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A B S T R A C T

Background: Although the divergent male and female differentiation depends on key genes, many biological
differences seen in men and women are driven by relative differences in estrogen and testosterone levels. Gender
dysphoria denotes the distress that gender incongruence with the assigned sex at birth may cause. Gender-
affirming treatment includes medical intervention such as inhibition of endogenous sex hormones and sub-
sequent replacement with cross-sex hormones. The aim of this study is to investigate consequences of an altered
sex hormone profile on different tissues and metabolic risk factors. By studying subjects undergoing gender-
affirming medical intervention with sex hormones, we have the unique opportunity to distinguish between
genetic and hormonal effects.
Methods: The study is a single center observational cohort study conducted in Stockholm, Sweden. The subjects
are examined at four time points; before initiation of treatment, after endogenous sex hormone inhibition, and
three and eleven months following sex hormone treatment. Examinations include blood samples, skeletal
muscle-, adipose- and skin tissue biopsies, arteriography, echocardiography, carotid Doppler examination, whole
body MRI, CT of muscle and measurements of muscle strength.
Results: The primary outcome measure is transcriptomic and epigenomic changes in skeletal muscle. Secondary
outcome measures include transcriptomic and epigenomic changes associated with metabolism in adipose and
skin, muscle strength, fat cell size and ability to release fatty acids from adipose tissue, cardiovascular function,
and body composition.
Conclusions: This study will provide novel information on the role of sex hormone treatment in skeletal muscle,
adipose and skin, and its relation to cardiovascular and metabolic disease.
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1. Introduction

The effects of sex on different biological mechanisms is a recurrent
question in medical research and it is obvious that sex and gender have
great impact on epidemiology, risk, clinical manifestations and course
of disease [1]. Many of the biological differences seen in men and
women in skeletal muscle, adipose, and cardiovascular risk factors are
driven by relative differences in estrogen and testosterone levels, even
though the primary divergent embryo and fetal development depend on
the chromosome constitution and key genes [2–4]. Differences that are
particularly significant but not well known are 1) regulation of skeletal
muscle mass and adipose tissue, 2) metabolic changes in the regulation
of glucose homeostasis and lipid metabolism, and 3) regulation of
vascular function and structural effects on the heart and arteries. Tra-
ditionally, human studies investigating sex differences have compared
men and women. However, it is very difficult to match subjects and
avoid confounders in this comparison since individual differences are
vast at genetic levels, as are environmental exposures during develop-
ment in early and later life. Subjects exposed to both estrogen and
testosterone at different time points would be ideal to compare the
effects of sex-hormones in comparison to constitutional gene expression
profiles.

Gender dysphoria denotes the distress that gender incongruence
with the assigned sex at birth may cause. Gender-affirming treatment
aims to align the body with the gender identity and includes treatment
with designated sex hormones and may also include surgery to change
primary and secondary sex characteristics, voice therapy, and hair re-
moval, and could be either masculinizing or feminizing. The GETS
study described here is designed to investigate the effects of altered sex
hormone pattern on skeletal muscle, adipose, skin, heart, blood vessels
and metabolic risk factors in subjects with gender dysphoria under-
going cross sex-hormone treatment. Both transgender men and women
are studied. The primary outcome of the GETS study is transcriptomic
and epigenomic changes in skeletal muscle. Secondary outcome mea-
sures include transcriptomic and epigenomic changes associated with
metabolism in adipose and skin, muscle strength, fat cell size and ability
to release fatty acids from adipose tissue, cardiovascular function, and
body composition.

2. Methods

2.1. Study design

This study is designed as a single center observational cohort study.

2.2. Recruitment

The study population consists of individuals that have been referred
to ANOVA, Andrology Sexual Medicine and Transgender Medicine at
the Karolinska University Hospital, Stockholm, Sweden for evaluation
of gender dysphoria and who have been accepted to start gender-af-
firming medical intervention. These individuals diagnosed with gender
dysphoria are assessed for eligibility (see Table 1 for inclusion and
exclusion criteria). If eligible, they are provided a brief oral and written
presentation of the study background and practical implications. A total
of 40 patients (20 transgender men and 20 transgender women) are
planned to be recruited.

2.3. Informed consent

The subjects are informed that their participation in the study is
completely voluntary and that they could withdraw their consent to
participate at any time without the need of explanation. They are also
informed that their decision to participate or not, or the withdrawal of
consent to participate, would not in any way change their treatment.
Oral and written informed consent is obtained from all subjects. The

regional ethical review board in Stockholm, Sweden, approved the
study (Dnr 2014/409-31/4).

