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Abstract Cytosine methylation is an epigenetic and regulatory mark that functions in part

through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain

(MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated

or hydroxymethylated DNA, respectively; however, both of these findings have been disputed.

Here, we investigated this controversy using experimental approaches and re-analysis of published

data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that

chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2

and Mbd3 are interdependent for chromatin association. Further investigation reveals that both

proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine

embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are

also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an

interdependent regulatory mechanism mediated by the DNA methylation machinery and its

readers.

DOI: 10.7554/eLife.21964.001

Introduction
In mammalian cells, 5-methylcytosine (5mC), a heritable epigenetic modification on DNA, occurs

mainly at CpG dinucleotides through the actions of DNA methyltransferase (DNMT) enzymes (Bes-

ter, 1988). The members of the DNMT family that modify cytosine on DNA include Dnmt1, Dnmt3a,

and Dnmt3b (Okano et al., 1998). Dnmt3a and Dnmt3b are de novo DNA methyltransferases, which

establish methylation during development. On the other hand, the more abundant Dnmt1 predomi-

nantly methylates hemimethylated CpG dinucleotides to restore methylation patterns following

genomic replication (although it also has some de novo methylation activity) and therefore, is consid-

ered to be the ’maintenance methyltransferase’ (Egger et al., 2006; Kho et al., 1998;

Pradhan et al., 1999; Probst et al., 2009). Dnmt1 is responsible for the majority of methylation in

murine embryonic stem (ES) cells, as Dnmt1 knockout (KO) ES cells carry only about 20% of normal

methylation levels (Lei et al., 1996).

Active demethylation of 5mC involves a relatively complex series of reactions that starts with oxi-

dation by the ten-eleven translocation (TET) family of dioxygenases (including Tet1, Tet2, and Tet3;

(Lu et al., 2015), which actively demethylate DNA by oxidizing the 5-methyl group of 5mC to form
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5-hydroxymethylcytosine (5hmC) (Tahiliani et al., 2009). Further oxidation can occur through conver-

sion of 5hmC into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (He et al., 2011; Ito et al.,

2011). The level of 5hmC is approximately 10% the level of 5mC in ES cells (Tahiliani et al., 2009),

whereas 5fC and 5caC are much less abundant (Ito et al., 2011). Together, Tet1 and Tet2 are

responsible for essentially all the 5hmC present in ES cells (Koh et al., 2011). However, Tet1 is

responsible for 5hmC production at promoter-proximal regions, whereas Tet2 is poorly chromatin-

associated and primarily acts within gene bodies (Huang et al., 2014; Vella et al., 2013). In addi-

tion, knockdown (KD) or KO of Tet1 or Tet2 skews the profile of ES cell differentiation

(Dawlaty et al., 2011; Ficz et al., 2011; Koh et al., 2011), and some reports suggest Tet1 KD also

leads to a defect in self-renewal (Freudenberg et al., 2012; Ito et al., 2010). However, the functions

of Tet proteins during development remain incompletely resolved as Tet1-/- Tet2-/-double KO mice

have been shown to be viable with only modest phenotypes (Dawlaty et al., 2013).

The methylation status of DNA influences many biological processes during mammalian develop-

ment, and cytosine methylation of promoter-proximal regulatory sequences in mammals is generally

considered repressive for gene expression (Klose and Bird, 2006). One of the best-studied families

of cytosine methylation effectors consists of the methyl-CpG-binding domain (MBD) family of pro-

teins, most of which specifically bind methylated CpG dinucleotides and play important roles in

determining the transcriptional state of the mammalian epigenome (Filion et al., 2006;

Hendrich and Bird, 1998; Prokhortchouk et al., 2001; Unoki et al., 2004). MBD proteins are tran-

scriptional regulators, primarily thought to act as repressors, which play a major role in coordinating

crosstalk between cytosine methylation and chromatin structure to regulate transcription

(Denslow and Wade, 2007). The MBD has the ability to bind single symmetrically methylated CpG

dinucleotides (Nan et al., 1993; Ohki et al., 2001), and the functions of MeCP2 and the Mbd1-4

family members have been well-studied. With the exception of Mbd3, these proteins preferentially

bind 5mC over unmethylated cytosine (Hendrich and Bird, 1998; Zhang et al., 1999). Consistent

with this binding activity, Mbd2 occupies methylated CpG island–containing promoters of inactive

genes (Chatagnon et al., 2011; Menafra et al., 2014). Although Mbd3 does not bind 5mC, MeCP2

and Mbd3 can bind 5hmC in vitro and Mbd3 is enriched in regions of elevated 5hmC in ES cells

(Mellén et al., 2012; Yildirim et al., 2011). Consistent with this reported localization, knockdown

(KD) of Mbd3 leads to misregulation of 5hmC-marked genes (Yildirim et al., 2011). Furthermore,

Mbd3 binding in ESCs was strongly reduced upon RNAi-mediated KD of Tet1 (Yildirim et al., 2011)

However, arguing against the above studies, other in vitro studies using short DNA probes contain-

ing a single symmetric 5hmCpG find poor binding of 5hmC by MBD family members (Cramer et al.,

2014; Spruijt et al., 2013).

Mbd2 and Mbd3 are highly similar in amino acid sequence and are components of mutually exclu-

sive versions of the nucleosome remodeling and deacetylase (NuRD) complex (Hendrich and Bird,

1998; Le Guezennec et al., 2006; Wade et al., 1999; Zhang et al., 1999). Furthermore, Mbd2 and

Mbd3 exhibit partially overlapping localization profiles at some methylated regions in vivo

(Günther et al., 2013), consistent with the possibility that these factors bind to DNA enriched for

5mC or its derivative, 5hmC. However, these highly similar complexes play distinct biological roles in

vivo. Mbd3/NuRD is necessary for ES cell pluripotency and differentiation, as well as embryonic

development, whereas Mbd2 KO mice are viable and fertile (Hendrich et al., 2001; Kaji et al.,

2006; Reynolds et al., 2012). In addition, Mbd3/NuRD coordinates cytosine methylation by recruit-

ing DNA methyltransferases to the promoters of tumor suppressor genes in colon cancer cell and

leukemia cell lines (Cai et al., 2014; Choi et al., 2013; Morey et al., 2008), and depletion of Mbd3

results in reduced DNA methylation levels at some locations in ES cells (Latos et al., 2012).

Recently, evidence has arisen questioning the dependence of Mbd2 and Mbd3 on cytosine meth-

ylation for genomic localization (Baubec et al., 2013). The authors of this study reported that the

enrichments of Mbd2 and Mbd3 at LMRs (low-methylated regions that are enriched for transcription

factor-binding sites and exhibit approximately 30% methylation on average) (Stadler et al., 2011)

were minimally altered in Dnmt1-/- Dnmt3a-/- Dnmt3b-/- triple knockout (TKO) ES cells. Here, we

sought to resolve the conflicting data addressing the dependence of Mbd2 and Mbd3 localization

on 5mC and 5hmC. Analyses of ChIP-seq data from Baubec et al. as well as multiple new ChIP-seq

datasets reported here demonstrate methylation-dependence of Mbd2 and Mbd3 binding through-

out the genome. Interestingly, we show that Mbd2 and Mbd3 exhibit significantly overlapping locali-

zation in vivo and find that Tet1 activity is required for normal chromatin association by both Mbd3
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and Mbd2. Furthermore, we show that Mbd3 and Mbd2 are each required for the binding of the

other, as well as for normal levels of 5mC and 5hmC. Finally, we find that individual KD of Mbd2,

Mbd3, Dnmt1, or Tet1 results in highly concordant changes in gene expression. Together these data

reveal interdependence among Mbd2/NuRD, Mbd3/NuRD, 5mC, and 5hmC to maintain normal

chromatin structure and gene regulation in ESCs.

Results

Evidence of methylation-dependent localization of Mbd3 and Mbd2 in
bio-MBD datasets
Multiple studies have established that Mbd2, but not Mbd3, binds methylated DNA with higher

affinity than unmethylated DNA (Hendrich and Bird, 1998; Zhang et al., 1999). We previously

found that Mbd3 occupies genomic regions containing 5hmC in ES cells (Yildirim et al., 2011). Fur-

thermore, we found that KD of Tet1 results in a reduction of Mbd3 occupancy, and that KD of Mbd3

results in a reduction in bulk 5hmC levels (Yildirim et al., 2011), demonstrating interdependence

between Mbd3 and 5hmC. These findings also lead to a straightforward prediction that cytosine

methylation would be required for Mbd3 binding, since 5hmC is generated by oxidation of 5mC.

However, Baubec et al. reported that both Mbd3 and Mbd2 occupancies at LMRs are minimally

altered in TKO cells (Baubec et al., 2013), arguing against our previous findings regarding Mbd3

and long-standing models of Mbd2 function.

