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Abstract: Metabolites represent the ultimate response of biological systems, so metabolomics is
considered the link between genotypes and phenotypes. Feed efficiency is one of the most important
phenotypes in sustainable pig production and is the main breeding goal trait. We utilized metabolic
and genomic datasets from a total of 108 pigs from our own previously published studies that
involved 59 Duroc and 49 Landrace pigs with data on feed efficiency (residual feed intake (RFI)),
genotype (PorcineSNP80 BeadChip) data, and metabolomic data (45 final metabolite datasets
derived from LC-MS system). Utilizing these datasets, our main aim was to identify genetic variants
(single-nucleotide polymorphisms (SNPs)) that affect 45 different metabolite concentrations in plasma
collected at the start and end of the performance testing of pigs categorized as high or low in their
feed efficiency (based on RFI values). Genome-wide significant genetic variants could be then used
as potential genetic or biomarkers in breeding programs for feed efficiency. The other objective
was to reveal the biochemical mechanisms underlying genetic variation for pigs’ feed efficiency.
In order to achieve these objectives, we firstly conducted a metabolite genome-wide association
study (mGWAS) based on mixed linear models and found 152 genome-wide significant SNPs
(p-value < 1.06 × 10−6) in association with 17 metabolites that included 90 significant SNPs annotated
to 52 genes. On chromosome one alone, 51 significant SNPs associated with isovalerylcarnitine
and propionylcarnitine were found to be in strong linkage disequilibrium (LD). SNPs in strong LD
annotated to FBXL4, and CCNC consisted of two haplotype blocks where three SNPs (ALGA0004000,
ALGA0004041, and ALGA0004042) were in the intron regions of FBXL4 and CCNC. The interaction
network revealed that CCNC and FBXL4 were linked by the hub gene N6AMT1 that was associated
with isovalerylcarnitine and propionylcarnitine. Moreover, three metabolites (i.e., isovalerylcarnitine,
propionylcarnitine, and pyruvic acid) were clustered in one group based on the low-high RFI pigs.
This study performed a comprehensive metabolite-based genome-wide association study (GWAS)
analysis for pigs with differences in feed efficiency and provided significant metabolites for which there
is significant genetic variation as well as biological interaction networks. The identified metabolite
genetic variants, genes, and networks in high versus low feed efficient pigs could be considered as
potential genetic or biomarkers for feed efficiency.
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1. Introduction

Large populations are generally essential for genome-wide association study (GWAS) to
obtain sufficient statistical power for the identification of genetic polymorphisms [1]. However,
some intermediate phenotypes like metabolites could potentially avoid this problem, as they are
directly involved in metabolite conversion modification [2,3]. As the end products of cellular regulatory
processes, metabolites represent the ultimate response of biological systems associated with genetic
changes, so metabolomics is considered the link between genotypes and phenotypes [4]. Metabolomics
refers to the measurements of all endogenous metabolites, intermediates, and products of metabolism
and has been applied to measure the dynamic metabolic responses in pigs [5,6] and dairy cows [7,8].
Additionally, metabolites could provide details of physiological state, so genetic variant-associated
metabolites are expected to display larger effect sizes [9]. Gieger et al. (2008) firstly used metabolite
concentrations as quantitative traits in association with genotypes and found their available applications
in GWAS [9]. Do et al. (2014) [10] conducted GWAS using residual feed intake (RFI) phenotypes to
identify single-nucleotide polymorphisms (SNPs) that explain significant variation in feed efficiency for
pigs. Our previous study found two metabolites (i.e., α-ketoglutarate and succinic acid) in a RFI-related
network of dairy cows which could represent biochemical mechanisms underlying variation for
phenotypes of feed efficiency [8].

In this study, we aimed to identify genetic variants (SNP markers) affecting concentrations of
metabolites and to reveal the biochemical mechanisms underlying genetic variation for pigs’ feed
efficiency. Our study is based on two of our previously published papers and datasets used therein [6,11].
Briefly, the experiment consisted of 59 Duroc and 49 Landrace pigs with data on feed efficiency (RFI),
genotype (PorcineSNP80 BeadChip) data, and metabolomic data (45 final metabolite datasets derived
from liquid chromatography-mass spectrometry (LC-MS) system). While our previous studies only
looked at metabolome-phenotype associations [6], we report an integrated systems genomics approach
to identify quantitative trait loci (QTLs) or SNPs affecting metabolite concentration via metabolite
GWAS methods (mGWAS), where each metabolite is itself a phenotype. To the best of our knowledge,
this is the first study to link the genomics with metabolomics to identify significant genetic variants
associated with known metabolites that differ in pigs with different levels of feed efficiency. Main aims
of our study are as follows:

1. Find significant SNP markers associated with all the metabolites in the metabolomics dataset
using mGWAS method and then reveal the biochemical mechanisms underlying genetic variation
for porcine feed efficiency using 108 Danish pigs in low and high RFI conditions, genotyped by
68K PorcineSNP80 BeadChip array.

2. Annotate identified significant SNP markers to porcine genes.
3. Annotate metabolites and identify enriched metabolic pathways and gene-metabolite networks

to find the potential biomarkers that were strongly associated with feed efficiency.

2. Results

2.1. First Component Score and Significant Metabolic Pathways of 45 Metabolites

The partial least squares-discriminant analysis (PLS-DA) results revealed that the first component
score (component 1) explained more than 75% variation of all 45 metabolites (Figure 1A). It showed that
metabolite values of Duroc were higher than those of Landrace, the same as metabolites from second
sampling time higher than those from first sampling time. In addition, the Duroc and Landrace pigs
were clearly stratified, especially using the metabolite values between Duroc from first sampling time
and Landrace from second sampling time (Figure 1A). The most significant metabolic pathways were
the aminoacyl-tRNA biosynthesis; following by the arginine biosynthesis; the arginine and proline
metabolism; and the alanine, aspartate, and glutamate metabolism (Figure 1B). As the pathway impact
of the aminoacyl-tRNA biosynthesis was zero, we discarded this significant pathway and only used the
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metabolites enriched in the other three significant pathways for GWAS (Table 1). Thus, the metabolite
means for 5 compounds in the arginine biosynthesis (arginine, aspartic acid, citrulline, glutamic acid,
and ornithine); 5 compounds in the arginine and proline metabolism (arginine, glutamic acid, ornithine,
proline, and pyruvic acid); and 4 compounds in the alanine, aspartate, and glutamate metabolism
(alanine, aspartic acid, glutamic acid, and pyruvic acid) metabolites were calculated and shown in
Table 1.

Figure 1. (A) Partial least squares-discriminant analysis (PLS-DA) of 45 metabolites. Note: D/L with
first/second indicates the sampling time of Duroc/Landrace pigs. (B) Metabolic pathways for
45 metabolites using Homo sapiens as the library. Note: The size and color of the circles for each pathway
indicate the matched metabolite ratio and the −log (p-value), respectively.