2.4. Overview of study design

An overview of the study time-line is shown in Fig. 1. Examinations
are conducted at four time points: (1) before treatment initiation, (2)
four weeks after initiated gonadal hormonal down regulation but before
hormone replacement, (3) three months after hormone replacement
therapy, and (4) eleven months after hormone replacement therapy.
Each time point is divided into two examination days (Mondays and
Thursdays). On the first day, the participant comes to the laboratory in
the morning after an overnight fast. After at least 5 min of rest, blood
pressure is measured and blood samples are collected. After adminis-
tration of local anesthesia, tissue samples from skeletal muscle, adipose
and skin are collected. Subsequently, after a 15min rest, arterial stiff-
ness is measured with an arteriograph. On the second day, muscle
strength is evaluated using isokinetic dynamometry. After a 15min rest,
a transthoracic echocardiography (TTE) is performed for estimation of
chamber dimensions as well as ventricular and valvular function, and
coronary flow velocity reserve (CFR) is assessed in the left anterior
descending coronary artery by pulsed Doppler, followed by a carotid
Doppler examination. On the first and last time points of the study, the
participants undergo a CT muscle scan followed by whole body MRI.
These investigations are performed on a separate day before the biop-
sies.

2.5. Medical treatment

Endocrine therapy in order to reverse the endocrine environment
from male to female and vice versa is initiated with injection of a
Gonadotropin releasing hormone (GnRH) antagonist (Degarelix 240mg
sc). This results in immediate reduction in gonadotropin secretion and
brings sex hormone levels (estradiol and testosterone) to castrate levels
within 24 h and for the duration of the washout period of 4 weeks.
Continued cross-hormone treatment is started after post castration as-
sessments have been made. Transgender men (former called female-to-
male) are treated with testosterone injections (testosterone un-
decanoate 1000mg i.m.) with the two first injections given with a 6
week interval and thereafter one injection every tenth week, with dose
adjustments in order to maintain androgen levels within the normal
adult male reference range. Further gonadotropin suppression is
maintained with GnRH-analogue administered i.m. every third months.
Transgender women (former called male-to-female) are also given
GnRH-analogue treatment to maintain suppression of the gonadal axis.
Estradiol therapy is administered with either transdermal therapy or
i.m. injections (estradiol polyphosphate) both aiming to produce serum

Table 1
Inclusion/exclusion criteria.

Inclusion criteria

Age 20 -<= 40 years
Individuals with Gender Dysphoria that have been accepted for cross-sex hormone

treatment
Willingness to participate in the study

Exclusion criteria

Already started with any hormone therapy
Ongoing infectious disease
Treatment with warfarin or other anticoagulants
History of cardiovascular disease
Type 1 diabetes
Other serious psychiatric or somatic morbidity
Alcohol or drug dependency
Language difficulties
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estradiol levels within the mid-cycle normal range for fertile women.

2.6. Examinations

2.6.1. Blood and urine samples
Blood samples are collected for standard laboratory analyses, blood

lipids, hematology and sex hormones. Granulocytes and peripheral
blood mononuclear cells (PBMCs) are isolated from fresh whole blood,
snap frozen in liquid nitrogen and subsequently stored at −80 °C until
analyzed. In a subgroup of subjects, a baseline urine sample is collected
to exclude previous cross sex hormone treatment.

2.6.2. Tissue samples
All tissue samples are collected under sterile conditions. A local

anesthetic injection (10–20ml Carbocain 10mg/ml without adrenalin)
is used for each biopsy.

2.6.3. Skeletal muscle
Skeletal muscle biopsies are obtained at rest from the vastus lateralis

muscle using the percutaneous needle technique [5]. The sample is
divided into three parts for genomic, epigenetic and histology analysis
including measuring of muscle fiber size. The histology sample is frozen
in liquid nitrogen pre-cooled in isopentane, and the others are snap
frozen directly in liquid nitrogen and then stored at −80 °C until ana-
lyzed. The endpoints that will be studied in skeletal muscle include 1)
cross sectional area of the muscle fibers, fiber type composition, ca-
pillarization and number of myonuclei, 2) epigenetic changes in ske-
letal muscle including genome wide DNA methylation, as described [6].
3) alterations in gene expression in skeletal muscle as well as protein
expression of key targets.

