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Abstract
Purpose of Review Although COVID-19 was originally characterized as a respiratory disease, recent findings have shown
lingering side effects in those who have recovered, and much is still unknown about the long-term consequences of the illness.
Thus, the potential of unearthing multi-system dysfunction is high, with current data revealing significant impacts on musculo-
skeletal health.
Recent Findings Multiple animal models of COVID-19 infection have revealed significant post-infection bone loss at several
different skeletal sites. While how this loss occurred is unknown, this current review discusses the primary bone loss studies, and
examines the possible mechanisms of action including: direct infection of bone marrow macrophages or hematopoietic progen-
itors, a proinflammatory response as a result of the COVID-19 induced cytokine storm, and/or a result of hypoxia and oxidative
stress. This review will further examine how therapeutics used to treat COVID-19 affect the skeletal system. Finally, this review
will examine the possible consequence that delayed care and limited healthcare accessibility has on musculoskeletal-related
patient outcomes.
Summary It is important to investigate the potential impact COVID-19 infection has on musculoskeletal health.
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Introduction

Coronavirus disease 2019 (COVID-19), an infectious dis-
ease caused by a novel coronavirus (severe acute respira-
tory syndrome coronavirus 2 or SARS-CoV-2), was clas-
sified as a global pandemic by the World Health
Organization (WHO) on March 11, 2020 [1]. Vaccines
to prevent COVID-19 are perhaps the best hope for end-
ing the pandemic. However, despite the nearly 7.5 billion
vaccine doses administered globally, confirmed COVID-

19 cases have surpassed 250 million globally, resulting in
over 5 million deaths. Unfortunately, these numbers con-
tinue to increase each day [1]. While there is a general
understanding of the symptoms and effects of COVID-19,
the full scope of the effects the disease has on the human
body is still largely unknown.

Disease severity for patients diagnosed with COVID-19
ranges from asymptomatic carriers to mild, moderate, severe,
and critical disease which can result in death. Elderly patients
and those with underlying medical conditions are at an in-
creased risk of developing severe/critical symptoms [2].
Although several vaccines including mRNA vaccines, inacti-
vated virus vaccines, adenovirus-vectored vaccines, and viral
protein-based vaccines now exist, patients continue to contract
COVID-19. Strikingly, those who survived COVID-19 infec-
tion may face lingering side effects of the disease. They likely
have long-term health consequences and are currently known
as “long haulers.” Some lingering symptoms include pro-
found fatigue, cough, chest pain, heart palpitations, headache,
joint pain, myalgia and weakness, insomnia, diarrhea, rashes,
hair loss, impaired balance and gait, neurocognitive issues
such as memory and concentration problems, and an overall
reduction in quality of life [3].
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As COVID-19 has existed for a short time, many longer-
term impacts of this disease are just beginning to be under-
stood or will be discovered with time. As an example, little is
known about the effects of COVID-19 on the skeletal system
[4, 5]. However, more is known about the skeletal health of
patients infected with severe acute respiratory syndrome-
associated coronavirus (SARS-CoV) that belongs to the same
virus family and genus as SARS-CoV-2. The information of
SARS-associated skeletal injury may be applicable to those
with COVID-19. SARS patients had reduced bone mineral
density (BMD), which was initially thought to primarily be
dependent on treatment with corticosteroids [6, 7]. However,
reduced BMD was observed in SARS patients with acute
illness, suggesting bone loss is independent of treatment [8,
9]. Whether similar findings will be seen following SARS-
CoV-2 infection remains elusive, but as detailed below,
emerging reports suggest this is likely to be the case.

The current review will explore the unappreciated conse-
quences of COVID-19 on the musculoskeletal system by ex-
amining the effect of SARS-CoV-2 infection on bone mass,
the possible mechanisms resulting in increased osteoclasts
(OCs), the effects therapeutics may have had on the skeletal
system, as well as the indirect impacts of the pandemic on
musculoskeletal health.