2.2. Genome-Wide Significant SNPs and Gene Annotation

Metabolite based GWAS for first, second, and combined two sampling times revealed
152 genome-wide significant SNPs (Supplementary Table S1) in association with 17 metabolites
(Supplementary Table S2). Unfortunately, no significant SNP was detected in association with first
component scores (p-values ≥ 2.78 × 10−6) and metabolites enriched in the significant metabolic
pathways (p-values ≥ 1.74 × 10−4); thus, GWAS results of these two scenarios were not listed.
Manhattan plots of genome-wide association for isovalerylcarnitine and propionylcarnitine are shown
in Figure 2, and Manhattan plots for the other 43 metabolites are shown in the Supplementary
Figure S1. Along the whole genome, significant SNPs associated with isovalerylcarnitine and
propionylcarnitine from the second sampling time were mainly located on the chromosome one
(Figure 2). The overlapped significant SNPs associated with more than two different metabolites
were shown in Table 2, where 57 significant SNPs on genome level were associated with
isovalerylcarnitine and propionylcarnitine from the second sampling time. In addition, another 3
metabolites (1-hexadecyl-sn-glycero-3-phosphocholine, 1-myristoyl-sn-glycero-3-phosphocholine,
lysoPC (16:0)) were also significantly associated with 10 SNPs (Table 2).
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Table 1. Significant metabolic pathways (False Discovery Rate (FDR) < 0.1) using Homo sapiens as the library.

Metabolic Pathway Match Status Involved Metabolites p-Value −Log
(p-Value)

False Discovery
Rate (FDR)

Pathway Impact
Value

Aminoacyl-tRNA biosynthesis
(ssc00970) 9/48

Alanine, Arginine, Aspartic acid,
Glutamic acid, Isoleucine, Methionine,

Phenylalanine, Proline, Threonine
3.55 × 10−7 14.85 2.98 × 10−5 0

Arginine biosynthesis (ssc00220) 5/14 Arginine, Aspartic acid, Citrulline,
Glutamic acid, Ornithine 6.53 × 10−6 11.94 2.74 × 10−4 0.48

Arginine and proline metabolism
(ssc00330) 5/38 Arginine, Glutamic acid, Ornithine,

Proline, Pyruvic acid 1.12 × 10−3 6.79 0.031 0.33

Alanine, aspartate and glutamate
metabolism (ssc00250) 4/28 Alanine, Aspartic acid, Glutamic acid,

Pyruvic acid 2.72 × 10−3 5.91 0.057 0.42
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Table 2. Common significant single-nucleotide polymorphisms (SNPs) of genome-wide association for more than two different metabolites from first, second,
and combined two sampling times.

Significant SNP Name Associated
Metabolite Number Metabolite from First Sampling Time Metabolite from

Second Sampling Time
Metabolite from Combined Two

Sampling Times

ALGA0003891, ALGA0003900, ALGA0003935, ALGA0003952,
ALGA0003953, ALGA0003995, ALGA0004000, ALGA0004002,
ALGA0004005, ALGA0004006, ALGA0004024, ALGA0004041,
ALGA0004042, ALGA0004046, ALGA0004048, ALGA0004073,
ALGA0004090, ALGA0004093, ALGA0004143, ALGA0004148,
ALGA0004169, ALGA0004173, ALGA0004177, ASGA0003182,
ASGA0003194, ASGA0003235, ASGA0003288, ASGA0003312,
ASGA0003314, ASGA0003315, ASGA0003317, ASGA0003333,
ASGA0003335, ASGA0057312, ASGA0083304, DRGA0000994,
DRGA0001072, DRGA0001073, H3GA0001865, H3GA0001937,
H3GA0001949, H3GA0001956, H3GA0001966, H3GA0046845,
INRA0002726, INRA0002819, INRA0002820, INRA0002823,
MARC0021047, MARC0027518, MARC0034307,
MARC0050325, MARC0059407, MARC0063106,
MARC0068954, MARC0075306, SIRI0000655

2 NA Isovalerylcarnitine,
Propionylcarnitine

NA

MARC0080116 2 Pyruvic acid NA Citrulline

ALGA0038416, ALGA0081238, DRGA0014486,
WU_10.2_14_132246191

3 Isovalerylcarnitine, Propionylcarnitine NA Propionylcarnitine

ASGA0093565, H3GA0053559, WU_10.2_6_136216429,
WU_10.2_6_136863547, WU_10.2_6_136876717,
WU_10.2_6_136972846

3 1-hexadecyl-sn-glycero-3-phosphocholine,
1-myristoyl-sn-glycero-3-phosphocholine,
LysoPC(16:0)

NA NA

M1GA0016778, WU_10.2_X_114649203 3 Pyruvic acid NA Citrulline, Pyruvic acid

ALGA0099866, WU_10.2_X_105559450 4 1-hexadecyl-sn-glycero-3-phosphocholine,
1-myristoyl-sn-glycero-3-phosphocholine,
LysoPC(16:0), Pyruvic acid

NA NA

ASGA0018324 4 Citrulline, Pyruvic acid NA Citrulline, Pyruvic acid

ASGA0081223, INRA0003881, MARC0046138,
WU_10.2_X_103597980, WU_10.2_X_103653646,
WU_10.2_X_104796075, WU_10.2_X_104910069,
WU_10.2_X_104956283, WU_10.2_X_104980830,
WU_10.2_X_105583738

4 1-hexadecyl-sn-glycero-3-phosphocholine,
1-myristoyl-sn-glycero-3-phosphocholine,
LysoPC(16:0)

NA 1-hexadecyl-sn-glycero-3-phosphocholine

Note: NA indicates not applicable.
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Figure 2. Manhattan plots of genome-wide association for (A) isovalerylcarnitine and (B) propionylcarnitine.
Note: Y-axis indicates the log10 (p-value). Blue dotted and red solid lines indicate the genome-wide
threshold of 0.05 and 0.01 after Bonferroni multiple testing, respectively. The three tracks indicate the
metabolites from first sampling time, second sampling time, and combined two sampling times from
outside to inside.

After annotation of significant SNPs to the neighboring genes and gene components
(Sscrofa10.2/susScr3), we found that 90 significant SNPs were within a 500-kb window of 52 neighboring
genes (Supplementary Table S1) and that 6 significant SNPs were directly located in the gene components
of 5 genes (Table 3). For example, if we only consider the SNPs on chromosome one, we found
29 significant SNPs were near 9 genes (Supplementary Table S1), whereas ALGA0004000, ALGA0004041,
and ALGA0004042 were located in the introns of FBXL4 and CCNC (Table 3). These results show
that these genes may be involved in regulating abundance of the metabolites that are significantly
different between high and low RFI pigs. Between using porcine RefSeq database of Sscrofa10.2/susScr3
and Sscrofa11.1/susScr11, the results of significant SNPs annotated to the genes overlapped greatly,
but SNPs had different distances to the annotated genes between two versions (Supplementary Table S1).
In Table 3, we found that the annotations of ALGA0004042 and ALGA0061605 to CCNC and MTRF1
were changed from 9th intron and 5th intron to 8th intron and 9th intron, respectively, when we used
the Sscrofa11.1/susScr11 database.
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Table 3. Gene component annotation for genome-wide significant SNPs.