To assess the discrepancies between these studies, we first re-analyzed the datasets from Baubec

et al. (Figure 1, Figure 1—figure supplement 1, and Figure 1—figure supplement 2). There were

two ChIP-seq replicates for the biotin-tagged Mbd3a isoform (bio-Mbd3a) in wild-type (WT) cells

and a single replicate reported for bio-Mbd3a ChIP-seq in TKO cells (see Table 1). We initially

focused on genomic binding at the subset of LMRs that are larger than 150 bp and at least 3 kb

away from another LMR or an unmethylated region (hereafter denoted as

’LMR subset’) that was utilized in the prior study. We observed only a modest reduction (~28%) in

bio-Mbd3a occupancy at the LMR subset upon loss of DNA methylation in TKO cells (Figure 1A),

similar to the original observation (see Figure 7A of Baubec et al. (2013)). However, when we

assessed the change in overall bio-Mbd3a enrichment by examining all bio-Mbd3a peaks (called

from pooled WT bio-Mbd3a ChIP-seq reads), we observed a ~75% reduction in bio-Mbd3a binding

in TKO cells relative to WT cells (Figure 1B–C and Figure 1—figure supplement 1A–B). These data

demonstrate that Mbd3a relies heavily on DNA methylation in order to bind chromatin in ES cells

and that confining analysis to a subset of LMRs obscures the global impact of methylation on Mbd3

localization.

While Baubec et al. found that bio-Mbd2 requires DNA methylation for proper binding to chro-

matin at highly methylated CpG islands (Figure 4G–H of Baubec et al. (2013)), they observed mini-

mal effect of loss of methylation on bio-Mbd2 binding at the LMR subset (Figure 7A from

Baubec et al. (2013)). To replicate this prior analysis, we pooled the mapped reads for each of three

bio-Mbd2 ChIP-seq replicates from WT or two bio-Mbd2 ChIP-seq replicates from TKO cells (see

Table 1) and measured their enrichment over the LMR subset. We observed a modest reduction

(~15%) in bio-Mbd2 occupancy relative to WT (Figure 1D), consistent with the prior report. In con-

trast, when we analyzed bio-Mbd2 binding over all LMRs (referred to throughout as ’total LMRs’),

we observed a stronger reduction (~40%) in bio-Mbd2 occupancy in the pooled TKO libraries rela-

tive to WT (Figure 1E).

To better evaluate the effects of cytosine methylation on bio-Mbd2 binding, we analyzed each

bio-Mbd2 ChIP-seq replicate separately. We observed high variation among the three replicates for

bio-Mbd2 in WT cells (Figure 1F–H and Figure 1—figure supplement 1C–I). For example, while two

WT replicates are modestly enriched for bio-Mbd2 binding relative to the two TKO replicates (~10%

reduction) at the LMR subset, the third bio-Mbd2 ChIP-seq experiment in WT cells has a much higher

peak, implying a much larger (~50%) reduction in occupancy in TKO cells (Figure 1F). Similar dispar-

ities were observed at other regions of the genome (Figure 1—figure supplement 1C–F). Impor-

tantly, when we examined the effect of 5mC loss over all peaks of bio-Mbd2 binding, bio-Mbd2

enrichment was reduced to near background levels in TKO cells (Figure 1G). Furthermore, we

observed considerable gene-by-gene differences in the binding profiles among WT bio-Mbd2
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replicates, where individual locations that are lowly bound in one replicate are highly bound in

another replicate (Figure 1H, Figure 1—figure supplement 1G–I). Taken together, these analyses

demonstrate bio-Mbd3 and bio-Mbd2 strongly depend on cytosine methylation for normal chromatin

association. Furthermore, poor concordance between biological replicates was also found for several

Figure 1. Analysis of bio-Mbd3 and bio-Mbd2 ChIP-seq datasets reveals methylation-dependent chromatin localization in ES cells. Mbd3 and Mbd2

ChIP-seq datasets from (Baubec et al., 2013) were obtained from GEO (GSE39610; see Table 1). (A–C) Analysis of ChIP-seq data for biotin-tagged

Mbd3 (bio-Mbd3) in WT or TKO cells. The two available WT replicates and one available TKO replicate were mapped over the LMR subset (adapted

from Stadler et al. [2011]) ± 2 kb (A) or bio-Mbd3 peaks from WT cells ± 2 kb (B). (C) Heatmaps for bio-Mbd3 ChIP-seq in WT or TKO cells over bio-

Mbd3 peaks ± 2 kb, sorted by bio-Mbd3 occupancy (high to low) in replicate 1 WT cells. (D–H) Analysis of ChIP-seq data for biotin-tagged Mbd2 (bio-

Mbd2) in WT or TKO cells. (D–E) Data were analyzed as described in (Baubec et al., 2013) where replicates were pooled and mapped over LMRs that

are > 150 bp and at least 3 kb away from other LMRs or unmethylated regions (LMR subset) (D) or all LMRs (E). (F–G) Biological replicates were

analyzed separately and mapped over the LMR subset ± 2 kb (F) or bio-Mbd2 peaks from WT cells ± 2 kb (G). (H) Heatmaps for bio-Mbd2 ChIP-seq in

WT or TKO cells over bio-Mbd2 peaks ± 2 kb, sorted by bio-Mbd2 occupancy in replicate 1 WT cells. Peaks of bio-Mbd3 and bio-Mbd2 were called as

described in Supplemental Experimental Procedures.

DOI: 10.7554/eLife.21964.002

The following figure supplements are available for figure 1:

Figure supplement 1. Variable bio-Mbd2 binding in WT cells over TSSs and gene-distal DHSs.

DOI: 10.7554/eLife.21964.003

Figure supplement 2. Variable bio-Mbd1 and bio-MeCP2 binding in WT cells.

DOI: 10.7554/eLife.21964.004
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other MBD proteins profiled in Baubec et al. (Figure 1—figure supplement 2), preventing straight-

forward interpretation of the role of cytosine methylation in localization of these factors.

Dnmt1 and Tet1 are required for Mbd3 and Mbd2 occupancy in ES cells
To further address the discrepancies discussed above, and to better elucidate the roles of DNA

methylation and hydroxymethylation in chromatin binding by Mbd3 and Mbd2, we performed bio-

logical duplicate ChIP-seq experiments for endogenous Mbd3 and Mbd2 in ES cells acutely

depleted of Dnmt1 or Tet1 (Figure 2). Upon efficient KD of these factors (Figure 2—figure supple-

ment 1A–B), we observed a significant reduction in promoter-proximal Mbd3 and Mbd2 binding rel-

ative to the binding observed in control (EGFP KD) cells (examples shown in Figure 2A, Figure 2—

figure supplement 1C–D). The reductions in Mbd3 and Mbd2 binding observed upon Dnmt1 KD or

Tet1 KD were not due to altered expression of these proteins (Figure 2—figure supplement 1E).

When we compared the locations bound by Mbd3 and Mbd2 throughout the genome, we found

that Mbd3 and Mbd2 co-occupy numerous regions throughout the genome of ES cells, and this

overlap is particularly enriched at promoter-proximal regions (Figure 2B).

Next, we quantified average binding profiles of Mbd3 and Mbd2 over six genomic features –

intermediate CpG density promoters (ICPs; from (Weber et al., 2007), transcription start sites

(TSSs), the LMR subset described above, gene-distal DNaseI hypersensitive sites (DHSs; from

ENCODE; GSM1014154), Mbd2 peaks (from EGFP KD cells), and Mbd3 peaks (from EGFP KD cells).

We observed a similar pattern over each genomic feature: Dnmt1 KD and Tet1 KD each resulted in a

dramatic reduction in Mbd3 and Mbd2 occupancies (Figure 2C–F). Importantly, our duplicate ChIP-

seq datasets were highly reproducible (Figure 2A; Figure 2—figure supplement 1C–D and Fig-

ure 2—figure supplement 2A–D). We validated our observations at eight genomic locations by

Table 1. Related to Figure 1. SRA file numbers for re-analyzed Baubec et al. (2013) datasets.