Impact of SARS-CoV-2 Infection on Bone Mass

Recently, several groups have shown that both mouse and
hamster models when infected with SARS-CoV-2 reveal a
dramatic reduction of bone in a short period of time after
infection (Fig. 1). Our group was the first to publish that in-
fection of mice with SARS-CoV-2 (USA-WA1/2020) result-
ed in a dramatic loss in trabecular bone with a simultaneous
increase in OC numbers [10••]. Briefly, the epithelial cell
cytokeratin 18-human angiotensin I-converting enzyme 2
(K18-hACE2) transgenic mouse model was used.
Importantly, with limited exceptions, successful COVID-19
mouse models have altered angiotensin-converting enzyme 2
(ACE2) expression in one manner or another, due to the fact
that SARS-CoV-2 enters host cells by binding the receptor,
ACE2, and the incompatibility of the murine ortholog [11,
12]. Thus, K18-hACE2 transgenic mice were used as no al-
terations of the human virus were required and hACE2 ex-
pression, driven by cytokeratin 18, results in hACE2 expres-
sion in epithelial cells of multiple organ systems allowing for
successful inoculation and the development of severe disease
[13, 14••]. In our recently reported studies [10••], 19-week-old
young adult male K18-hACE2 mice were infected with 1 of 3
different viral doses which resulted in asymptomatic mice (1 ×
103 plaque forming units or PFU), mice with moderate to
severe disease where some mice recover and some die (1 ×
104 PFU), and mice with severe disease where all mice died

6–7 days post-infection (dpi) (1 × 105 PFU). Mice that sur-
vived were humanely euthanized 12–14 dpi. Mock-infected
K18-hACE2 and wild-type mice along with wild-type mice
infected with virus served as controls. Femurs were examined
for changes in bone parameters. Micro-computed tomography
(μCT) analysis showed that infected mice exhibited a 24.4%
reduction in trabecular bone volume fraction (BV/TV) and
histomorphometric analysis showed a concomitant greater
than 60% increase in OC number in infected mice as com-
pared to non-infected controls. The bone loss and OC expan-
sion observed in our model indicates bone marrow cell ho-
meostasis is dysregulated. These observations are in agree-
ment with clinical findings as one study revealed the pres-
ence of histiocytic hyperplasia with hemophagocytosis in
the bone marrow of deceased COVID-19 patients and that
dysregulated hematopoiesis could mark severe infection
[15, 16]. Perhaps one of the most striking key findings
was that even asymptomatic mice, exhibiting normal activ-
ity and behavior, exhibited these dramatic alterations in
bone phenotype in just a 2-week period of time [10••].
This observation suggests that lack of mobility as seen with
very sick mice could not be the cause of the dramatic bone
loss observed in the asymptomatic mice. While not specif-
ically tested in this study, it was hypothesized that an in-
flammatory response, such as the cytokine storm observed
in human COVID-19 patients, was likely responsible for the
dramatic increase in OC number. Whether asymptomatic
mice exhibit a cytokine storm per se, or perhaps a lower
grade elevation in cytokines remains to be tested. That said,
investigators have shown that SARS-CoV-2 infection of
K18-hACE2 mice results in a cytokine storm not unlike that
observed in human COVID-19 patients [17–19].

This finding is not in isolation; indeed, another group also
used the same K18-hACE2mouse model, but instead infected
male and female juvenile mice which were 6 weeks old at the
time of infection [20]. In this study, mice were infected with
either 1 × 103 or 1 × 104 PFU and the L5 vertebral body was
assessed. All mice died approximately 1-week post-infection
and exhibited an approximate 20% reduction in weight.
Compared to mock-infected control mice, infected mice ex-
hibited a 10% decrease in BV/TV. Importantly, in these stud-
ies, virus was detected within different compartments of the
musculoskeletal tissue including the bone marrow, femoral
growth plate, and synovium [20].