Chromosome Position Significant SNP
Name

Gene
Component Gene Gene Description Metabolite from First Sampling Time

(p-Value)

Metabolite from
Second Sampling

Time (p-Value)

Metabolite from
Combined Two Sampling

Times (p-Value)

1 74467285 ALGA0004000 6th intron FBXL4
(NM_001171752)

F-box and leucine
rich repeat protein 4 NA

Isovalerylcarnitine
(2.79 × 10−8),

Propionylcarnitine
(8.32 × 10−10)

NA

1 75151870 ALGA0004041 1st intron CCNC
(NM_001190160) Cyclin C NA

Isovalerylcarnitine
(2.79 × 10−8),

Propionylcarnitine
(8.32 × 10−10)

NA

1 75167426 ALGA0004042 9th intron/8th
intron #

CCNC
(NM_001190160) Cyclin C NA

Isovalerylcarnitine
(2.79 × 10−8),

Propionylcarnitine
(8.32 × 10−10)

NA

2 83663964 MARC0110390 7th intron SFXN1
(NM_001098602) Sideroflexin 1 Pyruvic acid (1.25 × 10−7) NA NA

6 135424176 ASGA0093565 8th intron DNAJC6
(NM_001145378)

DnaJ heat shock
protein family

(Hsp40) member C6

1-hexadecyl-sn-glycero-3-phosphocholine
(2.78 × 10−9),

1-myristoyl-sn-glycero-3-phosphocholine
(1.35 × 10−8), LysoPC (16:0) (1.22 × 10−7)

NA NA

11 26591544 ALGA0061605 5th intron/9th
intron #

MTRF1
(NM_001243580)

Mitochondrial
translation release

factor 1
NA Aspartic acid

(2.29 × 10−7) NA

Note: NA indicates not applicable. # The annotation of the latest porcine RefSeq database (Sscrofa11.1/susScr11).
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The linkage disequilibrium (LD) pattern for all significant SNPs is shown in the Supplementary
Figure S2. From the LD results for 58 significant SNPs on chromosome one, we found that
51 significant SNPs associated with isovalerylcarnitine (p-value = 2.79 × 10−8) and propionylcarnitine
(p-value = 8.32 × 10−10) from second sampling time were in strong LD (Figure 3). Among the
58 significant SNPs, five of them were not in LD with the other 53 significant SNPs (Supplementary
Figure S2), so they were excluded in the haplotype visualization in the Figure 3. In detail,
SNPs annotated to LOC780435 (NM_001078684), FHL5 (NM_001243314), FBXL4 (NM_001171752),
CCNC (NM_001190160)/MCHR2 (NM_001044609), and SIM1 (NM_001172585) were in block 2, block 4,
block 6, block 8, and block 9/10, respectively. Furthermore, ALGA0004000 in the 6th intron of FBXL4
was in LD of block 6, together with another five SNPs (INRA0002726, MARC0075306, ALGA0003995,
ALGA0004002, and ALGA0004005) that were located in the intergenic regions of FBXL4. Especially,
three SNPs in strong LD consisted of block 8 with two SNPs (ALGA0004041 and ALGA0004042) located
in the second and ninth intron of CCNC (Figure 3, Table 3, and Supplementary Table S1). The number
of significant SNPs in strong LDs of the other chromosomes was less than the significant SNP number
on chromosome one (Supplementary Figure S2). Notably, MARC0110390 in the 7th intron region of
SFXN1 (NM_001098602) on chromosome two and ALGA0061605 in the 5th intron region of MTRF1
(NM_001243580) on chromosome eleven were not in the LD with other SNPs. However, ASGA0093565
in the 8th intron region of DNAJC6 (NM_001145378) was in strong LD with WU_10.2_6_135312468 that
was annotated to LEPROT (NM_001145388) (Supplementary Table S1 and Supplementary Figure S2).
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and white indicates LLOR < 2, D’ < 1. LLOR is the logarithm of likelihood odds ratio and the reliable
index to measure D’.

2.3. Gene and Metabolite Interaction Network

The most significantly enriched gene-based pathways were the human papillomavirus infection
(ssc05165) with five genes (i.e., CCND2, CTNNB1, JAK1, LAMC1, and NFKB1), followed by
the PI3K-Akt signaling pathway (ssc04151) with five genes (i.e., CCND2, F2R, JAK1, LAMC1,
and NFKB1) and the hepatitis C (ssc05160) with four genes (i.e., CLDN8, CTNNB1, JAK1,
and NFKB1) (Figure 4A). Based on the gene–gene interaction network analysis, CCNC was in good
connection with CDK8, CDK3, and N6AMT1 whereas N6AMT1 was linked to FBXL4 (Figure 4B).
Unfortunately, no gene–metabolite interaction network was found in this study. After the clustering
of the SNP-related gene component-associated metabolites (Table 3), we found that aspartic acid,
1-hexadecyl-sn-glycero-3-phosphocholine, 1-myristoyl-sn-glycero-3-phosphocholine, and lysoPC(16:0)
were clustered in the lower cluster while the upper cluster included the metabolites of isovalerylcarnitine,
propionylcarnitine, and pyruvic acid (Figure 4C). Results show that metabolites from Duroc pigs
have higher values in the upper cluster than those from lower cluster, but the metabolite values of
Landrace pigs are higher in the lower cluster (Figure 4C). Afterwards, we investigated the metabolite
values of aspartic acid, isovalerylcarnitine, propionylcarnitine, and pyruvic acid for which the
associated significant SNPs were in the introns of MTRF1, FBXL4/CCNC, SFXN1 (Table 3). Generally,
propionylcarnitine from the low RFI group had higher values while other three metabolite values in
the high RFI group seemed higher, but they are not significantly different between low and high RFI
groups (p-value > 0.05) (Figure 4D).
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Figure 4. Gene pathway, metabolite cluster, and the interaction network: (A) Pathway for significant
SNP-related genes. (B) Network for the genes in which significant SNPs were annotated to
gene components. (C) Heatmap cluster for the metabolites that were associated with significant
SNPs annotated to gene components. (D) Metabolites (i.e., aspartic acid, isovalerylcarnitine,
propionylcarnitine, and pyruvic acid) values in high and low residual feed intake (RFI) pigs associated
with the genes in which significant SNPs annotate to gene components. Note: The high RFI pigs and
low RFI pigs were from left and right parts of all the pigs (n = 108) with one SD of actual RFI values.