Name SRA file number Number of mapped reads (Bowtie, up to three mismatches)

WT Mbd3 ChIP replicate 1 SRR696667 11,601,021

WT Mbd3 ChIP replicate 2 SRR696673 14,166,151

TKO Mbd3 ChIP SRR769560 34,666,789

WT Mbd2 ChIP replicate 1 SRR527128 9,441,721

WT Mbd2 ChIP replicate 2 SRR527129 15,116,380

WT Mbd2 ChIP replicate 3 SRR696658 12,545,659

TKO Mbd2 ChIP replicate 1 SRR527161 24,282,816

TKO Mbd2 ChIP replicate 2 SRR696682 7,605,171

WT Mbd1a ChIP replicate 1 SRR527126 11,566,092

WT Mbd1a ChIP replicate 2 SRR527127 19,528,778

TKO Mbd1a ChIP SRR527159 22,070,693

WT Mbd1b ChIP replicate 1 SRR527147 14,320,842

WT Mbd1b ChIP replicate 2 SRR527148 22,371,797

TKO Mbd1b ChIP SRR527160 7,503,068

WT Mbd4 ChIP replicate 1 SRR527131 13,864,108

WT Mbd4 ChIP replicate 2 SRR527132 23,655,753

TKO Mbd4 ChIP replicate 1 SRR669321 13,670,155

TKO Mbd4 ChIP replicate 2 SRR669322 11,251,853

WT MeCP2 ChIP replicate 1 SRR527133 19,229,199

WT MeCP2 ChIP replicate 2 SRR527134 11,771,499

WT MeCP2 ChIP replicate 3 SRR696681 12,118,572

TKO MeCP2 ChIP replicate 1 SRR527162 17,003,233

TKO MeCP2 ChIP replicate 2 SRR696683 28,586,006

DOI: 10.7554/eLife.21964.005
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Figure 2. Dnmt1 and Tet1 are required for Mbd3 and Mbd2 binding in ES cells. (A) Genome browser tracks of replicate ChIP-seq experiments

examining endogenous Mbd3 or Mbd2 occupancy in control (EGFP KD), Dnmt1 KD, and Tet1 KD ES cells over indicated loci (Hoxd cluster). (B) Overlap

of Mbd3 and Mbd2 binding. Shown are Venn diagrams delineating the overlap between all genomic locations (top panel) or TSS-proximal locations

(�1 kb to +100 bp; bottom panel) bound by Mbd3 and Mbd2. (C–D) Aggregation plots of Mbd3 (C) or Mbd2 (D) ChIP-seq data showing occupancy

Figure 2 continued on next page
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performing three biological replicate ChIP-qPCRs for Mbd3 and Mbd2 in Dnmt1 KD and Tet1 KD ES

cells (Figure 2—figure supplement 2E) and in Dnmt1 KO cells (Figure 2—figure supplement 2F–

G).

Four key controls demonstrate the specificity of these ChIP data. First, we performed ChIP-qPCR

for Mbd3 in Mbd3 KD cells and for Mbd2 in Mbd2 KD cells, confirming the reduced ChIP signals

expected in both cases (Figure 2—figure supplement 2E). To validate our findings in a manner

independent of the antibodies targeting the endogenous proteins, we genetically FLAG-tagged

endogenous Mbd2 (hereafter Mbd2-3XFLAG) or Mbd3 ([Yildirim et al., 2011]; hereafter Mbd3abc-

3XFLAG) and performed ChIP-qPCR or ChIP-seq, respectively, in EGFP KD, Dnmt1 KD, and Tet1 KD

cells (Figure 2—figure supplement 3A–D). We again observed a reduction in Mbd2-3XFLAG and

Mbd3abc-3XFLAG enrichment following knockdown of Dnmt1 or Tet1 (Figure 2—figure supple-

ment 3B–D), despite lower overall enrichment than we observed with antibodies against the endog-

enous proteins. FLAG ChIP-seq and ChIP-qPCR for Mbd3abc-3XFLAG in Mbd3 KD cells and for

Mbd2-3XFLAG in Mbd2 KD cells confirmed the reduced ChIP signals expected in both cases (Fig-

ure 2—figure supplement 3C–D; Figure 2—figure supplement 4A–B). Finally, to test whether

overexpression of Mbd3a (analogous to the bio-Mbd3a ChIP-seq studies in [Baubec et al., 2013])

resulted in altered genomic binding relative to endogenously expressed Mbd3, and whether chro-

matin binding by overexpressed Mbd3a was altered upon Dnmt1 KD or Tet1 KD, we overexpressed

Mbd3a-3XFLAG in ES cells and performed ChIP-qPCR experiments upon KD of Dnmt1, Tet1, or

EGFP (Figure 2—figure supplement 3C). Although Mbd3a-3XFLAG enrichment was reduced rela-

tive to endogenously expressed Mbd3abc-3XFLAG, there was a decrease in Mbd3a-3XFLAG binding

upon Dnmt1 or Tet1 depletion at all eight promoter-proximal regions examined (Figure 2—figure

supplement 3C). Together, these data demonstrate a requirement for Dnmt1 and Tet1 for Mbd3

and Mbd2 binding throughout the genome of ES cells. Although the dependence of Mbd3 and

Mbd2 on DNA methylation (or Dnmt1) and the requirement of Mbd3 for hydroxymethylation (or

Tet1) were consistent with our previous findings and those of others (Chatagnon et al., 2011;

Menafra et al., 2014; Yildirim et al., 2011), the requirement of Mbd2 for Tet1 has not been previ-

ously observed. We will address this finding below.

One argument suggesting the data in Yildirim et al. may not be valid was that Mbd3 binding was

not observed at enhancers (Menafra and Stunnenberg, 2014). In this study, we used H3K4me1 as a

marker for enhancer regions (Yildirim et al., 2011), which is an imperfect marker for putative

enhancer elements (Shlyueva et al., 2014). We therefore re-analyzed the Yildirim data at gene-distal

DNaseI hypersensitive sites (DHSs), which represent active enhancers and some additional regulatory

features, and observed a peak of Mbd3 binding that was strongly reduced upon Tet1 depletion (Fig-

ure 2—figure supplement 4C). Similarly, our new Mbd3 and Mbd2 ChIP-seq datasets exhibit robust

enrichment at gene-distal DHSs that is reduced upon Dnmt1 KD or Tet1 KD (Figure 2C–D),

Figure 2 continued

over ICPs (top left panel, from [Weber et al., 2007]), annotated TSSs (bottom left panel), the LMR subset (top middle panel, from [Stadler et al.,

2011]), gene-distal DHSs (bottom middle panel, from GSM1014154 with TSSs removed) Mbd2 peaks (top right panel, called from EGFP KD ChIP-seq

experiments), and Mbd3 peaks (bottom right panel, called from EGFP KD ChIP-seq experiments) ± 2 kb in control (EGFP KD), Dnmt1 KD, or Tet1 KD ES

cells. (E–F) Heatmaps of Mbd3 enrichment over Mbd3 binding sites sorted by Mbd2 occupancy (E) and Mbd2 enrichment over Mbd2 binding sites

sorted by Mbd3 occupancy (F) in control (EGFP KD), Dnmt1 KD, or Tet1 KD ES cells. The profiles shown in aggregation plots and heatmaps represent

the average of two biological replicates.

DOI: 10.7554/eLife.21964.006

The following figure supplements are available for figure 2:

Figure supplement 1. Loss of Dnmt1 and Tet1 results in reduced occupancy of both Mbd3 and Mbd2 in ES cells.

DOI: 10.7554/eLife.21964.007

Figure supplement 2. Validation of endogenous Mbd3 and Mbd2 ChIP-seq experiments.

DOI: 10.7554/eLife.21964.008

Figure supplement 3. FLAG ChIPs confirm Dnmt1 and Tet1 are required for Mbd3 and Mbd2 occupancies.

DOI: 10.7554/eLife.21964.009

Figure supplement 4. ChIP-seq experiments using MBD-FLAG fusions.

DOI: 10.7554/eLife.21964.010
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confirming Mbd3 binds to these regions in a manner dependent on the cytosine methylation and

hydroxymethylation machinery.

The catalytic activity of Tet1 is required for proper chromatin
localization by Mbd3 and Mbd2 in ES cells
Although our KD studies demonstrated Tet1 is necessary for chromatin binding by Mbd3 and Mbd2,

the Tet1 protein has been shown, in some cases, to regulate gene expression independently of its

catalytic activity (Jin et al., 2014; Kaas et al., 2013; Williams et al., 2011). These findings leave

open the possibility that Tet1 functions in Mbd3 and Mbd2 binding independently of its roles in

DNA hydroxymethylation and demethylation. To test whether the catalytic activity of Tet1 is neces-

sary for Mbd3 and Mbd2 binding in ES cells, we generated homozygous catalytically inactive Tet1

mutant (Tet1c.i.) ES cells. We knocked-in two amino acid substitutions, H1652Y and D1654A (Fig-

ure 3—figure supplement 1), which were previously demonstrated to eliminate DNA demethylation

activity by Tet1 (Ito et al., 2010; Tahiliani et al., 2009). We performed ChIP-seq for Mbd3 and

Mbd2 in two independent Tet1c.i. lines (Figure 3). We found that relative to WT ES cells, ChIP-seq

of Mbd3 and Mbd2 in Tet1c.i. cells shows decreased occupancies of both Mbd3 and Mbd2 at ICPs,

TSSs, the LMR subset, gene-distal DHSs, Mbd2 peaks, and Mbd3 peaks (Figure 3). These data dem-

onstrate that the catalytic activity of Tet1 is required to promote binding of Mbd3 and Mbd2 to mul-

tiple genomic locations in ES cells.