More recently, a third group found similar findings in a
differnt animal species, the golden Syrian hamster [21••].
This study utilized 6–10-week-old male hamsters that were
inoculated with 1 × 105 PFU of the SARS-CoV-2 strain,
HKU-001a. Hamsters were euthanized at 4, 30, and 60 dpi
and femurs, tibias, and vertebrae were collected and analyzed
at each time point. While even 4 dpi, significant losses in
trabecular bone parameters were observed, perhaps the most
striking finding was the up to 50% reduction in BV/TV

Current Osteoporosis Reports (2022) 20:213–225214



observed at both 30 and 60 dpi. In this study, the authors
demonstrated that infected hamsters, like humans, experience
a cytokine storm which they speculate may be responsible for
the striking loss of bone observed. The authors suggested that
interleukin 1 beta (IL-1β), which was upregulated in the in-
fected hamsters, could be the cytokine responsible for the
increased osteoclastogenesis and bone loss. However, they
did not specifically deplete IL-1β from infect animals to dem-
onstrate the importance of SARS-CoV-2-induced increase in
IL-1β on osteoclastogenesis and bone loss.

While further studies are required to understand the long-
term consequences of SARS-CoV-2 infection on bone prop-
erties over time, these data suggest that bone loss occurs at
multiple skeletal sites, in multiple species of animal, sexes,
and ages [10••, 20, 21••]. The study with hamsters suggests
that bone loss may continue/persist after the acute infection is
resolved [21••]. Whether the bone loss can then be recovered
remains to be tested, but likely may take time. Indeed, it is
known that bone loss associated with disuse from spaceflight
takes approximately 4 times the duration of the loss to recover
(e.g., a 6-month spaceflight would take a human approximate-
ly 2 years post-flight to recover the bone) [22, 23].
Additionally, although clinical studies are required, as two

animal species had similar bone losses, it is more likely that
these data may in fact translate into humans. Finally, while the
mechanism for how this bone loss occurs remains unknown,
at least three possible explanations exist. First, the virus could
directly infect macrophages or their progenitors; second, the
systemic proinflammatory responses due to the infection-
related elevation in cytokines could be responsible; or third,
hypoxia and reactive oxygen species (ROS) could favor an
osteoclastogenic environment (Fig. 2).

Upregulation of Osteoclasts

The monocyte/macrophage lineage are the progenitor cells for
OCs. Therefore, it is possible that infection of hematopoietic
lineage cells could cause skewing of progeny toward different
cell types. SARS-CoV-2 can directly infect erythroid progen-
itors, but not other types of cells such as hemopoietic stem
cells/hematopoietic progenitor cells (HSCs/HPCs), in human
bone marrow [24]. Specifically, a decrease in lymphocytes
was observed when HSCs treated with the SARS-CoV-2 S
protein resulted in a significant reduction of multipotent lym-
phoid progenitor cells (MPCs) [25••]. Additionally,

Fig. 1 Three different groups
have shown significant post-
infection bone loss in multiple
animal species at several different
skeletal sites. Two of the groups
utilized the K18-hACE2 mouse
model and trabecular bone loss
was assessed in the vertebral body
in one group and in the femur of
the other group. A third group
utilized the Golden Syrian
hamster and observed bone loss
was assessed in the femurs, tibias,
and vertebrae. Created with
BioRender.com
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incubation with the S protein resulted in an initial increase in
monocytes even being noted as CD14hi [25••]. An increase in
the latter could contribute to the marked increase in osteoclas-
togenesis observed in the animal studies detailed above [10••,
21••].

Additionally, the studies by Christiansen et al. detected
SARS-CoV-2 virus in multiple musculoskeletal tissues [20].
While their studies detected virus within the bone marrow,
whether it was in bone marrow macrophages is not clear.
Importantly, they also used immunohistochemical staining to
show expression of ACE2 in musculoskeletal tissue.
Consistent with these findings, another group recently showed
that SARS-CoV-2 can enter bone marrow macrophages
through neuropilin-1 (NRP1) which is constitutively
expressed in aged and neonatal mice [26]. This article specu-
lates that direct infection of bone marrow macrophages
through NRP1 could impact OC differentiation. Therefore,
whether SARS-CoV-2 can directly infect bone marrow mac-
rophages or OCs, requires further investigation.