3. Discussion

3.1. Metabolites in the PLS-DA and Metabolic Pathways of Pigs

The previous study reported that different breed types performed differently in RFI variation [8],
so RFI-related metabolomics could be breed specific. Therefore, different breeds tend to exhibit different
metabolite abundance values, for example, in studies involving the colostrum of pigs [12,13], the milk
and plasma of cattle [8,14], the yolk and albumen of chickens [15,16], the plasma of dogs [17], and the
fruit metabolite content of tomatoes [18]. In pigs, the heritability and genetic correlation of production
traits of Duroc, Landrace, and Yorkshire pigs vary. Duroc pigs showed lower heritability of feed
efficiency but greater performance of growth traits [19,20]. The metabolomics of this study showed that
metabolite values vary between two pig breeds and between the sampling times (Figures 1A and 4C),
as the metabolite profiles would change according to the breeds and time points [6]. Metabolites of
Duroc from first sampling time and Landrace from second sampling time were apparently stratified,
probably because metabolite values of these two groups and their metabolite profiles were different.
However, metabolites of Duroc from second sampling time and Landrace from first sampling time
were very close, probably because metabolite values of these two groups and their metabolite profiles
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were very similar (Figure 1A). Hence, the breed differences between Duroc and Landrace pigs were
driven both by genetic and metabolic factors.

The arginine biosynthesis pathway (ssc00220), where arginine, aspartic acid, citrulline, glutamic
acid, and ornithine were significantly enriched in our study (Table 1), plays a crucial role in amino
acid metabolism, particularly in the synthesis of citrulline and proline in pigs [21]. By linking arginine,
glutamate, and proline in a bidirectional way, the arginine and proline metabolism pathway (ssc00330)
biosynthesizes arginine and proline by glutamate. It is observed that proline metabolism is associated
with metastasis formation of breast cancer [22]. In dairy cattle, the alanine, aspartate, and glutamate
metabolism (ssc00250) identified in the gene-based pathways of our study (Table 1) is the potential
metabolic biomarker between the low and high feed efficient conditions [8].

3.2. Genome-Wide Significant SNP-Related Genes Associated with Metabolites

The previous GWAS for Duroc pigs identified two pleiotropic QTLs on chromosome one and
seven for feed efficiency [20]. Do et al. (2014) [10] revealed 19 significant SNPs located on several
chromosomes (e.g., one, three, seven, eight, nine, ten, fourteen, and fifteen) that were highly associated
with feed efficiency in Yorkshire pigs. In addition, other studies also found significant SNPs associated
with RFI on other chromosomes, for example, SNPs on chromosome five in the growing Piétrain–Large
White pigs [23], on chromosome two in a crossed populations [24], on chromosome six in Large White
pigs [25], etc. [26,27].

In this study, significant SNPs were mainly located on chromosome one (58/152),
but the associated metabolites only mapped to 1-hexadecyl-sn-glycero-3-phosphocholine (1.7%),
1-myristoyl-sn-glycero-3-phosphocholine (1.7%), isovalerylcarnitine (47.0%), isoleucyl proline
(0.9%), propionylcarnitine (47.0%), and lysoPC(16:0) (1.7%). Obviously, isovalerylcarnitine and
propionylcarnitine primarily derived from amino acid catabolism were the major metabolites that
associated with nine significant SNP-related genes (i.e., CCNC, FBXL4, FHL5, LOC780435, MAT2B,
MCHR2, PNISR, RRAGD, and SIM1) on chromosome one (Supplementary Table S1). A previous study
indicated that the amount of isovalerylcarnitine could decrease in the plasma and liver tissues but
greatly increased in the muscle tissue, as a byproduct of leucine catabolism [28]. The isovalerylcarnitine
compound was reported to be found in high amounts in the colostrum and milk of sows [29]. As a key
role in the mitochondrial fatty acid transport and high-energy phosphate exchange, propionylcarnitine
could improve cardiac dysfunction by reducing myocardial ischaemia [30].

3.3. Gene and Metabolite Interaction Network

Based on the gene interaction node N6AMT1, one gene–gene interaction was found to connect
CCNC with FBXL4 (Figure 4B), in which significant SNPs were annotated to gene components and
associated with isovalerylcarnitine and propionylcarnitine (Table 3). As the members of CDK8 mediator
complex that can regulate β-catenin-driven transcription, CCNC encodes the cell cycle regulatory
protein cyclin C and results in the protein dysfunction due to the mutations of CCNC [31,32]. CCNC is
also believed to increase the quiescent cells to maintain CD34 expression after knocking down CCNC
expression in human cord blood [33], while the amplification of CCNC was in a relationship with
the unfavorable prognosis [34]. FBXL4 is considered to participate in oxidative phosphorylation,
mitochondrial dynamics, cell migration, prostate cancer metastasis, circadian GABAergic cyclic
alteration, etc. [35–39]. The association results in pigs found that blood and immune traits were
associated with the SNPs of FBXL4 [40]. The node N6AMT1 is responsible for DNA 6mA methylation
modification as the first glutamine-specific protein methyltransferase characterized in mammals; thus,
glutamine could be regulated by the genes that promote porcine growth performance [41,42].

3.4. Associations Linking SNP Genotypes, Metabolites, and RFI

To investigate the direct association between SNP genotypes and RFIs, we also conducted GWAS
for RFI (i.e., where the GWAS model included RFI as phenotype and SNPs as fixed effect/explanatory
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variable) in the mixed linear model. Unfortunately but as expected due to small sample size, the results
showed that no genome-wide significant associations were found between SNPs and RFI values
(p-values ≥ 2.09 × 10−4). However, the top SNP was DRGA0008061 (p-values = 2.09 × 10−4), and we
found five genes (ANGPTL2, AUTS2, GRIFIN, PTRH1, and SIRT5) in which the top ten SNPs
were annotated (Supplementary Table S3). In our previous studies, Banerjee et al. (2020) [11]
also revealed that DRGA0008061 was one of the top significant SNPs associated with RFI after
genome-wide epistatic interaction network analysis for feed efficiency using the same genotypes
and pig populations as used in our current study. Meanwhile, Carmelo et al. (2020) [6] used
Kolmogorov–Smirnov test to identify the significant metabolites associated with feed efficiency traits at
two time points in Duroc and Landrace pigs. They found that 1-hexadecyl-sn-glycero-3-phosphocholine,
1-myristoyl-sn-glycero-3-phosphocholine, isovalerylcarnitine, lysoPC(16:0), and phosphocholine were
significantly (p-value < 0.05) associated with RFI and other feed efficiency traits [6]. By matching
the results from Carmelo et al. (2020) [6] with our results, we found that these five metabolites
were also our main significant SNP-associated findings in GWAS (Table 3). Therefore, the triangular
association of genotypes (SNP), metabolomics (metabolite), and feed efficiency (RFI) is established
via our mGWAS (SNPs affecting metabolites) and GWAS (SNPs affecting RFI) and is linked with the
previous studies [6,11].