Figure 3. The catalytic activity of Tet1 is required for occupancy of Mbd3 and Mbd2 in ES cells. Aggregation plots of Mbd3 or Mbd2 ChIP-seq

showing association over ICPs (top left panel), annotated TSSs (bottom left panel), the LMR subset (top middle panel), gene-distal DHSs (bottom

middle panel), Mbd2 peaks (top right panel), and Mbd3 peaks (bottom right panel) ± 2 kb in wild-type (WT) and Tet1 catalytically inactive (Tet1c.i.) ES

cells. Aggregation plots represent the average of two biological replicates.

DOI: 10.7554/eLife.21964.011

The following figure supplement is available for figure 3:

Figure supplement 1. Catalytic mutation in Tet1 does not alter total protein levels.

DOI: 10.7554/eLife.21964.012
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Loss of Mbd3 or Mbd2 results in reduced 5mC and 5hmC at regulatory
regions
In order to better understand the dependence of Mbd3 and Mbd2 on cytosine methylation and

hydroxymethylation, we performed duplicate MeDIP-seq and hMeDIP-seq experiments (which enrich

for DNA harboring 5mC or 5hmC, respectively) on EGFP KD, Dnmt1 KD, Mbd3 KD, and Mbd2 KD

ES cells (Figure 4A–B). We examined the effects of depletion of these factors on methylation

(Figure 4A) and hydroxymethylation (Figure 4B) at ICPs, TSSs, the LMR subset, gene-distal DHSs,

Mbd2 peaks, and Mbd3 peaks. As expected, Dnmt1 KD resulted in decreased 5mC and 5hmC. Fur-

thermore, both Mbd3 KD and Mbd2 KD also resulted in decreased 5mC and 5hmC levels. These

data are consistent with previous findings showing that Mbd3 KO cells have decreased 5mC levels

at some locations (Latos et al., 2012), and reduced 5hmC levels overall (Yildirim et al., 2011) in ES

cells. Interestingly, when we examined the methylation and hydroxymethylation profiles over total

LMRs (Figure 4—figure supplement 1A–B), we observed a much stronger peak of enrichment in

control (EGFP KD) ES cells than found at the LMR subset. Further investigation revealed that the

LMRs excluded from the LMR subset were overrepresented at promoter proximal regions of genes

(Figure 4—figure supplement 1E), and exhibited higher average methylation and hydroxymethyla-

tion (Figure 4—figure supplement 1C–D).

To validate these data, we performed dot blotting, thin layer chromatography (TLC), and digests

with methylation sensitive (HpaII) or insensitive (MspI) restriction enzymes on DNA isolated from

Mbd3 KD, Mbd2 KD, or control cells (EGFP KD and Dnmt1 KD). Consistent with the MeDIP- and

hMeDIP-seq data, bulk 5mC and 5hmC levels were reduced upon Mbd3 KD or Mbd2 KD, as mea-

sured by dot blotting and TLC, while digestion with HpaII was enhanced (Figure 4C–F). Together

these data demonstrate that levels of cytosine methylation and hydroxymethylation are regulated

not only by the DNA methyltransferase enzymes, but also by factors that depend on these modifica-

tions for proper chromatin localization.

Interdependence of Mbd3 and Mbd2 occupancy
The reduction in 5mC and 5hmC levels observed upon depletion of Mbd3 and Mbd2 raises the pos-

sibility that Mbd3 and Mbd2 may each be necessary (either directly or indirectly) for normal chroma-

tin binding by the other. To address this possibility, we investigated the effect of Mbd3 KD or Mbd2

KD on chromatin association by Mbd2 or Mbd3, respectively. Relative to control (EGFP KD) cells, we

found that when Mbd3 was depleted there was a decrease in Mbd2 occupancy, and, conversely,

when Mbd2 was depleted there was a decrease in Mbd3 occupancy (example loci shown in

Figure 5A; Figure 5—figure supplement 1A–B). We extended this analysis to the whole genome,

confirming a significant reduction in binding of both Mbd3 and Mbd2 upon KD of the other MBD

protein at ICPs, TSSs, the LMR subset, gene-distal DHSs, Mbd2 peaks, and Mbd3 peaks (Figure 5B–

C). Depletion of Mbd3 does not alter Mbd2 levels, nor does depletion of Mbd2 alter levels of Mbd3

(Figure 2—figure supplement 1E). We validated our observations by performing three biological

replicate ChIP-qPCRs for Mbd3 and Mbd2 in Mbd3 KD and Mbd2 KD ES cells (Figure 2—figure

supplement 2E) and by ChIP-seq for Mbd3abc-3XFLAG and Mbd2-3XFLAG in Mbd3 KD and Mbd2

KD ES cells (Figure 2—figure supplement 4A–B). Together these data demonstrate interdepen-

dence between Mbd3 and Mbd2, whereby these mutually exclusive constituents of the NuRD com-

plex regulate the genomic localization of one another.

Mbd3/NuRD was previously shown to play a role in methylation of promoter-proximal regions in

cancer cell lines by helping recruit DNA methyltransferase enzymes to specific loci (Cai et al., 2014;

Choi et al., 2013; Morey et al., 2008). To investigate whether this potential mechanism of regula-

tion was also operational in ES cells, we examined the binding profile of Dnmt1 in Mbd3 KO cells

(Figure 5—figure supplement 2). We found that Mbd3 KO cells (Figure 5—figure supplement 2A)

showed a general loss of Dnmt1 binding, with Dnmt1 occupancy decreased relative to WT cells at all

genomic locations examined (Figure 5—figure supplement 2B). These data show Dnmt1 relies on

Mbd3 for proper binding. Therefore, the decreased methylation, hydroxymethylation, and Mbd2

binding observed upon depletion of Mbd3 may be attributed (at least in part) to loss of chromatin

binding by Dnmt1.
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Figure 4. Dnmt1, Mbd3, and Mbd2 are required for 5mC and 5hmC in ES cells. (A–B) Aggregation plots of 5mC (A) or 5hmC (B) enrichment over ICPs

(top left panel), annotated TSSs (bottom left panel), the LMR subset (top middle panel), gene-distal DHSs (bottom middle panel) Mbd2 peaks (top right

panel), and Mbd3 peaks (bottom right panel) ± 2 kb in control (EGFP KD), Dnmt1 KD, Mbd3 KD, or Mbd2 KD ES cells. Aggregation plots represent the

average of two biological replicates. (C–D) Dot blot of bulk 5mC (C) and 5hmC (D) levels in EGFP KD, Dnmt1 KD, Mbd3 KD, or Mbd2 KD ES cells. Left

Figure 4 continued on next page
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Overlapping effects of Dnmt1, Tet1, Mbd3, or Mbd2 loss on gene
expression
The various interdependencies detailed above make an additional functional prediction – that

Dnmt1, Tet1, Mbd3, and Mbd2 should have overlapping roles in gene regulation in ES cells. To test

this, we used DNA microarrays to examine the changes in mRNA levels upon Dnmt1 KD, Tet1 KD,

Mbd3 KD, Mbd2 KD, and (since it is a key constituent of both NuRD complexes in ES cells) Chd4

KD. We observed well-correlated gene expression profiles in ES cells knocked down individually for

these factors (Figure 6—figure supplement 1, Table 3), suggesting a significant overlap in their sets

of target genes, although Tet1 KD and Mbd2 KD generally had weaker effects on gene expression

(Figure 6A), consistent with the less severe phenotypes observed upon Mbd2 loss (Günther et al.,

2013; Hendrich et al., 2001). Together, these data are consistent with a model in which these chro-

matin remodeling factors and DNA modifications coordinate to control gene activity in ES cells.

Discussion
The role of cytosine methylation in the regulation of Mbd3 and Mbd2 binding to chromatin has

been controversial. Here, we sought to address these conflicting data. Several differences in study

design may help explain some of the discrepancies between our previous studies and those

reported by Baubec et al. First, whereas endogenous Mbd3 was examined in ChIP studies per-

formed in Yildirim et al., the bio-tagged Mbd3 in Baubec et al. was overexpressed [see Figure S1F

from Baubec et al. (2013)]. Since overexpression of proteins can promote promiscuous binding as

assayed by ChIP (Baresic et al., 2014; Fernandez et al., 2003), it is possible some of the peaks of

Mbd3 binding identified by this method are non-physiological. Second, all Mbd3 isoforms were

immunoprecipitated in the Yildirim study, rather than the single largest isoform examined in Baubec

et al. Third, whereas Yildirim et al. examined Mbd3 binding to promoter-proximal regions of genes,

Baubec et al. focused mainly on a subset of LMRs and ICPs. Regardless of these differences, com-

prehensive analysis of the data available from Baubec et al. revealed a strong reduction in Mbd3

binding in TKO cells at the majority of bio-Mbd3 binding sites (Figure 1B–C). Similarly, our re-analy-

sis of the bio-Mbd2 ChIP-seq data also revealed a strong reliance on DNA methylation (Figure 1D–

E).