2.6.4. Adipose
Adipose tissue biopsies are obtained approximately 10 cm laterally

of the umbilicus after a subcutaneous local anesthetic injection as de-
scribed above. A small incision is made to help the aspiration needle to
penetrate the skin, and using a 10ml syringe with generated negative
pressure, subcutaneous fat is aspired. The sample is divided and one
part is directly analyzed to determine fat cell size and lipolysis as de-
scribed previously [7]. Both isolated fat cells and fat tissue are subse-
quently snap frozen in liquid nitrogen and then stored at −80 °C until
subsequent genomic and epigenetic analyses. The endpoints that will be
studied in adipose include 1) fat cell size (measured in picoliters) and
fat cell number (total and in different compartments calculated from fat
cell size and quantification of fat mass from MRI scans), and its po-
tential impact on metabolic complications, as described [8], 2) lipolysis
(quantified by spontaneous release of glycerol from isolated fat cells)
and a ratio of basal/stimulated lipolysis (stimulated with isoprenaline
or noradrenaline), and its potential impact on cardiovascular risk, as
described [9], 3) epigenetic changes in adipose tissue including genome
wide DNA methylation in fat cells, 4) gene expression analysis in adi-
pose tissue as well as secretion of adipokines, as described [10].

2.6.5. Skin
Skin biopsies are obtained approximately 2 cm proximal of the

muscle biopsy. After local intradermal and subcutaneous anesthetic

injection, a 6mm circular punch is used to obtain the skin biopsy. After
biopsy collection, the subcutaneous fat is cut off and the sample is di-
vided into three parts for subsequent genomic, epigenetic and histology
analyses. The epigenetic and histology samples are frozen in liquid
nitrogen pre-cooled in isopentane, while the genomic sample is snap
frozen directly in liquid nitrogen and then stored at −80 °C until ana-
lyzed. The endpoints that will be studied in skin include epigenetic
changes including genome wide DNA methylation and gene expression
alterations, as described [11].

2.6.6. Computed tomography (CT)
The cross sectional area and radiological density of the thigh mus-

cles are assessed by CT scans performed bilaterally at the midpoint of
femur of each subject. To minimize the effect of fluid shifts on the cross
sectional area, subjects rest in the supine position for 30min before the
scan. Preliminary scout images are obtained to ensure accurate posi-
tioning. All scans are obtained using a second-generation 64-slice dual-
source CT system (SOMATOM Definition Flash, Siemens Healthcare,
Forchheim, Germany) operating at 120 kV and a fixed flux of 100mA.
Areas of interest will be manually defined on 5mm thick slices and
measured using manual planimetry with associated imaging software
(Image J, National Institutes of Health, Bethesda, MD). Cross sectional
area and radiological density of the quadriceps muscle are measured at
baseline and after 11 months of cross sex hormone treatment.

2.6.7. MRI
Body composition is determined by MR imaging of the whole body

at baseline and after 11 months of cross sex hormone treatment. Each
subject undergo whole body MR imaging in the supine position (arms
by their sides) with a modified 2 point Dixon fat and water sequence on
a 3 TMR platform (Siemens Prisma, Siemens Healthcare, Erlangen,
Germany) with the following settings: slice thickness 4.5 mm, repetition
time 6.69, echo time 2.39, number of averages 1, resolution 0.448
pixels per mm. The total acquisition time is < 10min. After image
processing, automated image analysis will be performed using seg-
mentation software provided by AMRA™ (Advanced MR Analytics AB,
Linköping, Sweden). This analysis will allow for fully automated
quantification of whole body and compartmental muscle, liver and fat
volumes.

2.6.8. Isokinetic and isometric peak torque
Isokinetic and isometric peak torque are determined for the knee

flexors and extensors using isokinetic dynamometry (Biodex System 4
Pro, Medical Systems, Shirley, NY) at all four time points. The chest, hip
and thigh are stabilized using straps, and the ankle is strapped to the
lever arm, which is aligned with the axis of rotation of the knee joint.
Maximal isometric (0°/s) and isokinetic strength (60°/s and 90°/s) are
measured for both the right and left leg in newton meters with a
sampling frequency of 2000 Hz. The subject performs 4 all-out repeti-
tions for each leg, alternating between knee flexion and extension, at
each angular velocity. A 30 s rest period is employed between the trials.
For the isometric test (performed at the fixed knee angle of 120°), the
subjects are instructed to apply as much force as possible for 5 s. Three
trials are administered for each leg interspersed with 30 s recovery.