4. Materials and Methods

4.1. Animals, Metabolites, and Genotypes

A total of 108 pigs were involved in this study including 59 Duroc and 49 Landrace pigs that
were part of our own previous published studies [6,11]. The detailed description of the animal
experiment and phenotype, metabolite, and genotypes data collection are available from our previously
published studies, and all data used in this study were derived from our datasets that were already
made public. Metabolite data [6] were accessed using MetaboLights accession ID MTBLS1384 with
a link: https://www.ebi.ac.uk/metabolights/MTBLS1384. Genotype data [11] were accessed from
National Center for Biotechnology Information (NCBI) GEO accession number: GSE144064 with the
following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144064. The genotype data
was sequenced using GeneSeek-Neogen PorcineSNP80 BeadChip containing 68,528 loci based on the
version Sscrofa10.2/susScr3 [11].

As in Carmelo et al. (2020) [6], all the pigs were purebred uncastrated males derived from
sixteen-sire families in four generations and fed on the same diets. They had RFI values calculated for
each pig as the difference between the observed daily feed intake (DFI) and the predicted daily feed
intake (pDFI) [6] following the method of Nguyen et al. (2001) [43]. Nguyen et al. (2001) [43] firstly
corrected the DFI for batch and sex and their interaction effects (i.e., fixed effects) and then estimated
the pDFI from different regression models including growth rate and back fat after adjustments for
above fixed effects; hence, Carmelo et al. (2020) [6] could compute RFIs in the same way by correcting
fixed effects in their study. Finally, our study directly used RFIs together with other phenotypes by
accessing the public dataset with a link: https://www.ebi.ac.uk/metabolights/MTBLS1384. The range of
actual RFI values of Duroc were from −10 to 14, while Landrace’s RFI value range was from −14 to
17 (Figure 5). The previous study conducted the metabolite–trait association analysis for RFI, so it
was suggested that fatness or other factors should be adjusted in the calculation of RFI to achieve
more accurate association results in their study [6]. As similar means of RFI for Duroc and Landrace
pigs were observed in Figure 5 of our study, we assumed that fatness was adjusted in the calculation
of RFI, but we cannot determine it. In this study, we selectively chose the extreme left and extreme
right tails of distribution of feed efficiency (i.e., actual RFI values) distribution of all the pigs (n = 108)
with one standard deviation (SD) from the mean [11,44] of actual RFI values. Then, they were defined
as high RFI pigs (RFI ≤ −5.23, n = 11) and low RFI pigs (RFI ≥ 5.23, n = 16), respectively (Figure 5).
The overview of the analysis workflow is shown in Figure 6 and included five scenarios of phenotypes

https://www.ebi.ac.uk/metabolights/MTBLS1384
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144064
https://www.ebi.ac.uk/metabolights/MTBLS1384
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in the GWAS analysis based on different transformations of metabolites. The five types of phenotypes
were (1) the metabolites from first sampling time, (2) the metabolites from second sampling time,
(3) the metabolites from combined two sampling times (i.e., metabolite values from first and second
sampling times were combined as an integrated dataset, where each pig had two metabolic values
for one metabolite, but genotypes were same for the metabolite values between first and the second
sampling times from the same pig), (4) the first component score (component 1) from partial least
squares-discriminant analysis (PLS-DA), and (5) the metabolites enriched in the significant metabolic
pathways (Figure 6).

Figure 5. Distribution of actual RFI values of Duroc (n = 59) and Landrace (n = 49) pigs.

Figure 6. Overall analysis workflow.

Metabolite data was downloaded by accessing MetaboLights accession ID MTBLS1384 with
a link, https://www.ebi.ac.uk/metabolights/MTBLS1384, and were collected in two sampling times
(i.e., the first sampling time was at the age when pig weighted approximately 28 kg, and the
second sampling time was 45 days after the first sampling time) for each pig by the previous
study [6]. Finally, 45 metabolites were used in this study (Figure 7) including 16 annotated
metabolites (i.e., 1-hexadecyl-sn-glycero-3-phosphocholine, 1-myristoyl-sn-glycero-3-phosphocholine,

https://www.ebi.ac.uk/metabolights/MTBLS1384
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(3-Carboxypropyl)trimethylammonium, 5-methyl-5,6-dihydrouracils, acetaminophen, acetylcarnitine,
benzoic acid, cotinine, creatinine, indoleacrylic acid, isoleucyl proline, isovalerylcarnitine,
leucyl methionine, lysoPC(16:0), manNAc, and propionylcarnitine) and 29 identified metabolites
(i.e., 4-aminobenzoic acid, alanine, arginine, aspartic acid, carnitine, citrulline, cytidine, disaccharide,
glutamic acid, guanine, guanosine, hypoxanthine, inosine, isoleucine, lactic acid, methionine,
monosaccharide, nicotine amide, ornithine, phenylalanine, proline, pyruvic acid, riboflavine, sorbitol,
thiamine, threonine, thymidine, uridine, and xanthine).

Figure 7. Statistical description of 45 metabolites from combined two sampling times.
Note: The red solid circle indicates the limit of detection (LOD) relative value of each
metabolite. LOD refers to the lowest value of a metabolite that the LC-MS method
can detect. M1 to M45 indicate the metabolites of 1-hexadecyl-sn-glycero-3-phosphocholine,
1-myristoyl-sn-glycero-3-phosphocholine, (3-Carboxypropyl)trimethylammonium, 4-aminobenzoic
acid, 5-methyl-5,6-dihydrouracils, acetaminophen, acetylcarnitine, alanine, arginine, aspartic acid,
benzoic acid, carnitine, citrulline, cotinine, creatinine, cytidine, disaccharide, glutamic acid, guanine,
guanosine, hypoxanthine, indoleacrylic acid, inosine, isoleucine, isoleucyl proline, isovalerylcarnitine,
lactic acid, leucyl methionine, lysoPC(16:0), manNAc, methionine, monosaccharide, nicotine amide,
ornithine, phenylalanine, proline, propionylcarnitine, pyruvic acid, riboflavine, sorbitol, thiamine,
threonine, thymidine, uridine, and xanthine, respectively.

The genotype data was downloaded from NCBI GEO database with accession number: GSE144064
with a link, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144064, that was issued by the
previous study [11]. After removing the markers with duplicated SNP positions (i.e., coordinates)
(n = 274), unannotated SNP positions (n = 2618), and no genotypes (n = 3903) from GeneSeek-Neogen
PorcineSNP80 BeadChip (68,516 SNP markers here), 61,721 SNP markers remained. Afterwards,
we performed the imputation for missing markers using pedigree (i.e., all the pigs were derived from
sixteen-sire families in four generations) by FImpute software (version 3) [45], as the closer relatives
usually share longer haplotypes; therefore, pedigree information could contribute towards the FImpute
software, achieving more accurate imputation [45,46]. Quality control (QC) for the imputed genotypes

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144064


Metabolites 2020, 10, 201 14 of 19

was conducted based on the criteria of Hardy–Weinberg equilibrium (HWE > 10−7) and minor allele
frequency (MAF ≥ 0.001) by PLINK software (version 1.9) [47].