Cytokine Storm on Osteoclasts

As noted above, the systemic increase in proinflammatory
cytokines observed following SARS-CoV-2 infection could
be responsible for the profound increase in OC number and
bone loss observed in animals. Indeed, one of the most well-
described conditions associated with COVID-19 infection is
what is known as the “cytokine storm.” Upon infection, an
excessive proinflammatory response is triggered which leads
to the uncontrolled release of cytokines [27••, 28]. Many of
the proinflammatory cytokines, chemokines, and growth fac-
tors upregulated in those with COVID-19 have an established
role in osteoclastogenesis and/or low BMD including IL-1β,

IL-6, IL-17, C-X-C motif chemokine ligand 10 (CXCL10),
tissue necrosis factor alpha (TNF-α), and vascular endothelial
growth factor A (VEGF-A) (Table 1) [29–35].

Here, we detail the known role that each of these cytokines/
chemokines/growth factors play in osteoclastogenesis and
bone loss independent of SARS-CoV-2 infection. IL-1 plays
an important role in bone metabolism by regulation of both
bone formation and resorption through the involvement of OC
development in various steps. Specifically, IL-1β knockout
(KO) mice had a significant ~7% increase in femur BV/TV,
increased whole femur BMD, and significantly fewer number
of OCs when compared to controls [53]. IL-6 is known to
modulate osteoblast and OC differentiation. For example,
IL-6 was shown to stimulate osteoclastic activity through the
production of receptor activator of nuclear factor kappa B
ligand (RANKL) in osteoblasts [41]. IL-17, while initially
thought to only affect immune cells, has been shown to stim-
ulate osteoclastogenesis in patients with rheumatoid arthritis
(RA) by inducing OC-like multinucleated cell formation

Fig. 2 Possible mechanisms of
action for the observed increase in
osteoclastogenesis and bone loss
in COVID-19 animalmodels. The
three proposed mechanisms
include: (1) alterations to
osteoclast precursors; (2) cytokine
storm-mediated impacts; and (3)
impacts of hypoxia and reactive
oxygen species (ROS). Created
with BioRender.com

Table 1 Cytokine storm factors known to regulate osteoclasts and bone
loss

Cytokines/chemokines/
growth factors known to
be upregulated in
COVID-19+ patients

Impact on
osteoclast
function/activity

Impact on
osteoclast
number

Impact on
bone loss

IL-1ß [36] ↑ [37, 38] ↑ [38] ↑ [37]

IL-6 [36] ↑ [39] ↑ [35, 40] ↑ [40–42]

IL-17 [36] ↑ [43] ↑ [29, 31] ↑ [43, 44]

IP-10/ CXCL10 [36] ↑ [45] ↑ [45] ↑ [32]

TNF-α [36] ↑ [46, 47] ↑ [46, 48] ↑ [46–48]

VEGF-A [36] ↑ [49, 50] ↑ [51, 52] ↑ [51]
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through prostaglandin E2 and expression of OC differentia-
t ion fac tor (ODF) [31 , 54] . CXCL10 increases
osteoclastogenic cytokines via toll-like receptor 4 (TLR4)
and C-X-C chemokine receptor 3 (CXCR3) [55]. TNF-α in-
duces osteoclastogenesis through a mechanism independent
of ODF [48]. VEGF-A, key regulator of physiological angio-
genesis and hematopoiesis, has been shown to increase bone
resorption through the spontaneous recruitment of OCs [51,
52]. Thus, it appears that many of the cytokines/chemokines/
growth factors upregulated in the COVID-19 induced cyto-
kine storm are known to upregulate osteoclastogenesis, and
could be responsible for the observed bone loss. However,
initial findings of cytokine storm in COVID-19 have been
challenged since most patients do not have remarkably high
levels of inflammatory cytokines and only 4% of critically ill
COVID-19 patients develop cytokine storm symptom (CSS)
[56–61]. A study which examined the inflammatory profiles
in the peripheral blood of COVID-19 patients did not find
cytokine storm [62••]. Ultimately, further investigations into
the cause and effects rather than the correlative data are re-
quired to determine the specific mechanisms of action.