To more thoroughly address the role of DNA methylation in the regulation of Mbd3 and Mbd2

binding in ES cells, we performed a series of ChIP-seq experiments for endogenous Mbd3 and

Mbd2 in Dnmt1 or Tet1 KD cells. Duplicate ChIP-seq experiments performed with polyclonal anti-

bodies targeting the endogenous MBD proteins (Figure 2), independent triplicate ChIP-qPCR

experiments performed with the same polyclonal antibodies in Dnmt1 KD, Tet1 KD, or Dnmt1 KO

cells (Figure 2—figure supplement 2), and ChIP experiments performed on endogenously C-termi-

nal FLAG-tagged versions of Mbd2 or Mbd3 (Figure 2—figure supplement 3) all yielded the same

result: depletion of Dnmt1 or Tet1 results in reduced binding of Mbd3 and Mbd2 throughout the

genome. Furthermore, experiments utilizing point mutations that eliminate the catalytic activity of

Tet1 demonstrated the DNA demethylase activity of Tet1 is necessary for Mbd3 and Mbd2 binding

(Figure 3) and (along with data from Dnmt1 KO cells) show that our findings are not an artifact of

potential off-target effects from RNAi. These data, together with a re-evaluation of published data,

conclusively demonstrates the requirement for DNA methylation/hydroxymethylation for normal

chromatin binding by Mbd3 and Mbd2 in ES cells.

Figure 4 continued

panel shows 5mC or 5hmC levels and right panel shows methylene blue staining, which serves as a loading control. (E) Thin layer chromatography

separation of radioactively end-labeled bases from MspI digested genomic DNA. Quantification of 5mC or 5hmC is expressed relative to T in each KD.

Levels in EGFP KD are set to 100%. (F) Restriction enzyme digest of genomic DNA from EGFP KD, Dnmt1 KD, Mbd3 KD, or Mbd2 KD ES cells using an

enzyme blocked by CpG methylation/hydroxymethylation (HpaII) or a CpG methylation insensitive enzyme (MspI) that cuts the same site (CCGG).

DOI: 10.7554/eLife.21964.013

The following figure supplement is available for figure 4:

Figure supplement 1. 5mC and 5hmC levels over total and removed LMRs.

DOI: 10.7554/eLife.21964.014
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Figure 5. Mbd3 and Mbd2 are required for each other’s binding in ES cells. (A) Genome browser tracks of ChIP-seq experiments examining Mbd3 or

Mbd2 occupancy in control (EGFP KD), Mbd2 KD, or Mbd3 KD ES cells over one example locus (Pitx1). (B) Aggregation plots of Mbd3 or Mbd2 ChIP-

seq data showing occupancy over ICPs (top left panel), annotated TSSs (bottom left panel), LMR subset (top middle panel), gene-distal DHSs (bottom

middle panel), Mbd2 peaks (top right panel), and Mbd3 peaks (bottom right panel) ± 2 kb in control (EGFP KD), Mbd3 KD, or Mbd2 KD ES cells. (C)

Heatmaps of Mbd3 enrichment over Mbd3 binding sites ± 2 kb sorted by Mbd2 occupancy (top panel) and Mbd2 enrichment over Mbd2 binding sites

± 2 kb sorted by Mbd3 occupancy (bottom panel) in control (EGFP KD), Mbd2 KD, or Mbd3 KD ES cells. The profiles shown in the browser tracks,

aggregation plots, and heatmaps represent the average of two biological replicates.

DOI: 10.7554/eLife.21964.015

The following figure supplements are available for figure 5:

Figure supplement 1. Interplay between Mbd3 and Mbd2.

DOI: 10.7554/eLife.21964.016

Figure supplement 2. Mbd3 is required for Dnmt1 occupancy in ES cells.

DOI: 10.7554/eLife.21964.017
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Having confirmed a role for cytosine methylation in Mbd3 and Mbd2 binding to DNA in ES cells,

we sought to further investigate the mechanism through which DNA methylation regulates binding

of these factors. Previous studies revealed that Mbd3 is required for 5mC at some locations in ES

cells (Latos et al., 2012), but may prevent methylation at other sites (Cui and Irudayaraj, 2015).

Our data examining 5mC and 5hmC enrichment genome-wide reveals a decrease in global 5mC and

5hmC levels in ES cells depleted of Mbd3 or Mbd2 (Figure 4). This decrease is likely due to the

reduction in Dnmt1 binding throughout the genome we observed in Mbd3 KO cells (Figure 5—fig-

ure supplement 2), consistent with findings in cancer cell lines (Cai et al., 2014; Choi et al., 2013;

Morey et al., 2008), although other mechanisms may also contribute to this phenomenon.

Consistent with previous studies (Günther et al., 2013), we found that Mbd3 and Mbd2 binding

overlap at many locations. This observation, along with the fact that Mbd3 is necessary for normal

DNA methylation, suggested Mbd3 might be indirectly necessary for chromatin binding by Mbd2.

We therefore investigated the potential interplay between these factors and found that Mbd2

requires Mbd3 for binding, and vice versa, throughout the genome (Figure 5). Together these data

support a model in which Mbd3 and Mbd2 rely on DNA methylation and hydroxymethylation for

Figure 6. KD of DNA methylation/hydroxymethylation machinery or its readers results in similar effects on gene expression. (A) K-means clustering

(k = 3) of genes misregulated (adjusted p<0.05) upon Dnmt1 KD, Tet1 KD, Mbd3 KD, Mbd2 KD, or Chd4 KD. Upregulated genes are indicated in

yellow and downregulated genes are indicated in blue. (B) Model for interdependent regulatory mechanism mediated by DNA methylation/

hydroxymethylation and readers of 5mC/5hmC. The DNA methylation/hydroxymethylation machinery (Dnmt1 and Tet1) and its readers (Mbd3 and

Mbd2) form a regulatory loop where disruption of one factor results in altered methylation patterns and MBD binding. Binding of a gene activator to

unmethylated site, loss of methylation by another mechanism, or loss of a reader of 5mC/5hmC can break the regulatory loop. YFG (your favorite gene)

indicates a generic gene body.

DOI: 10.7554/eLife.21964.018

The following figure supplement is available for figure 6:

Figure 6�figure supplement 1. Dnmt1 KD, Tet1 KD, Mbd3 KD, Mbd2 KD, or Chd4 KD have correlated effects on gene expression.

DOI: 10.7554/eLife.21964.019
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binding, while these factors are also required for DNA methylation and hydroxymethylation. Such a

model must be consistent with the following observations: (1) DNA methylation is necessary for

proper Mbd2 and Mbd3 localization (as shown by Dnmt1 KD and KO experiments described in this

study). (2) DNA demethylation is required for proper Mbd2 and Mbd3 localization (Tet1 KD and

Tet1c.i. studies here, and data from Yildirim et al. (2011)). (3) Mbd2 binds DNA harboring 5mC

(Hendrich and Bird, 1998; Zhang et al., 1999) and Mbd3 binds DNA binding 5hmC much more

strongly than DNA containing 5mC (Yildirim et al., 2011). (4) Mbd2 and Mbd3 are required for nor-

mal levels of both 5mC and 5hmC (MeDIP/hMeDIP, TLC, and other experiments described in this

study). (5) Dnmt1 localization depends on Mbd3 (ChIP studies described in this study). (6) RNAi-

mediated depletion of Mbd2, Mbd3, Dnmt1, Tet1, or Chd4 results in misregulation of many of the

same genes (expression profiling described in this study). Therefore, we propose that these two

MBD proteins and DNA modifications all contribute to a regulatory loop that modulates gene

expression (Figure 6B). Consequently, upon disruption of any component of this regulatory loop

(through depletion, KO, or mutation of the catalytic domain), the gene regulatory outcome is similar

in ES cells: binding of both NuRD complexes is reduced, altering gene expression. While the molec-

ular mechanisms underlying these interdependencies are unclear, physical interactions between

Mbd3 and DNA methylation/hydroxymethylation proteins have previously been observed (Cai et al.,

2014; Yildirim et al., 2011). Furthermore, predictive studies utilizing published ChIP-seq datasets

suggest interdependency between the Mbd2 and Tet1 proteins in ES cells (Juan et al., 2016).