In this study, we also combined the metabolite values from the first sampling time and the second
sampling time as an integrated dataset, so each pig had two values in one metabolite. However, the
genotypes for two metabolite values were the same if one metabolite value was from the first sampling
time of one pig while the other metabolite value was from the second sampling time of the same pig.
In other words, each pig had two different metabolite values but the same genotypes; thus, QC results
of the integrated dataset (n = 206) were different from the unintegrated dataset (n = 108), especially for
HWE but not for MAF. Finally, the genotypes for the first sampling time and the second sampling time
retained 47,109 SNP markers after removing unqualified 9337 (HWE ≤ 10−7) and 5275 (MAF < 0.001)
markers, while the genotypes for the combined two sampling times retained 42,393 SNP markers after
removing unqualified 14,053 (HWE ≤ 10−7) and 5275 (MAF < 0.001) markers.

4.2. Partial Least Squares-Discriminant Analysis and Metabolic Pathway Enrichment for 45 Metabolites

The partial least squares-discriminant analysis (PLS-DA) and metabolic pathway analysis for the
45 metabolites were performed by MetaboAnalyst software (version 4.0) [48] using Homo sapiens as
the library. Fishers’ exact test and relative betweenness centrality were used for the overrepresented
analysis and the pathway impact value calculation (i.e., sum of importance measures of the matched
metabolites divided by the sum of the importance measures of all the metabolites), respectively [49].
The first component scores (component 1) and metabolites enriched in the significant metabolic
pathways after false discovery rate (FDR) correction of multiple hypothesis testing (FDR < 0.1)
were selected as phenotypes of the transformed metabolites for GWAS. The mean calculated for the
metabolites enriched in each significant metabolic pathway was considered as transformed metabolite
values; thus, each pathway had one transformed metabolite value (i.e., the mean).

4.3. Mixed Linear Model Based Association Analysis

In this study, we considered other environmental factors (e.g., age) the same among all the pigs,
so we only used breed and RFI as the fixed effects to directly link metabolites with genotypes. GWAS for
45 single metabolites and transformed metabolites (i.e., component 1 and enriched metabolites) was
conducted by mixed linear model based association analysis in GCTA software (version 1.93.0) [50].
The mixed linear model is as follows:

y = Xb + g + e, (1)

where y is the vector of phenotypes (i.e., metabolites from the first, second, and combined two sampling
times and the transformed metabolites); b is the vector of fixed effects including intercept, breed effects
(i.e., Duroc and Landrace pigs), RFI effects (i.e., actual RFI values included as covariates), and SNP
effects (i.e., candidate SNPs included as covariates) to be tested; X is the design matrix for fixed effects
that includes SNP genotype indicators (i.e., 0, 1, or 2); g is the vector of polygenic effects as random
effects that are the accumulated effects of all SNPs; and e is the vector of residual effects. The polygenic
and residual variances are Var[g] = Gσ2

g and Var[e] = Iσ2
e , where G and I are the genetic relationship

matrix (GRM) calculated using all SNPs and identity matrix, respectively.

4.4. Significant SNPs and Their Annotated Genes

The significant SNPs for GWAS were defined when the p-values were less than the threshold after
Bonferroni correction for multiple hypothesis testing on genome level. The threshold for metabolites
from the first and second sampling times was 1.06 × 10−6 (i.e., 0.05/47109), while the threshold for
combined two sampling times was 1.18 × 10−6 (i.e., 0.05/42393). Then, the significant SNPs were
annotated to the genes and gene components (i.e., promoters, exons, and introns) of porcine RefSeq
database (Sscrofa10.2/susScr3) downloaded from University of California Santa Cruz (UCSC) genome
browser (https://genome.ucsc.edu/cgi-bin/hgTables), where a window of 500 kb was used for the

https://genome.ucsc.edu/cgi-bin/hgTables
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annotation of intergenic regions to neighboring genes. In addition, we used the reference SNP (rsfSNP)
ID (i.e., specific rs number) of significant SNPs to annotate them to the genes and gene components of
latest porcine RefSeq database (Sscrofa11.1/susScr11).

Linkage disequilibrium (LD) analysis to display the potential haplotypes for the significant SNPs
was performed using Haploview software (version 4.2) [51]. SNPs with a distance larger than 500 kb
were ignored in the pairwise comparisons for LD analysis.

4.5. Gene-Based Pathway Enrichment Analysis and Gene–Metabolite Interaction Network

We used R package KEGG.db (version 3.2.3) of Sus scrofa species to annotate SNP-related genes
in the gene-based pathway enrichments. Based on the adjusted p-values (p.adjust) < 0.2 under FDR
control, the gene-based pathways were finally realized by R package clusterprofiler (version 3.12.0) [52].
The gene–gene interaction networks were created by GeneMANIA server [53,54] with default settings
using Homo sapiens as the library. Then, the gene–metabolite networks for interactions between
SNP-related genes and phenotype-related metabolites were created by MetaboAnalyst tool [55] with
default settings using the same library of Homo sapiens. Significant SNP-associated metabolites based
on the low-high RFI pigs were hierarchically clustered by Ward’s method in Euclidean distance [56].
Then, a heat map for averaged metabolite clustering was visualized by MetaboAnalyst tool [48].

5. Conclusions

We utilized metabolic and genomic datasets from a total of 108 pigs that were made available for
this study from our own previously published studies [6,11] in publicly available data repositories.
These studies involved 59 Duroc and 49 Landrace pigs and consisted of data on feed efficiency
(RFI), genotype (PorcineSNP80 BeadChip) data, and metabolomic data (45 final metabolite datasets
derived from LC-MS system). Utilizing these datasets, our main aim was to identify genetic variants
(SNPs) that affect 45 different metabolite concentrations in plasma collected at the start and end of the
performance testing of pigs categorized as high or low in their feed efficiency, as measured by RFI
values. Genome-wide significant genetic variants could be then used as potential genetic or biomarkers
in breeding programs for feed efficiency. In order to achieve this main objective, we performed GWAS
in the mixed linear model-based association analysis and found 152 genome-wide significant snps
(p-value < 1.06 × 10−6) in association with 17 metabolites that included 90 significant SNPs annotated
to 52 genes. On chromosome one alone, we found SNPs in strong LD that could be annotated to FBXL4
and CCNC; it consisted of two haplotype blocks, where three SNPs (ALGA0004000, ALGA0004041,
and ALGA0004042) were in the intron regions of FBXL4 and CCNC. The interaction network analyses
revealed that CCNC and FBXL4 were linked to each other by N6AMT1 gene and were associated with
compounds isovalerylcarnitine and propionylcarnitine. The identified genetic variants and genes
affecting important metabolites in high versus low feed efficient pigs could be considered as potential
genetic or biomarkers, but we recommend that these results are validated in much higher sample size.
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times. Supplementary Table S3. Top ten SNPs associated with residual feed intake (RFI). Supplementary Figure S1.
Manhattan plots of genome-wide association for 43 metabolites. Supplementary Figure S2. Linkage disequilibrium
(LD) pattern for all significant SNPs.