Hypoxia and Oxidative Stress

Hypoxemia, a life-threatening healthy condition, is a hallmark
of severe COVID-19 [63–65]. Systemic hypoxia can elicit
excessive production of ROS relative to antioxidant defense
and thereby alter redox balance [66–68]. Indeed, an imbalance
between the production and scavenging of ROS occurs in
COVID-19 patients [69–71], which is associated with the se-
verity of COVID-19 [69–71]. ROS primarily act as second
messengers whose signaling drives inflammasome activation,
DNA damage, cell cycle arrest, and apoptosis [72–75]. While
oxidative stressed has been linked to many diseases the most
significant is osteoporosis. ROS has been found to induce the
apoptosis of osteocytes and osteoblasts through the regulation
of RANKL and osteoprotegerin (OPG) expression, thus favor-
ing osteoclastogenesis and resulting in bone loss [76••, 77].

Recent reports have revealed that plasma levels of VEGF-
A are highly elevated in COVID-19 patients and are associat-
ed with the severity of COVID-19 [62••]. VEGF-A, expres-
sion is mainly regulated by hypoxia, acts as a potent first
messenger binding to its receptors (VEGFR-1 and VEGFR-
2) to stimulate ROS production [78, 79]. VEGFR-2, a major
receptor of VEGF-A [80], is highly expressed in vascular
endothelial cells as well as activated T cells, allowing a direct
effect of VEGF-A on T cell function [81, 82]. In advanced
ovarian cancer, VEGF-A directly suppresses T cell prolifera-
tion and cytotoxic activity via VEGFR-2 [83, 84]. Strikingly,
mice exposed to recombinant VEGF-A at the concentrations
relevant to those observed in patients with advanced cancer
develop a thymic atrophy with a reduced number of CD4/CD8

thymocytes [85], indicating VEGF-A directly interferes with
the thymic development of T cells from hematopoietic
stem/progenitor cells (HSPCs) [81]. Therefore, it is crucial
to examine the effects hypoxia and excessive VEGF-A has
on bone marrow hematopoiesis and the function and fate of
lymphoid lineage cells in the peripheral blood in COVID-19.

Therapeutic Findings of COVID-19 Treatments
on Bone

Antiviral Therapy

Remdesivir

As of November 10, 2021, the FDA has approved of only one
drug, Remdesivir, to treat SARS-CoV-2. This treatment is
approved for adults and children age 12 years older weighing
at least 40 kg (88 lb) in patient cases requiring hospitalization.
It has been reported that remdesivir decreases TNF-α, IL-β,
IL-6, and IL-18 [86, 87]. As several of these factors increase
osteoclastogenesis [30, 35, 38, 88], reductions in their expres-
sion would likely decrease osteoclastogenesis and may there-
fore help ameliorate COVID-related bone loss.

Immunomodulators

Corticosteroids

Corticosteroids are a class of drugs that work to reduce inflam-
mation and suppress overactive immune system responses. In
the context of COVID-19 treatment, corticosteroids are used
to suppress the pro-inflammatory nature of the disease which
can lead to lung injury and the development of multiorgan
dysfunction [89]. Like with treatment with Remdesivir, the
suppression of pro-inflammatory cytokines should reduce os-
teoclastogenesis. However, it is understood that in general,
glucocorticoids (GCs) alter bone metabolism by acutely stim-
ulating osteoclast-mediated bone resorption and reducing os-
teoblasts resulting in a net increase in bone resorption [90••,
91, 92]. GCs can affect osteoblasts through several pathways.
One of which is through upregulation of peroxisome
proliferator-activated receptor γ (PPARγ), decreasing osteo-
blast numbers by skewing precursors into differentiating into
adipocytes [93, 94]. Several studies have shown that GCs
have a dose-dependent effect on osteoblast autophagy, main-
taining cell viability and function at low-dose or physiological
levels but then accelerating apoptosis at high-doses [95–97].
Taken together, GCs have been shown to acutely stimulate
osteoclast resorption and impair osteoblast biology, by de-
creasing the inflammation related OCs they have a mixed
effect on resorption in this inflammatory setting.
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IL-1, IL-6, and JAK Inhibitors