How widespread are the interdependencies among Mbd2, Mbd3, and the DNA modification

machinery? Mbd2 KO mice are viable and fertile, whereas Mbd3 KO mice are lethal

(Hendrich et al., 2001; Kaji et al., 2006; Reynolds et al., 2012). Mbd3 is required for ES cell differ-

entiation, suggesting Mbd3 may be sufficiently functional in the absence of Mbd2 for its essential

roles in vivo. Consistent with this possibility, Mbd3 KD had a stronger effect on some shared Mbd2/

Mbd3 target genes than Mbd2 KD in ES cells. Alternatively, Mbd2/Mbd3 interdependence may be

lost during differentiation, or within specific lineages, which may partially account for the different

phenotypes of Mbd2 and Mbd3 KO mice. Further studies will be required to distinguish between

these possibilities.

Materials and methods

Cell culture
Mouse ES cells were derived from E14 (Hooper et al., 1987 RRID:CVCL_C320) and were cultured as

previously described (Chen et al., 2013). Cells have been verified that they are of male mouse origin

through sequencing performed in this and previous studies, and were previously tested to ensure

they were free of mycoplasma. RNAi-mediated KD was performed for 48 hr with endoribonuclease

III digested siRNAs (esiRNAs) as previously described (Fazzio et al., 2008). The Mbd3abc-3XFLAG

cell line was described previously (Yildirim et al., 2011).

Generation of cell lines
To generate the Mbd3a-3XFLAG lines, the mouse Mbd3a coding sequence was amplified from

cDNA, a 6XHis + 3 XFLAG tag was added to the 3’ end, and it was cloned into pLJM1-EGFP (cour-

tesy of David Sabatini’s lab; Addgene plasmid # 19319) at the AfeI and BstBI sites, replacing the

EGFP gene. 293T cells were transfected with pLJM1-Mbd3a-3XFLAG and Lenti-X plasmids (Clon-

tech, Mountain View, CA, USA) via X-tremeGENE (Roche, Branford, CT, USA) to produce lentivirus.

Virus was collected three times between 40 and 64 hr and concentrated as described previously

(Chen et al., 2013). Virus was introduced to E14 ES cells with 8 mg/mL hexadimethrine bromide (Pol-

ybrene; Sigma, St. Louis, MO, USA). Cells were selected with puromycin, diluted to single clones,

and screened for Mbd3a-3XFLAG expression by western blotting of whole cell lysates.

To generate the endogenously tagged Mbd2-3XFLAG lines, sequence corresponding to Mbd2

exon six was synthesized (IDT, Coralville, IA, USA) with a 6XHis + 3 XFLAG tag before the stop

codon and cloned into pBluescript before an internal ribosome entry site followed by a NeoR gene

and polyadenylation site, with ~2 kb of homology to either side of the Mbd2 target site, which was

amplified from genomic DNA. Oligonucleotides (F: CACCGTGAGGCGTAAGAATATGATC, R:

AAACGATCATATTCTTACGCCTCAC) were cloned into pX330-puroR (Cong et al., 2013) for
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expression of a guide RNA that targets Cas9 to the C-terminus of Mbd2, in order to increase effi-

ciency of targeted homologous recombination with the homology template. The guide RNA was

designed over the stop codon of the gene so that it could not target the homology construct or a

recombined Mbd2-3XFLAG. The two plasmids were transfected together into E14 ES cells by elec-

troporation, and the cells were subsequently selected with G418. Clones were screened by PCR on

genomic DNA and by Western blot for FLAG-tagged Mbd2 on whole cell lysates.

Dnmt1 and Mbd3abc knockout (KO) lines were created by CRISPR/Cas9 targeted double-strand

breaks and error-prone DNA repair to generate frameshift mutations (Cong et al., 2013;

Wang et al., 2013). Oligonucleotides for guide RNAs specific to Dnmt1 exons 15 (F: CACCGGG

TTAGGGTCGTCTAGGTGC, R: AAACGCACCTAGACGACCCTAACCC) or 20 (F: CACCGAAAC

TGGGCGTGGCGTAAGA, R: AAACTCTTACGCCACGCCCAGTTTC) or to Mbd3 exon 5 (F:

CACCGGTGTGTAGAGCACTCGCAA, R: AAACTTGCGAGTGCTCTACACACC) were cloned into

pX330-puro. The plasmids were separately transfected into E14 ES cells by electroporation (for

Dnmt1 KO) or using FuGENE HD (Promega, Madison, WI, USA, for Mbd3abc KO) and clones were

selected with puromycin. Candidates were screened by Western blotting of Dnmt1 or Mbd3 protein

from whole cell lysates and by sequencing of PCRs on genomic DNA at the target sites.

Tet1 catalytically inactive (Tet1c.i.) lines were generated by CRISPR/Cas9 targeted homologous

recombination. Oligonucleotides (F: CACCGATTTTTGTGCCCATTCTCACA R: AAACTGTGAGAA

TGGGCACAAAAATC) were cloned into pX330-puro for a guide RNA that targets the Tet1 catalytic

site for Cas9 cleavage. A sequence harboring the Tet1 H1652Y and D1654A mutations (previously

demonstrated to eliminate Tet1 catalytic activity (Ito et al., 2010; Tahiliani et al., 2009)) was synthe-

sized (IDT) with ~500 bp of homology to the genomic DNA on each side and cloned into pCR2.1

(Invitrogen, Grand Island, NY, USA). The two plasmids were transiently transfected together into

E14 ES cells with FuGENE HD (Promega), and the cells were subsequently puromycin selected

for ~40 hr to enrich for transfected cells. Clones were screened for incorporation of the mutations at

both alleles by specific digestion by PsiI (NEB, Ipswich, MA, USA) of PCRs from genomic DNA. PCR

products were sequenced. Western blots of whole cell lysates from the lines were performed to

ensure that mutant Tet1 protein levels were unchanged relative to wild-type levels.

RT-qPCR
RNA was isolated from cells using TRIzol (Invitrogen) and used to synthesize cDNA with random hex-

amers (Promega) as described (Hainer et al., 2015). cDNA was used in quantitative PCR reactions

with Dnmt1, Tet1, Mbd3, Mbd2, Chd4, or GAPDH specific primers (see Table 2) and a FAST SYBR

mix (KAPA Biosystems, Woburn, MA, USA) on an Eppendorf Realplex.

Table 2. Related to Figure 2—figure supplement 1–3. Primer list for qPCR.

Gene Forward Reverse

Dnmt1 TGTTCTGTCGTCTGCAACCT GCCATCTCTTTCCAAGTCTTT

Tet1 TCACAGGCACAGGTTACAAAAG TCCTTACATTTTCAAGGGGATG

Mbd3 GGCCACAGGGATGTCTTTTACT CTTGACCTGGTTGGAAGAATCA

Mbd2 AACCAAATTCACGAACCACC CCTTGTAGCCTCTTCTCCCA

Chd4 AAGTTTGCAGAGATGGAAGAGC GGTCGTAGTCCTGAATCTCCAC

Farp1 AACTGCAAGTCATTCTAAATCTCG GGTATTCAATGCCAGAGACACA

Ppp2r2c CGAATTATCCAGCTCTGCCTTA TGGAGGAGAGACTTAGGGGTGT

Gpr83 GAGCCACCTTACTGTAGGGAATG CACGCTCACCAGCTTTCTGTA

Cldn7 ACCTTTGGAAGAGCAGTCAGTG CCTTCTCCATCCACACACTTTC

Tgfb1 AAGTCAGAGACGTGGGGACTTCTTG AGTCTTCGCGGGAGGCGGGGT

Trh TAATGCCTCTGACCTGGGATC CCCACATCCTAATTCCAAAGTG

DOI: 10.7554/eLife.21964.020
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Western blotting
Western blotting was performed as previously described (Hainer et al., 2015). From whole cell

lysates, 30 mg of protein were separated by SDS-PAGE, transferred to nitrocellulose (Life Sciences,

St Petersburg, FL, USA), and assayed by immunoblotting. The antibodies used to detect proteins

were: anti-Dnmt1 (1:1000, Sigma D4692, RRID:AB_262096), anti-Tet1 (1:1000, Millipore, Billerica,

MA, USA, 09–872, RRID:AB_10806199), anti-Mbd3 (1:1000, Bethyl Labs, Montgomery, TX, USA,

A302-529A; RRID:AB_1998976), anti-Mbd2 (1:1000, Bethyl Labs A301-632A, RRID:AB_1211478),

anti-Chd4 (1:1000, Bethyl Labs A301-082A, RRID:AB_873002), anti-FLAG M2 (1:10,000, Sigma

F1804, RRID:AB_262044) and anti-b-actin (1:50,000, Sigma A1978, RRID:AB_476692).