Author Contributions: H.N.K. was a grant holder and lead PI for the FeedOMICS project who conceived and
designed the experiments and made the related datasets available in public repositories. X.W. analyzed the data
under the supervision of H.N.K., X.W. and H.N.K. wrote the first draft of this paper, which was improved by
H.N.K. All authors have read and agree to the published version of the manuscript.

Funding: Xiao Wang was funded by the FeedOMICS research project, headed by Haja Kadarmideen at DTU
Denmark. FeedOMICS project was funded by the Independent Research Fund Denmark (DFF)—Technology and
Production (FTP) grant (grant number: 4184-00268B).

http://www.mdpi.com/2218-1989/10/5/201/s1


Metabolites 2020, 10, 201 16 of 19

Acknowledgments: Authors thank open access platforms MetaboLights and NCBI-GEO from which we
downloaded the datasets for research reported in this study and cited under the section “availability of data and
materials”. The authors thank Claus Thorn Ekstrøm from Faculty of Health and Medical Sciences, University of
Copenhagen for his advice on statistical modelling.

Conflicts of Interest: The authors declare that there are no conflict of interest.

Availability of Data and Materials: All datasets used in this paper are from public repositories. Metabolite data
were accessed using MetaboLights accession ID MTBLS1384 with a link: https://www.ebi.ac.uk/metabolights/
MTBLS1384. Genotype data were accessed from NCBI GEO accession number GSE144064 with the following link:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144064). The details of these datasets can be found in
Carmelo et al. (2020) [6] and Banerjee et al. (2020) [11].

Abbreviations

Component 1 First component score
DFI Daily feed intake
FC Fold change
FDR False discovery rate
LC-MS Liquid chromatography-mass spectrometry
GRM Genetic relationship matrix
GWAS Genome-wide association study
HWE Hardy–Weinberg equilibrium
LD Linkage disequilibrium
LOD Limit of detection
LLOR Logarithm of likelihood odd ratio
MAF Minor allele frequency
mGWAS Metabolite GWAS
NCBI National Center for Biotechnology Information
pDFI Predicted daily feed intake
PLS-DA Partial least squares-discriminant analysis
QC Quality control
QTL Quantitative trait locus
RFI Residual feed intake
SNP Single nucleotide polymorphism
UCSC University of California Santa Cruz

References

1. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common
diseases and 3,000 shared controls. Nature 2007, 447, 661–678. [CrossRef] [PubMed]

2. Suravajhala, P.; Kogelman, L.J.; Kadarmideen, H.N. Multi-omic data integration and analysis using systems
genomics approaches: Methods and applications in animal production, health and welfare. Genet. Sel. Evol.
2016, 48, 38. [CrossRef] [PubMed]

3. Beebe, K.; Kennedy, A.D. Sharpening Precision Medicine by a Thorough Interrogation of Metabolic
Individuality. Comput. Struct. Biotechnol. J. 2016, 14, 97–105. [CrossRef] [PubMed]

4. Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Boil. 2002, 48, 155–171.
[CrossRef]

5. Liu, H.; Chen, Y.; Ming, D.; Wang, J.; Li, Z.; Ma, X.; Wang, J.; Van Milgen, J.; Wang, F. Integrative analysis of
indirect calorimetry and metabolomics profiling reveals alterations in energy metabolism between fed and
fasted pigs. J. Anim. Sci. Biotechnol. 2018, 9, 41. [CrossRef]

6. Carmelo, V.A.O.; Banerjee, P.; Diniz, W.J.D.S.; Kadarmideen, H.N. Metabolomic networks and pathways
associated with feed efficiency and related-traits in Duroc and Landrace pigs. Sci. Rep. 2020, 10, 1–14.
[CrossRef]

7. Kenéz, Á.; Dänicke, S.; Rolle-Kampczyk, U.; Von Bergen, M.; Huber, K. A metabolomics approach to
characterize phenotypes of metabolic transition from late pregnancy to early lactation in dairy cows.
Metabolomics 2016, 12. [CrossRef]

https://www.ebi.ac.uk/metabolights/MTBLS1384
https://www.ebi.ac.uk/metabolights/MTBLS1384
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144064
http://dx.doi.org/10.1038/nature05911
http://www.ncbi.nlm.nih.gov/pubmed/17554300
http://dx.doi.org/10.1186/s12711-016-0217-x
http://www.ncbi.nlm.nih.gov/pubmed/27130220
http://dx.doi.org/10.1016/j.csbj.2016.01.001
http://www.ncbi.nlm.nih.gov/pubmed/26929792
http://dx.doi.org/10.1023/A:1013713905833
http://dx.doi.org/10.1186/s40104-018-0257-x
http://dx.doi.org/10.1038/s41598-019-57182-4
http://dx.doi.org/10.1007/s11306-016-1112-8


Metabolites 2020, 10, 201 17 of 19

8. Wang, X.; Kadarmideen, H.N. Metabolomics Analyses in High-Low Feed Efficient Dairy Cows Reveal Novel
Biochemical Mechanisms and Predictive Biomarkers. Metabolites 2019, 9, 151. [CrossRef]

9. Gieger, C.; Geistlinger, L.; Altmaier, E.; De Angelis, M.H.; Kronenberg, F.; Meitinger, T.; Mewes, H.-W.;
Wichmann, H.-E.; Weinberger, K.M.; Adamski, J.; et al. Genetics Meets Metabolomics: A Genome-Wide
Association Study of Metabolite Profiles in Human Serum. PLoS Genet. 2008, 4, e1000282. [CrossRef]

10. Do, D.N.; Strathe, A.B.; Ostersen, T.; Pant, S.; Kadarmideen, H.N. Genome-wide association and pathway
analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Front. Genet.
2014, 5. [CrossRef]

11. Banerjee, P.; Adriano, V.; Carmelo, O.; Kadarmideen, H.N. Genome-Wide Epistatic Interaction Networks
Affecting Feed Efficiency in Duroc and Landrace Pigs. Front Genet. 2020, 11, 121. [CrossRef] [PubMed]

12. Helke, K.L.; Nelson, K.N.; Sargeant, A.M.; Jacob, B.; McKeag, S.; Haruna, J.; Vemireddi, V.; Greeley, M.;
Brocksmith, D.; Navratil, N.; et al. Pigs in Toxicology: Breed Differences in Metabolism and Background
Findings. Toxicol. Pathol. 2016, 44, 575–590. [CrossRef] [PubMed]

13. Picone, G.; Zappaterra, M.; Luise, D.; Trimigno, A.; Capozzi, F.; Motta, V.; Davoli, R.; Costa, L.N.; Bosi, P.;
Trevisi, P. Metabolomics characterization of colostrum in three sow breeds and its influences on piglets’
survival and litter growth rates. J. Anim. Sci. Biotechnol. 2018, 9, 23. [CrossRef] [PubMed]

14. Sundekilde, U.; Frederiksen, P.D.; Clausen, M.R.; Larsen, L.B.; Bertram, H. Relationship between the
Metabolite Profile and Technological Properties of Bovine Milk from Two Dairy Breeds Elucidated by
NMR-Based Metabolomics. J. Agric. Food Chem. 2011, 59, 7360–7367. [CrossRef]