The use of IL-1, IL-6, and Janus kinase (JAK) inhibitors have
been of great interest in hopes of decreasing the
hyperinflammatory response the immune system has in re-
sponse to SARS-CoV-2 infection. In SARS-CoV-2 infection,
IL-1β is released from monocytes which are recruited by in-
flammatory cells further increasing IL-1β activity and innate
immune cell activation. As detailed above, IL-1β is also
known to increase OC number and function which can lead
to an increase in bone loss. Therefore, IL-1 inhibitors could be
useful in counteracting the autoinflammatory loop and poten-
tially decreasing osteoclastogenesis associated with SARS-
CoV-2 infection. Anakinra is a recombinant human IL-1 re-
ceptor antagonist and is typically used to treat rheumatoid ar-
thritis [98]. A study that administered anakinra or a placebo to
594 hospitalized COVID-19 patients at risk of developing re-
spiratory failure resulted in full recovery in just over 50% of
the patients receiving the drug versus in only the 26.5% of
patients given the placebo [99]. Additionally, anakinra reduced
the risk of severe disease, progression to severe respiratory
failure, and death. However, a different study that examined
the effectiveness of anakinra in critically ill COVID-19 pa-
tients found that it was ineffective in reducing the in-hospital
mortality and days required for organ support [100]. Related to
bone measures, the use of anakinra was also shown to reduce
epiphyseal growth plate thinning, epiphyseal bone volume
loss, and osteoclastogenesis in the tibia of mice infected with
two different kinds of arthritogenic alphaviruses [101].

Importantly, as detailed before, IL-6 is known to increase
OC number and/or activity, resulting in bone loss. Tocilizumab
is a recombinant humanized anti-IL-6 receptor monoclonal an-
tibody which has classically been used to treat rheumatic disor-
ders. In one study, patients with rheumatoid arthritis given toci-
lizumab had a significant increase in the BMD in the lumbar
spine and the femoral neck, while patients with normal BMD
maintained their BMD when given tocilizumab [102].
Although the concept of using tocilizumab to reduce IL-6 sig-
naling is attractive to both reduce disease severity in COVID-19
patients and reduce osteoclastogenesis and associated bone
loss, in two separate clinical trials tocilizumab was found to
have no effect in decreasing mortality in hospitalized
COVID-19 patients with moderate to severe illness [103, 104].

Among the cytokines upregulated during the cytokine storm,
several of them are in the JAK signaling pathway. IL-6 is just
one example, whereby IL-6 activates the JAK-signal transducer
and activator of transcription (JAK-STAT) pathway, which
then regulates numerous biological functions such as lympho-
cyte growth and differentiation, immune regulation, and oxida-
tive stress [28, 105]. Baricitinib is a selective inhibitor of
JAK1/2 and is known to inhibit the signaling pathways of the
cytokines associated with the cytokine storm and also inhibits
SARS-CoV-2 entry by impairing the viral association of

adaptor protein complex 2 (AP2)-associated protein kinase 1
[106]. Additionally, baricitinib was found to inhibit osteoclas-
togenesis in vitro by inhibiting RANKL expression in osteo-
blast, but did not directly impact the ability of bone marrow
macrophages to differentiated into OCs [107]. In the FDA is-
sued EUA announcement, baricitinib was not authorized or
approved as a stand-alone treatment for COVID-19, but was
only approved for use in combination with remdesivir for hos-
pitalized COVID-19 patients requiring high-flow oxygen and
noninvasive ventilation. The ACCT-2 clinical trial reported that
patients given baricitinib plus remdesivir had a lower median
recovery time, less frequent adverse events, and a decreased 28-
day mortality when compared to the control group [106]. Thus,
it may be that not only do JAK inhibitors help reduce disease
severity and improve recovery in COVID-19 patients, but they
may also help reduce osteoclastogenesis and bone loss associ-
ated with SARS-CoV-2 infection. Thus, such investigations
would be important to examine in animal models and humans.