Fig. 1. Study design. Examinations are conductged at four time points (1) at baseline before treatment initiation, (2) three to four weeks after initiated gonadal
hormonal down regulation but before hormone replacement, (3) three months after the start of hormone replacement therapy and (4) eleven months after start of
hormone replacement therapy.

A. Wiik et al. Contemporary Clinical Trials Communications 10 (2018) 148–153

150



2.6.9. Arterial stiffness
Arterial stiffness is measured by pulse wave velocity and aortic

augmentation index using the Arteriograph system (Tensiomed Kft,
Budapest, Hungary), a non-invasive oscillometric method using an oc-
clusion technique. The pulse wave velocity is measured in the brachial
artery by calculating the return time of the first and second systolic
pressure waves and divides it with the aortic length. The wave reflec-
tion, measured as augmentation index, corresponds to the pressure
difference between the first and second wave. Measurements are made
with a brachial cuff in supine position after 15min rest. The re-
commended procedures for standardization of arterial stiffness mea-
surements are followed, as described [12].

2.6.10. Transthoracic echocardiography and ECG
A 12-lead ECG is recorded before the echocardiographic investiga-

tion. The echocardiographic examinations are performed on a high-end
ultrasound scanner (Vivid E9, GE Healthcare, Horten, Norway) with the
subjects in a lateral supine position. Two different transducers are used:
the M5S transducer for the two-dimensional images and Doppler, and
the 4V-D transducer for the 3-dimensional (3D) volumes. Data are
stored on a local server and analyzed off-line on a dedicated work-
station (EchoPac, GE Healthcare, Horten, Norway) by one experienced
investigator.

The echocardiographic examinations are made in agreement with
the ASE/EACVI guidelines [13]. Parasternal and apical four- and two-
chamber views are recorded and left ventricular volume, stroke volume
and ejection fraction are calculated using the modified biplane Simpson
formula. Also, the left ventricular and left atrial three-dimensional full
volumes are recorded. Left ventricular end-diastolic and end-systolic
volumes, stroke volume and ejection fraction are calculated as well as
the end systolic atrial volume after delineation of the cavities in ac-
cordance to the dedicated software. Deformation analysis is performed
by peak left ventricular strain, averaging 18 segments in the three
standard apical views.

Right ventricular end-diastolic dimension is measured in a slightly
modified four-chamber view at the base of the right ventricle and
fractional area change is calculated after delineation of the cavity in
end-diastole and end-systole. Systolic displacement of the right ven-
tricular tricuspid annulus (TAPSE) is measured using the M-mode
placed in the lateral annulus. The right atrial area is measured in the
apical view.

A pulse-wave Doppler with a sample volume of 5mm is placed at
the tip of the mitral leaflets in apical four-chamber view and the early
(E) and late (A) diastolic blood flow velocities as well as the decelera-
tion time (DT) and intraventricular relaxation time (IVRT) are regis-
tered and measured, and the E/A-ratio calculated. Tissue Doppler early
diastolic velocity is recorded in the base of the left ventricular septum
and lateral wall in apical four-chamber view, and a mean of the two
velocities is calculated (e'). In accordance to Nagueh et al., the E/e'-
ratio is calculated as part of the evaluation of the left diastolic function
[14].

Body surface area (BSA) is calculated using the Dubois & Dubois
formula and dimensions and volumes are indexed when needed [15].

2.6.11. Coronary flow velocity reserve
Adenosine is a potent vasodilatator producing maximal coronary

vasodilatation within 40–50 s. The plasma half-life is less than 10 s and
side-effects (mainly hyperpnea and flush) and hyperaemia thus sub-side
quickly after termination of infusion. Adenosine is administered in-
travenously (0.140mg/kg/min) for up to 5min. Blood pressure is de-
termined at rest and at 1–2min intervals during the infusion. Preset
criteria for reducing or stopping the infusion are acute bronchospasm,
advanced AV block, decrease in systolic blood pressure> 20mmHg or
patient refusal. Patients are instructed to refrain from caffeine use for
24 h before the investigation.

