RmsProp [45], Nadam [45]. Finally in the table also
the considered window sizes (64, 128 and 256) for the spectrogram computation. These
correspond to the 0.5, 1 and 2 milliseconds time windows.

In the proposed experiments, the SGD is integrated with the Nesterov Accelerated
Gradient (NAG) correction to reduce the possible changes in the parameter space [39].

The proposed experiments also allow evaluating the impact of the number of identified
targets (walkers) on the classifier performance. To this aim, we evaluate the classifier
performance when different numbers of subjects (10, 50, 100) are used for the analysis.

The neural network classifier is implemented by using PyTorch 1.4 deep learning
framework and the training is performed on a machine with two Intel (R) Core (TM) i9
CPU 4.30 GHZ, 64 GB of RAM, and four Nvidia Titan XP.

4.3. Results and Discussion

Table 3 reports for the classifier performance at the best hyperparameters combinations
when the training is performed respectively with a different number of targets (10, 50,
100). Looking at the 100-targets TCN classifier, we notice that the best accuracy (0.89)
is reached when the temporal window size (WS) is of 128 seconds. The corresponding
hyperparameters configuration provides Mish as activation function (AF), Nadam as
optimization algorithms (OA), a large network size (NS), a batch size (BS) of 16, nine
hidden layers (NL) and was trained by with learning rate (LR) equal to 0.15.

Figure 7 reports for the best 100-targets TCN classifier, the training and loss accuracy
at the increasing of the epochs. The figure highlights that that accuracy and loss became
stable starting from 40 epochs.

Table 4 also reports the performance of the TCN for different number of targets
compared to the best standard classifiers. Specifically, we compared the proposed architec-
ture with the state of the art models used for similar tasks (i.e., VGG16 and VGG19 [46],
RESNET [47], and the standard CNN2D). The table shows that in all the cases the TCN
gives best F1 and AUC.

Finally, we also evaluated the impact of the number of targets used for the classifier’s
training on its performances.
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Table 3. Hyperparameters optimization summary: best three.

Targets AF NS LR NL BS OA WS Precision Recall F1 Accuracy AUC

Swish Medium 0.12 6 64 Nadam 128 0.984 0.978 0.991 0.984 0.989

ReLu Medium 0.15 6 128 SGD 128 0.970 0.963 0.977 0.968 0.97110
ReLu Small 0.09 8 128 SGD 64 0.952 0.952 0.960 0.950 0.961

Mish Large 0.12 7 32 Nadam 128 0.852 0.901 0.922 0.911 0.916

Swish Medium 0.10 8 32 SGD 128 0.798 0.839 0.892 0.871 0.89550
Swish Medium 0.12 8 64 SGD 128 0.773 0.811 0.872 0,825 0.859

Mish Large 0.15 9 16 Nadam 128 0.849 0.898 0.885 0.891 0.890

Mish Large 0.14 9 32 RMSProp 128 0.830 0.851 0.838 0.862 0.871100
Mish Large 0.15 9 32 SGD 256 0.789 0.823 0.788 0.838 0.849

Table 4. Performance comparison of the TCN classifiers with baseline methods (CNN2D,RESNET,
VGG16, VGG19).

Target Network Accuracy Precision Recall F1 AUC

VGG16 0,886 0.918 0.921 0.919 0.920

VGG19 0.932 0.948 0.983 0.965 0.969

RESNET 0.969 0.960 0.982 0.971 0.973

CNN2D 0.879 0.856 0.926 0.890 0.890

10

TCN 0.984 0.978 0.991 0.984 0.989

VGG16 0.832 0.897 0.843 0.869 0.872

VGG19 0.843 0.853 0.915 0.883 0.886

RESNET 0.850 0.880 0.851 0.865 0.868

CNN2D 0.766 0.807 0.822 0.815 0.817

50

TCN 0.852 0.901 0.922 0.911 0.916

VGG16 0.834 0.844 0.815 0.829 0.830

VGG19 0.838 0.852 0.883 0.867 0.870

RESNET 0.831 0.832 0.821 0.827 0.831

CNN2D 0.812 0.784 0.847 0.814 0.816

100

TCN 0.849 0.898 0.885 0.891 0.890

Figure 7. Training and validation accuracy and loss by epochs for the best 100-targets TCN classifier.
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Starting from Table 3, it is clear that the classifier performances get worse at the increas-
ing of the number of targets used for the training. However, the table also shows that in all
the cases the obtained performances are never less than 0.849 (it is the hyperparameters
combination describe in the last row of the table). Looking to Table 4, it also clear that
in all the tested classifiers the performances are similarly influenced by the number of
targets used for the training. These results, for the CNN classifier, are also confirmed by
the findings described in [26].

As we can see from Figure 8, F1 decreases when the number of Targets increases but
the proposed network (TCN) for a given number of detected users is always the best.
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Figure 8. Performance of deep neural network for increasing number of identified targets.

Finally, Figure 9 (left side) show the different F1 scores of the TCN classifiers by the
changing targets numbers. Similarly, the figure (right side) also shows that the best F1
score is generally obtained for the window size of 128. The figure confirms and generalizes
the above considerations.

From the point of view of the performance of the end-to-end system, it is worth noting
that the inference times are very short (in the order of milliseconds for a single image).
For this reason the system can be implemented to operate in real time with the largest
computational cost residing in the computation of the STFT that is then sent as input to the
trained neural network.



Sensors 2021, 21, 381 13 of 15

Figure 9. F1 score of the TCN classifier trained with different number of targets (left) and different windows (right).

5. Conclusions

This study introduces an approach based on a TCN classifier and a set of micro-
Doppler features. The approach aims to perform gait recognition using the data extracted
by a low-cost low-power FMCW radar. The accuracy of the classifier is evaluated on a
real dataset acquired by the University of Glasgow. The dataset contains data gathered
from walking sessions involving a total number of 106 different individuals a total number
of 318 observations available from the various walking sessions. The performance of the
TCN classifier is evaluated considering different hyper-parameters combinations, different
window sizes, and different numbers of targets. In all the cases, the results show the greater
performance of the TCN classifier with respect to other baseline ones (CNN2D, RESNET,
VGG16, and VGG19).

Finally, we also observed that the number of targets used for the classifier’s training
and the window size influence the classifier performances. However, the classifier perfor-
mances get worse with an increase in the number of targets used for the training. Moreover,
the best F1 score is obtained when the windows size is 128, probably because that is the
best tradeoff between time and frequency resolution. The results confirm that 8-layer TCN
networks, augmented with hierarchical attention layers, are suitable for identification of
up to a hundred of walkers with good quality classification performances (F1 = 0.9).
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