Supplementation

Vitamin D and COVID-19

Vitamin D has been shown to play an important role in
maintaining bone mass and calcium homeostasis as well
as a role in modulating inflammation [108•, 109]. Indeed,
vitamin D regulates calcium homeostasis in part through
its regulation of RANKL expression in osteoblasts which
results in the upregulation of OC formation and bone re-
sorption, but perhaps its most important role is calcium
absorption in the small intestine [108•, 110]. Vitamin D
also modulates both the adaptive and innate immune sys-
tems by regulating certain cell signaling pathways and
cytokines. However, the vitamin D receptor is also pres-
ent on the surface of B and T cells with vitamin D defi-
ciency being associated with increased autoimmunity and
infection. As such it has been shown to inhibit pro-
inflammatory cytokines through the suppression of T cell
proliferation resulting in a Th1 to Th2 shift [111, 112].
This shift in T helper (Th) cell phenotype decreases
INF-γ, TNF-α, IL-2, and IL-12 and increases IL-4, IL-
5, and IL-10 [108•, 113]. Additionally, vitamin D was
reported to suppress the differentiation of Th17 cells with
a shift toward T regulatory cells resulting in a decrease in
IL-17 and IL-23 and an increase in anti-inflammatory cy-
tokine IL-10 [108•, 114].

With the known role of vitamin D in regulating inflam-
mation, there has been increasing interest in whether there
is an association between vitamin D deficiency and
COVID-19 disease severity and mortality. A cross-
sectional study conducted at Masih Daneshvari Hospital
in Iran revealed that there was a negative inverse relation-
ship between serum vitamin D levels and COVID-19
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disease severity [115]. Similar findings were reported in a
study in India, in which significantly lower levels of vi-
tamin D were observed in severely ill COVID-19 patients
as compared to asymptomatic patients [116•]. Of note, the
severely ill COVID-19 patients also had significantly
higher IL-6 levels as compared to those seen in asymp-
tomatic patients [116•]. Contrary to expectation, in a
study that observed the prevalence of high and low
COVID-19 cases and vitamin D status across several
European countries, sunny countries were reported to hav-
ing lower vitamin D levels, higher vitamin D deficiency,
and the higher rates of infections than countries that re-
ceived less UVB sunlight [109]. However, association
studies are incapable of demonstrating causation. For ex-
ample, it could be that people who have generally com-
promised health and comorbidities also have tendency to
low vitamin D intake and low sun exposure, hence pre-
disposing them to both vitamin D deficiency and to severe
illness if they get COVID. Thus, vitamin D deficiency
may not be to blame at all.

However, reports on whether administering vitamin D
to COVID-19 patients decreases mortality or disease se-
verity appear to depend on when administration begins
and possibly on whether they are deficient in vitamin D
at that time. Specifically, an observational study found
that administering high-dose parenteral vitamin D3 to
ICU patients with severe COVID-19 and vitamin D defi-
ciency did not decrease the need for endotracheal intuba-
tion, time spent in the hospital, or mortality [117•].
Similar findings were also reported in another study
where vitamin D was administered to patients with mod-
erate to severe COVID-19 resulting in no significant dif-
ferences in hospital stay, mechanical intubation, and mor-
tality between the vitamin D and placebo groups [118•].
On the other hand, a clinical trial that administered repeat-
ed high dose calcifediol to hospitalized patients who had
yet to develop severe ARDS showed it significantly re-
duced the ICU admission, eliminated mortalities, and all
patients were discharged without complications [119].
Consistent with the idea that early treatment is beneficial,
another study examining the impacts of vitamin D supple-
mentation on hospitalized frail elderly patients reported
that regular vitamin D3 supplementation prior to
COVID-19 diagnosis was associated with less severe out-
comes and higher survival rates than with patients given a
single oral supplement after diagnosis [120•]. Taken to-
gether, it appears that in general vitamin D levels inverse-
ly correlate with COVID-19 disease severity but it re-
mains unclear whether vitamin D interventions are rele-
vant to COVID-19 outcomes. However, since vitamin D
has a well-known role in skeletal homeostasis, treatment
of COVID-19 patients to achieve or maintain vitamin D
sufficiency may also improve overall skeletal health.