The mid to distal part of the left anterior descending coronary artery

is identified using color Doppler as a guide, and the flow velocity is
measured by pulsed wave Doppler, baseline velocity at rest and sub-
sequently during the adenosine infusion. Gate size is set at 4–5mm.
Angle correction is performed if the angle between the color Doppler
flow and the Doppler beam exceeded 20° and is maintained during both
rest and stress studies. The spectral trace of the coronary velocity flow is
characteristically biphasic with a dominating diastolic component. Stop
frames and clips are digitally recorded for off-line analysis.

2.6.12. Carotid artery ultrasound
The right and left carotid arteries are examined with a duplex

scanner (Siemens Helix S3000, Munchen Germany) using a −13MHz
linear array transducer, as described by Ajeganova et al. [16]. The
carotid intima-media thickness (cIMT) is measured at the far wall of the
common carotid artery (CCA), 0.5–1.0 cm proximal to the beginning of
the carotid bulb. The cIMT are defined as the distance between the
leading edge of the lumen-intima echo and the leading edge of the
media-adventitia echo. All examinations are digitally stored for sub-
sequent analyses and will be done with an automated tracing of echo
interfaces and measurements of distances between the wall echoes
within a 10-mm-long section of CCA in late diastole, defined by a si-
multaneous electrocardiographic recording, as described [17]. The
mean values of the cIMT within the 10-mm-long section will be cal-
culated of the CCA.

2.6.13. Insulin sensitivity
Insulin sensitivity is assessed with Homeostatic model assessment of

insulin resistance (HOMA-IR) using fasting glucose and insulin in the
formula HOMA-IR= glucose (mmol/l) x insulin (mU/l)/22.5, as de-
scribed by Matthews et al. [18].

2.6.14. Blinding
The staff doing quantitative measurements of fat cell size and ske-

letal muscle fiber size is blinded to group allocation. The staff per-
forming quantitative measurements on MRI or CT is also blinded to
allocation.

2.7. Statistical analysis

The results from the examinations of transgender men and trans-
gender women will be analyzed separately using paired t-test, linear
and multiple regression analysis or repeated ANCOVA. We will do a
complete case analysis that excludes subjects without a complete data
set. We assume that this missing data are not related to any observed
variables and therefore the complete case analysis can be applied. We
expect 15% missing data based on previous investigations and this has
been taken into account in the study design. Each variable will be
analyzed separately and not as composite variables.

The statistical approach to studies involving the primary outcome
transcriptomic or epigenomic methodology will generally be para-
metric statistics in combination with empirically estimated confidence
intervals. Multiple hypothesis tests will be compensated for utilizing
false discovery rate where an adjusted p-value of 0.05 will be con-
sidered significant. Measures to reduce the number of false negatives
include Bayesian-moderated t-statistics (Linear Models for Microarray
Data (LIMMA)) or boot-strapped empirical distributions. For tran-
scriptomic data, generally an effect size of ≥2SD is considered biolo-
gically relevant. Based on previous data on inter- and intra-individual
variance in skeletal muscle gene expression the number of observations
needed to detect an effect size of 2SD with a power of 80% and a type I
error cut-off of 5% after compensation for multiple hypothesis testing is
12 for paired longitudinal data and 28 for case-control studies. In ad-
dition to the aforementioned conservative univariate analytical ap-
proach, explorative multivariate approaches aiming to identify clusters
of genes with a similar pattern of expression (or methylation) in rela-
tion to phenotypical characteristics such as changes in muscle mass or
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isokinetic force production. The methods used for such explorative and
data-driven analysis involves Principal Component Analysis (PCA),
Orthogonal Projections to Latent Structures Discriminant Analysis
(OPLS-DA) and T-Distributed Stochastic Neighbor Embedding (t-SNE).
As these strategies are data-driven and for the most part based on
empirical distribution of data, a formal power-analysis is not applic-
able. Based on work by us and others we estimate that a study size of
16–18 independent observations is sufficient to retrieve biologically
relevant information from the data. To address issues with over-fitting
we will utilize the fact that we have access to several independent
datasets (albeit not involving hormone treatment) with muscle tran-
scriptomic data in relation to relevant clinical characteristics in all the
proposed study arms of the project, which can be used for validation
and thus minimize the risk for over-fitted models and false discoveries.

3. Discussion

Treatment with gender-affirming hormones was described already
in the 1950's by Hamburger and colleagues [19], and since then several
studies have been performed on individuals undergoing cross-sex hor-
mone treatment [20,21]. However, this is the first study focusing on
individuals undergoing cross-sex hormone treatment with extensive
mapping of the effects on transcriptomic and epigenomic changes in
skeletal muscle, adipose and skin, and also cardiovascular function
which together presents a unique opportunity to discern the hormonal
effects from constitutional genome-driven programming.