Chromatin immunoprecipitation (ChIP)-qPCR and ChIP-seq
ChIP experiments were performed as previously described (Hainer et al., 2015). Ten million cells

were fixed, washed with ice-cold PBS, pelleted, lysed through sonication on high in a Bioruptor

UCD-200 (Diagenode, Delville, NJ, USA) in SDS Lysis Buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl

pH 8.0), and supernatants were saved. Input samples were stored (30 mL) at 4˚C while the remainder

of the sheared chromatin was combined with antibody-coupled protein A magnetic beads (NEB)

and incubated at 4˚C overnight with constant rotation. Mbd3 antibody (Bethyl Labs A302-529A,

RRID:AB_1998976), Mbd2 antibody (Bethyl Labs A301-632A, RRID:AB_1211478), or Dnmt1 antibody

(Sigma D4692, RRID:AB_262096) coupled protein A magnetic beads (NEB) were blocked with 5 mg/

mL BSA overnight at 4˚C, prior to incubation with sheared chromatin. Magnetic beads were washed,

material was eluted at 65˚C on a thermomixer, and the eluent was incubated at 65˚C overnight to

reverse crosslinking. Input DNA was diluted with 170 mL elution buffer (20 mM Tris-HCl pH 8.0, 100

mM NaCl, 20 mM EDTA, 1% SDS) and treated similarly. Samples were treated with RNaseA/T1

(Ambion, Carlsbad, CA, USA) followed by proteinase K (Ambion) and then PCI extracted. Ethanol

precipitated ChIP-enriched DNA was then used for library construction or as a template for qPCR

reactions.

FLAG-ChIP experiments were performed as previously described (Chen et al., 2013). Cells were

fixed, washed with PBS, and pelleted. After resuspension and incubation with Lysis buffer 1 (50 mM

HEPES KOH pH 7.6, 140 mM NaC, 1 mM EDTA, 10% (w/v) glycerol, 0.5% NP-40, 0.25% Triton

X100), pellets were sheared in Lysis buffer 2 (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA,

0.5 mM EGTA) for sonication in a Bioruptor. Sheared chromatin was incubated at 4˚C overnight with

protein G magnetic beads (NEB) pre-blocked and coupled with anti-Flag M2 (Sigma F1804, RRID:

AB_262044). Magnetic beads were washed, material was eluted at 65˚C on a thermomixer, and the

eluent was incubated at 65˚C overnight to reverse crosslinking. Input DNA was diluted with 170 mL

elution buffer and treated similarly. Samples were treated with RNaseA/T1 (Ambion) followed by

proteinase K (Ambion) and then PCI extracted. Ethanol precipitated, ChIP-enriched DNA was then

used for library construction or as a template for qPCR reactions.

Table 3. Related to Figure 6�figure supplement 1. Correlation coefficients for pairwise

combinations of factor KD. Tip60 KD (a histone acetyltransferase with repressive functions in ES cells)

and Brg1 KD (an ATP-dependent chromatin remodeling enzyme) are included for comparison.

Dnmt1 Tet1 Mbd3 Mbd2 Chd4 Tip60 Brg1 KD:

1.0 0.508 0.693 0.612 0.645 -0.033 0.051 Dnmt1

1.0 0.441 0.551 0.475 -0.003 0.104 Tet1

1.0 0.712 0.831 -0.101 0.308 Mbd3

1.0 0.656 -0.027 0.033 Mbd2

1.0 -0.094 0.269 Chd4

1.0 0.199 Tip60

1.0 Brg1

DOI: 10.7554/eLife.21964.021
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Library construction
Libraries of ChIP-enriched DNA were prepared as described previously (Chen et al., 2013). Samples

were end-repaired, A-tailed, and adaptor-ligated with DNA purification over a column between

each step. DNA was PCR amplified with KAPA HiFi polymerase using 16 cycles of PCR. Each library

was size-selected on a 1% agarose gel, its concentration determined, and the integrity was con-

firmed by sequencing ~10 fragments from each library. Libraries were sequenced on an Illumina

HiSeq2000 using single-end sequencing at the UMass Medical School deep sequencing core facility.

Data analysis
Single-end fastq reads were split by barcode adapter sequences, adapter sequences were removed,

and reads were mapped to the mm9 genome using bowtie (RRID:SCR_005476), allowing up to three

mismatches. Aligned reads were processed in HOMER (Heinz et al., 2010, RRID:SCR_010881).

Genome browser tracks were generated from mapped reads using the ‘makeUCSCfile’ command.

Peaks were called using the ‘findPeaks’ command after reads were mapped. Peaks were called indi-

vidually from replicate datasets and those peaks enriched in both datasets were retained. Mapped

reads were aligned over specific regions using the ‘annotatePeaks’ command to make 20 bp bins

over regions of interest and sum the reads within each window. Experiments were aligned over the

following datasets: TSS reference sites (from HOMER software), intermediate CpG promoters (ICPs,

defined in (Weber et al., 2007), low methylated regions (LMRs from (Stadler et al., 2011) with or

without additional selection criteria used by Baubec et al. – exclusion of LMRs under 150 bp and

within 3 kb of other LMRs, referred to as ’LMR subset’), DNaseI hypersensitive sites (DHSs) from

mouse ENCODE data (GSM1014154) with TSS locations removed, Mbd3 peaks (peaks called from

both EGFP KD Mbd3 ChIP-seq libraries using the ‘findPeaks’ command in HOMER with input as a

control) and Mbd2 peaks (peaks called from both EGFP KD Mbd2 ChIP-seq libraries using the ‘find-

Peaks’ command in HOMER with input as a control). After anchoring mapped reads over reference

sites, aggregation plots were generated by averaging data obtained from biological replicates.

Overlapping peaks for Figure 2B were identified using the ‘mergePeaks’ command.

Analysis of data from (Baubec et al., 2013) was performed similarly. Data were downloaded from

GSE39610 (see Table 1 for SRA numbers) and converted to fastq files using SRA dump. Barcodes

were trimmed where necessary, and reads were mapped to the mm9 genome using bowtie (RRID:

SCR_005476), allowing up to three mismatches. Aligned reads were processed in HOMER

(Heinz et al., 2010, RRID:SCR_010881) and analysis was confirmed independently using R and

Macs2. Peaks for bio-Mbd2, bio-Mbd3, bio-Mbd1a, bio-Mbd1b, bio-Mbd4, or bio-MeCP2 were

called using the ‘findPeaks’ command after reads were mapped and separately called using Macs2

to confirm validity of called peaks. Mapped reads were aligned over specific regions using the ‘anno-

tatePeaks’ command to make 20 bp bins over regions of interest and sum the reads within each win-

dow. Experiments were aligned over the same genomic features described above and bio-Mbd3

peaks (called from bio-Mbd3 ChIP-seq in WT cells using ‘findPeaks’ command in HOMER with

pooled input as a control), bio-Mbd2 peaks (called from bio-Mbd2 ChIP-seq in WT cells using ‘find-

Peaks’ command in HOMER with pooled input as a control), bio-Mbd1a peaks (called from bio-

Mbd1a ChIP-seq in WT cells using ‘findPeaks’ command in HOMER with pooled input as a control),

bio-Mbd1b peaks (called from bio-Mbd1b ChIP-seq in WT cells using ‘findPeaks’ command in

HOMER with pooled input as a control), bio-Mbd4 peaks (called from bio-Mbd4 ChIP-seq in WT

cells using ‘findPeaks’ command in HOMER with pooled input as a control), or bio-MeCP2 peaks

(called from bio-MeCP2 ChIP-seq in WT cells using ‘findPeaks’ command in HOMER with pooled

input as a control). To confirm this analysis, bio-Mbd2 and bio-Mbd3 data were downloaded and

mapped independently and mapped reads were annotated and summarized using the Bioconductor

package ChIPpeakAnno (Zhu et al., 2010; Zhu, 2013, RRID:SCR_012828). Furthermore, bio-Mbd2

and bio-Mbd3 peaks were confirmed independently by calling peaks from WT bio-Mbd2 or WT bio-

Mbd3 ChIP-seq experiments, respectively, using Macs2. Finally, we re-analyzed a subset of these

data after re-aligning reads (using bowtie, RRID:SCR_005476) while allowing only two mismatches

instead of three. The use of two or three mismatches during alignment had no effect on the results.

Analysis of LMRs was performed as follows. LMR locations were downloaded from Stadler et al.

(2011) (referred throughout as ’total LMRs’). As per the description in Baubec et al. (2013),

LMRs < 150 bp and within 3 kb of other LMRs or unmethylated regions were removed (referred
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throughout as ’LMR subset’). The LMRs not included in this subset are referred throughout as

’removed LMRs’. To assess the genomic locations of these LMRs, the peaks were annotated in

HOMER (Heinz et al., 2010, RRID:SCR_010881) using the ‘annotatePeaks’ command.