Sequential Effects of Restricted Medical
Accessibility and Delayed Care

A major consequence of the COVID-19 outbreak was that
hospitals and medical clinics alike were forced to restrict
access to the public. This was to contain the spread of the
outbreak and ease the stress on resources, one of which
was health care provider’s time that have been limited in
terms of the ability to effectively take care of the surges of
patients [121, 122]. Consequently, this change in deferred
care has resulted in unfavorable musculoskeletal-related
patient outcomes. As an example, there has been an in-
crease in preventable amputations especially in diabetic
patients. At a level one trauma center in Ohio, the prob-
ability of undergoing any amputation was 10.8 times
higher during the pandemic than during prepandemic
times, and the risk of major amputations had a 12.5 times
increase in odds ratio [123]. Similar findings have been
reported in southern India, whereby researchers also re-
ported a significant increase major amputations when
compared to the prepandemic period [124]. Likewise, an-
other study found that there was an increase in patients
with extensive ischemic damage during lockdown and re-
ported a 42% increase in the number of major amputa-
tions in 2020 when compared to previous years [125].

Delayed care for osteoporotic patients requiring paren-
teral treatments has also had deleterious effects [126,
127]. Indeed, a Steering Committee comprised of medical
specialists provided a guide for care for such osteoporotic
patients which was proactively designed to prevent such
deleterious effects [128••]. The report stated that delays in
intravenous bisphosphonate treatment are unlikely to be
harmful even for several months primarily due to their
sustained actions on BMD [128••]. However, for those
being treated with denosumab, the Steering Committee
strongly recommended the temporary transition to an oral
bisphosphonate due to the high bone turnover observed in
patients discontinuing denosumab treatment. [128••,
129–132]. Discontinuation of romosozumab also causes
rapid bone loss if no other osteoporosis treatment is pre-
scribed [133]. Therefore, the Steering Committee sug-
gested a delay in romosozumab treatment can be allowed
if less than 2–3 months; however, if greater than 2–3
months, transition to an oral bisphosphonate is recom-
mended [128••]. If a patient has been on romosozumab
for longer than 6 months, a more permanent transition to
oral bisphosphonates is suggested [128••]. Finally, for
those patients treated with teriparatide or abaloparatide,
due to the lack of rebound fracture risk after discontinua-
tion of treatment, the Steering Committee recommended a
2–3-month delay in treatment would be feasible, but if
longer delays are required a temporary transition to an
oral bisphosphonate was recommended [128••, 134].
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Importantly, COVID-19 did result in some positive
changes in musculoskeletal health. One area of musculo-
skeletal health that saw improvements was telehealth, spe-
cifically in relation to physical therapy. In a report from
the American Physical Therapy Association, the number
of physical therapists (PTs) providing video consultations
significantly increased with 13% of PTs reporting they
treated more than 10 patients per week via video consul-
tation by July 2020. Increases in telehealth can have long-
term beneficial impacts on musculoskeletal patient out-
comes, especially for those that live far away from health
providers or for other reasons cannot easily or safely ac-
cess healthcare providers in person [135, 136••].

Conclusion

In conclusion, the last 2 years have seen significant changes due
to the COVID-19 pandemic. With every day that passes, more
knowledge is revealed about the short- and long-term conse-
quences of infection. While initially, the pulmonary complica-
tions were the main focus of COVID-19 disease, other physio-
logic systems, such as the musculoskeletal system have been
affected either directly or indirectly as consequences of
COVID-19, and also need to be fully further investigated in
humans.
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