A few studies have been performed to study changes in body com-
position and body fat distribution in transgender individuals, both
feminizing treatment in transgender women (former called male-to-fe-
male) [22] and masculinizing treatment in transgender men (former
called female-to-male) [23–26] using dual X-ray absorptiometry
(DEXA) [22–24] or abdominal and thigh MRI [25,26]. Some studies
have been cross-sectional [23,24], comparing transgender individuals
with cisgender females and or males (not transgender) controls [23,24].
In general, cross-sex hormone treated transgender women have a de-
crease in lean body mass and an increased fat mass while cross-sex
hormone treated transgender men had an increased lean body mass and
a decrease in fat mass, as reviewed [27]. One previous prospective
study has shown an increase in muscle cross-sectional area of the
forearm in transgender men after one year of testosterone undecanoate
therapy [28]. In contrast to previous studies, the present study includes
a whole body MRI, which enables the analysis of fat mass and lean body
mass in several different specific compartments. We will also be able to
measure changes in cross sectional area of the muscles in the thigh. In
addition, we have the opportunity to evaluate the presence of ectopic
fat distribution in different tissues. Observational studies have shown
that strength is reduced in men with low testosterone levels [29], and
an increase in handgrip strength in transgender men after one year of
testosterone therapy [28]. The present study will investigate the me-
chanisms behind these changes in skeletal muscle and is, to our
knowledge, the first to evaluate changes in strength in transgender
women. Furthermore, this study will investigate how an altered sex-
hormone profile affects the transcriptome, epigenome and metabolism
in multiple tissues. The epigenetic analyses will include longitudinal
genome wide interrogation of DNA methylation in the various phases of
the gender-affirming treatments in the collected tissues. This will be of
particular interest from a mechanistic point of view since they may
highlight specific effects on the genome that is not immediately visible
by gene expression and phenotype changes, but may poise for future
expression alterations. One conceptual example might be breast ma-
lignancy where gene expression profiles were shown to be associated
with estrogen treatment in transgender women [30]. Similarly, the
hypothesis that autoimmune disease is directly or indirectly related to
estrogen levels might put transgender women at higher risk, as was
suggested in a case of systemic lupus erythematosus (SLE) [31]. Inter-
estingly, immune responsiveness was actually shown to correlate with

sex steroid treatment in transgender men and women [32].
Mortality rates after cross-sex hormone treatment have been eval-

uated at an epidemiological level in a large study by Asscheman et al.,
[33] with no increase in mortality rates for transgender men treated
with testosterone while there was an increased mortality in transgender
women (due to suicide, acquired immunodeficiency syndrome, cardi-
ovascular disease, drug abuse, or unknown cause). The increased car-
diovascular disease was associated with etinyl oestradiol and this type
of treatment is nowadays less common than before. A nation-wide po-
pulation cohort study found a three times elevated mortality rate for
transgender men and women combined after cross-sex hormone treat-
ment compared with cisgender controls of both sexes. Causes of death
were suicide and cardiovascular disease [34]. There is a limited number
of studies regarding the effects of cross-sex hormone treatment and the
results are inconclusive on the direct effects of cross-sex hormone
treatment on risk factors for cardiovascular disease [35]. Higher carotid
arterial stiffness in testosterone treated transgender men has previously
been shown [36]. Estrogen improve flow-mediated vasodilation
[37,38], while androgens seem to impair vascular reactivity in trans-
gender persons [39]. No studies measuring pulse wave velocity and
coronary artery endothelial function in transgender subjects have been
performed.

Finally, the GETS study will also be the first to investigate skin al-
terations caused by cross sex hormone treatment with focus on
genomic, epigenetic and histology analyses. The only previous studies
in a transgender population on skin effects are non-invasive and focused
on the hormonal effects on acne and body hair [40,41].

To conclude, the long term effects of cross-sex hormone treatment is
not fully understood and have not been studied at all in some areas such
as adipose and skin. Thus, the GETS study will provide novel and
deeper insight into the effects of cross-sex hormone treatment on ske-
letal muscle, adipose, skin, heart, immune system and endothelial
function. This is important in order to improve gender-affirming
treatment and future care and will further define the role of sex-hor-
mone treatment and its relation to development of metabolic compli-
cations and cardiovascular disease.
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