Mbd3 ChIP-seq data from (Yildirim et al., 2011) was downloaded and converted to fastq using

SRA-dump from GSE31690. Reads were mapped to the mm9 genome using bowtie, allowing up to

three mismatches. Aligned reads were processed in HOMER (Heinz et al., 2010). Mapped reads

were aligned over gene-distal DHSs. Replicates for Mbd3 ChIP-seq in control cells were examined

and resulted in similar profiles. Only replicate 2 (which has higher read coverage) is shown in Fig-

ure 2—figure supplement 4E.

Methylated and hydroxymethylated DNA immunoprecipitation
sequencing (MeDIP-seq and hMeDIP-seq)
MeDIPs and hMeDIPs were performed as previously described (Mohn et al., 2009) with slight modi-

fications. Genomic DNA was isolated from ES cells by resuspending cells in ES cell lysis buffer (10

mM Tris-HCl pH 7.5, 10 mM EDTA, 10 mM NaCL, 0.5% sarkosyl), treating with RNase A/T1

(Ambion), and incubating with 1 mg/mL proteinase K overnight at 55˚C. DNA was cleaned through

PCI extraction and isopropanol precipitation. Genomic DNA was then diluted to 20 ug/mL in TE

buffer and sonicated in a Bioruptor UCD-200 (Diagenode) on low for 20 min with intervals of 15 s

on/15 s off at 4˚C. Sheared DNA (ranging in size from 200 to 600 bp) was prepared for deep

sequencing and further processed by end-repairing, A-tailing, and adaptor-ligating as previously

described for MNase-Seq libraries (Hainer et al., 2015) with DNA purification through PCI extrac-

tion and ethanol precipitation between each step. Of the prepared DNA, 1.5 mg was diluted in TE

buffer up to 450 mL, denatured for 10 min at 95˚C and immediately transferred to ice for 10 min. Of

the prepared DNA, 1.5 mg was stored for input samples. Denatured DNA was then incubated with

50 mL 10X DNA IP buffer (100 mM Na-HPO4 pH 7.0, 1.4 M NaCl, 0.5% Triton X-100) and either 1.5

mL anti-5mC (Eurogentec Fremont, CA, USA, BI-MECY, RRID:AB_2616058) or 1.5 mL anti-5hmC

(Active Motif, Carlsbad, CA, USA, 39791, RRID:AB_2630381) overnight at 4˚C with constant rotation.

40 mL of magnetic beads (anti-mouse IgG for 5mC and anti-rabbit IgG for 5hmC, Life Technologies,

Waltham, MA, USA) were pre-blocked with BSA and then resuspended in 1X DNA IP buffer. Beads

were then added to the DNA/antibody mixture and incubated for 2 hr at 4˚C with constant rotation.

Beads were then washed three times with 700 mL 1X DNA IP buffer, and DNA was eluted from the

beads by incubating at 50˚C on a thermomixer with 250 mL 1X DNA IP buffer and 4 mL proteinase K

(20 mg/mL) for 3 hr. Input samples were diluted up to 250 mL with DNA IP buffer and treated similarly.

DNA from both input and IP samples were cleaned through PCI extraction and ethanol precipitation.

DNA was PCR amplified with KAPA HiFi polymerase using 16 cycles of PCR. Each library was size-

selected on a 1% agarose gel, its concentration was determined, and the integrity was confirmed by

TOPO-cloning (Invitrogen) a portion and sequencing ~10 fragments from each library. Libraries were

sequenced on an Illumina HiSeq2000 using single-end sequencing at the UMass Medical School

deep sequencing core facility. Resulting fastq sequences were processed and analyzed as described

for ChIP-seq libraries using the HOMER software (Heinz et al., 2010, RRID:SCR_010881).

Dot blotting
Twofold serial dilutions of sheared genomic DNA (200–400 bp) starting at 300 ng were denatured at

95˚C for 10 min, then put on ice immediately for 10 min. Denatured DNA samples were spotted

onto Amersham Hybond N+ nylon membrane (GE Healthcare, Uppsala, Sweden) and the mem-

branes were UV crosslinked. For 5mC, the membrane was incubated in 0.1% SDS overnight, washed

five times with PBS-T, blocked with 5% nonfat milk and 3% BSA for 4 hr, washed three times with

PBS-T, incubated with anti-5mC (1:1000, Eurogentec BI-MECY, RRID:AB_2616058) for 1 hr, washed

three times with PBS-T, incubated with HRP conjugated anti-mouse secondary (1:10,000, Bio-Rad,

Hercules, CA, USA, 170–6516, RRID:AB_11125547) for 1 hr, washed three times with PBS-T, and

detected with enhanced chemiluminescence. For 5hmC, the membrane was blocked with 5% nonfat

milk for 4 hr, washed three times with PBS-T, incubated overnight with anti-5hmC (1:1000, Active

Motif 39791, RRID:AB_2630381), washed three times with PBS-T, incubated with HRP conjugated

anti-rabbit secondary (1:10,000, Bio-Rad 170–6515, RRID:AB_11125142) for 1 hr, washed three times

with PBS-T, and detected with enhanced chemiluminescece. For loading, sheared gDNA samples
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were diluted simultaneously, spotted directly onto Amersham Hybond N+ nylon membrane (GE

Healthcare) and the membranes were UV crosslinked. Membranes were incubated with 0.2% methy-

lene blue for 5 min and washed five times with water.

Thin layer chromatography (TLC)
TLC was performed as previously described (Ficz et al., 2011; Tahiliani et al., 2009). 2 mg of geno-

mic DNA isolated from control, Dnmt1 KD, Mbd3 KD, or Mbd2 KD ES cells was digested overnight

with 50 units of MspI (NEB) and 10 mg of RNaseA/T1 (Ambion) at 37˚C. The reaction was then heat

inactivated at 65˚C, DNA was dephosphorylated with 10 units of rSAP (NEB) for 1 hr at 37˚C and

cleaned over a DNA clean and concentrator column (Zymo Research, Irvine, CA, USA). 400 ng of

DNA was incubated with 10 mCi 32P-ATP and 10 U of T4 PNK for 1 hr at 37˚C. Labeled DNA was pre-

cipitated, resuspended in 18 mL 30 mM Tris pH 8.9, 15 mM MgCl2, 2 mM CaCl, and fragmented to

single nucleotides with 10 units of DNaseI (NEB) and 10 mg SVPD (Worthington, Lakewood, NJ,

USA) for 3 hr at 37˚C. 3 mL of samples were spotted onto PEI cellulose F TLC plates (Millipore) and

developed in isobutyric acid:H2O:NH3 (66:20:1 v/v/v) for 15 hr. Plates were dried and exposed to

film for 30 hr. Plate was then exposed to a phosphorimager screen for 110 hr and scanned on a

Typhoon FLA 700 (GE Healthcare). Pixels were quantitated using Fiji ImageJ software.

Methylation-sensitive restriction digests
Five micrograms of genomic DNA isolated from control, Dnmt1 KD, Mbd3 KD, or Mbd2 KD ES cells

was digested at 37˚C for 12 hr with 50 units of MspI or HpaII (both from NEB) followed by 20 min of

heat inactivation at 65˚C. MspI and HpaII recognize the 4 bp sequence CCGG, but HpaII is blocked

by CpG methylation whereas MspI is insensitive to CpG methylation. 15 mL of the 50 mL reaction was

run on a 1% agarose gel to visualize the cutting efficiency of each enzyme.

Microarray analysis
Microarray analysis was performed as previously described (Chen et al., 2013). Total RNA from con-

trol (EGFP KD), Dnmt1 KD, Tet1 KD, Mbd3 KD, Mbd2 KD, or Chd4 KD ES cells was subjected to

RNA amplification and labeling using the Low Input Quick Amp Labeling Kit (Agilent, Santa Clara,

CA, USA). Following this procedure, 50 picomoles of cRNA was used for fragmentation and hybrid-

ization on Agilent 4 � 44K mouse whole-genome microarrays. Slides were scanned on a DNA micro-

array scanner (Agilent G2565CA), and fluorescence data were obtained using Agilent Feature

Extraction software. The expression data from biological replicates were fit to a linear model using

the Bioconductor package limma (Smyth et al., 2005; 2003; Wettenhall and Smyth, 2004, RRID:

SCR_010943), and analyzed as previously described (Yildirim et al., 2011). Datasets were visualized

through Java TreeView (Saldanha, 2004, RRID:SCR_013503). Tip60 KD and Brg1 KD microarray data

was downloaded from GSE31008 (Yildirim et al., 2011) and compared to averaged microarray data

for fold change of Dnmt1 KD, Tet1 KD, Mbd3 KD, Mbd2 KD, and Chd4 KD. Correlation coefficients

for all genes in pairwise factor KD were calculated in R.
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