15. Goto, T.; Mori, H.; Shiota, S.; Tomonaga, S. Metabolomics Approach Reveals the Effects of Breed and Feed on
the Composition of Chicken Eggs. Metabolites 2019, 9, 224. [CrossRef]

16. Yin, J.D.; Shang, X.G.; Li, D.F.; Wang, F.L.; Guan, Y.F.; Wang, Z.Y. Effects of Dietary Conjugated Linoleic Acid
on the Fatty Acid Profile and Cholesterol Content of Egg Yolks from Different Breeds of Layers. Poult. Sci.
2008, 87, 284–290. [CrossRef]

17. Middleton, R.P.; Lacroix, S.; Scott-Boyer, M.-P.; Dordevic, N.; Kennedy, A.D.; Slusky, A.; Carayol, J.;
Petzinger-Germain, C.; Beloshapka, A.; Kaput, J. Metabolic Differences between Dogs of Different Body Sizes.
J. Nutr. Metab. 2017, 2017, 1–11. [CrossRef]

18. Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.-Z.; Lin, T.; Qin, M.; Peng, M.; Yang, C.; et al.
Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 2018, 172, 249–261.e12. [CrossRef]

19. Do, D.N.; Strathe, A.B.; Jensen, J.; Mark, T.; Kadarmideen, H.N. Genetic parameters for different measures of
feed efficiency and related traits in boars of three pig breeds. J. Anim. Sci. 2013, 91, 4069–4079. [CrossRef]

20. Ding, R.; Yang, M.; Wang, X.; Quan, J.; Zhuang, Z.; Zhou, S.; Li, S.; Xu, Z.; Zheng, E.; Cai, G.; et al. Genetic
Architecture of Feeding Behavior and Feed Efficiency in a Duroc Pig Population. Front. Genet. 2018, 9, 220.
[CrossRef]

21. Dekaney, C.M.; Wu, G.; Jaeger, L.A. Gene expression and activity of enzymes in the arginine biosynthetic
pathway in porcine fetal small intestine. Pediatr. Res. 2003, 53, 274–280. [CrossRef] [PubMed]

22. Elia, I.; Broekaert, D.; Christen, S.; Boon, R.; Radaelli, E.; Orth, M.F.; Verfaillie, C.M.; Grunewald, T.G.P.;
Fendt, S.-M. Proline metabolism supports metastasis formation and could be inhibited to selectively target
metastasizing cancer cells. Nat. Commun. 2017, 8, 15267. [CrossRef] [PubMed]

23. Gilbert, H.; Riquet, J.; Gruand, J.; Billon, Y.; Fève, K.; Sellier, P.; Noblet, J.; Bidanel, J.-P. Detecting QTL for
feed intake traits and other performance traits in growing pigs in a Piétrain–Large White backcross. Animal
2010, 4, 1308–1318. [CrossRef]

24. Shirali, M.; Duthie, C.-A.; Doeschl-Wilson, A.; Knap, P.W.; Kanis, E.; Van Arendonk, J.; Roehe, R. Novel
insight into the genomic architecture of feed and nitrogen efficiency measured by residual energy intake and
nitrogen excretion in growing pigs. BMC Genet. 2013, 14, 121. [CrossRef] [PubMed]

25. Sanchez, M.P.; Tribout, T.; Iannuccelli, N.; Bouffaud, M.; Servin, B.; Tenghe, A.; Déhais, P.; Muller, N.;
Del Schneider, M.P.; Mercat, M.-J.; et al. A genome-wide association study of production traits in a
commercial population of Large White pigs: Evidence of haplotypes affecting meat quality. Genet. Sel. Evol.
2014, 46, 12. [CrossRef]

26. Onteru, S.K.; Gorbach, D.M.; Young, J.M.; Garrick, D.J.; Dekkers, J.C.M.; Rothschild, M.F. Whole Genome
Association Studies of Residual Feed Intake and Related Traits in the Pig. PLoS ONE 2013, 8, e61756.
[CrossRef]

http://dx.doi.org/10.3390/metabo9070151
http://dx.doi.org/10.1371/journal.pgen.1000282
http://dx.doi.org/10.3389/fgene.2014.00307
http://dx.doi.org/10.3389/fgene.2020.00121
http://www.ncbi.nlm.nih.gov/pubmed/32184802
http://dx.doi.org/10.1177/0192623316639389
http://www.ncbi.nlm.nih.gov/pubmed/27044377
http://dx.doi.org/10.1186/s40104-018-0237-1
http://www.ncbi.nlm.nih.gov/pubmed/29527304
http://dx.doi.org/10.1021/jf202057x
http://dx.doi.org/10.3390/metabo9100224
http://dx.doi.org/10.3382/ps.2007-00220
http://dx.doi.org/10.1155/2017/4535710
http://dx.doi.org/10.1016/j.cell.2017.12.019
http://dx.doi.org/10.2527/jas.2012-6197
http://dx.doi.org/10.3389/fgene.2018.00220
http://dx.doi.org/10.1203/00006450-200302000-00012
http://www.ncbi.nlm.nih.gov/pubmed/12538786
http://dx.doi.org/10.1038/ncomms15267
http://www.ncbi.nlm.nih.gov/pubmed/28492237
http://dx.doi.org/10.1017/S1751731110000339
http://dx.doi.org/10.1186/1471-2156-14-121
http://www.ncbi.nlm.nih.gov/pubmed/24359297
http://dx.doi.org/10.1186/1297-9686-46-12
http://dx.doi.org/10.1371/journal.pone.0061756


Metabolites 2020, 10, 201 18 of 19

27. Do, D.N.; Ostersen, T.; Strathe, A.B.; Mark, T.; Jensen, J.; Kadarmideen, H.N. Genome-wide association and
systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs.
BMC Genet. 2014, 15, 27. [CrossRef]

28. Makowski, L.; Noland, R.C.; Koves, T.R.; Xing, W.; Ilkayeva, O.R.; Muehlbauer, M.J.; Stevens, R.D.;
Muoio, D.M. Metabolic profiling of PPARα-/- mice reveals defects in carnitine and amino acid homeostasis
that are partially reversed by oral carnitine supplementation. FASEB J. 2009, 23, 586–604. [CrossRef]

29. Kerner, J.; Froseth, J.A.; Miller, E.R.; Bieber, L.L. A study of the acylcarnitine content of sows’ colostrum,
milk and newborn piglet tissues: Demonstration of high amounts of isovaleryl-carnitine in colostrum and
milk. J. Nutr. 1984, 114, 854–861. [CrossRef]

30. Bartels, G.L.; Holwerda, K.J.; Kruijssen, D.A.C.M.; Remme, W.J. Anti-ischaemic efficacy of
L-propionylcarnitine—A promising novel metabolic approach to ischaemia? Eur. Heart J. 1996, 17, 414–420.
[CrossRef]
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