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Abstract

Long intergenic noncoding RNAs (lincRNAs) represent a large fraction of transcribed loci in eukaryotic genomes.
Although classified as noncoding, most lincRNAs contain open reading frames (ORFs), and it remains unclear why
cytoplasmic lincRNAs are not or very inefficiently translated. Here, we analyzed signatures of hindered translation in
lincRNA sequences from five eukaryotes, covering a range of natural selection pressures. In fission yeast and
Caenorhabditis elegans, that is, species under strong selection, we detected significantly shorter ORFs, a suboptimal
sequence context around start codons for translation initiation, and trinucleotides (“codons”) corresponding to less
abundant tRNAs than for neutrally evolving control sequences, likely impeding translation elongation. For human, we
detected signatures for cell-type-specific hindrance of lincRNA translation, in particular codons in abundant cytoplasmic
lincRNAs corresponding to lower expressed tRNAs than control codons, in three out of five human cell lines. We verified
that varying tRNA expression levels between cell lines are reflected in the amount of ribosomes bound to cytoplasmic
lincRNAs in each cell line. We further propose that codons at ORF starts are particularly important for reducing
ribosome-binding to cytoplasmic lincRNA ORFs. Altogether, our analyses indicate that in species under stronger selection
lincRNAs evolved sequence features generally hindering translation and support cell-type-specific hindrance of transla-
tion efficiency in human lincRNAs. The sequence signatures we have identified may improve predicting peptide-coding
and genuine noncoding lincRNAs in a cell type.

Key words: noncoding RNA, computational sequence analysis, codon usage, tRNA abundance, ribosome binding,
evolutionary selection pressure.

Introduction
Long intergenic noncoding RNAs (lincRNAs) form a function-
ally heterogeneous class of RNAs longer than 200 nucleotides
and lacking protein-coding potential (Ulitsky and Bartel 2013;
Frankish et al. 2019). Despite being classified as noncoding,
most lincRNAs contain open reading frames (ORFs) flanked
by start and stop codons. Although many small ORFs encod-
ing functional peptides have been identified recently within
annotated human lincRNAs (Chen et al. 2020; Martinez et al.
2020; Ouspenskaia et al. 2021), the majority of lincRNAs pep-
tide products have not been detected, and the mechanisms
hindering their translation are unclear.

Sequencing of ribosome-protected fragments (Ribo-Seq)
has highlighted differences between coding and noncoding
RNAs ribosome interaction patterns, in particular concerning
the tri-nucleotide periodicity of binding (Ji et al. 2015; Calviello
et al. 2016) and ribosome release (Guttman et al. 2013).

Furthermore, discriminating sequence features have
also been noted between human mRNAs and lincRNAs
(Niazi and Valadkhan 2012) and between lincRNAs with
and without ribosome-association in human and mouse
(Wang et al. 2017; Zeng and Hamada 2018). These studies
identified a poor start codon context of lincRNA ORFs for
translation initiation and reported cell-type-specific associa-
tions between human lincRNAs and ribosomes.

mRNA translation is regulated at initiation and during
elongation (Tuller, Carmi, et al. 2010; Eraslan et al. 2019;
Riba et al. 2019; Nieuwkoop et al. 2020). While RNA sequence
and secondary structure around start codons are important
for translation initiation, codon usage has been shown to af-
fect translation elongation efficiency. Specifically, the rate of a
codon’s translation correlates with the abundance of its cog-
nate tRNA (Dana and Tuller 2014). Consequently, mRNAs
composed of codons corresponding to more abundant
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tRNAs tend to be translated more efficiently. Evidence of such
a mechanism to tune translation efficiency has been found in
several contexts, for example, under cellular stress conditions,
during proliferation and meiosis, and in cancer (Goodarzi et al.
2016; Torrent et al. 2018; Sabi and Tuller 2019; Guimaraes et al.
2020). The strength of the mRNA codon usage bias varies
between species and is usually more pronounced in species
under stronger selection pressure, that is, species with more
efficient natural selection due to a larger effective population
size or a shorter generation time (Subramanian 2008). Among
eukaryotes, the mRNA codon usage bias is stronger in yeast
and weaker in species such as human and mouse. In most
species, the codon usage bias is also more pronounced for
highly expressed mRNAs, likely because their sequences are
under more intense selection pressure.

Given these well-established connections between mRNA
sequence features and translation efficiency, the question
arises whether lincRNAs simply just lack sequence features
supporting efficient translation or whether they have evolved
sequence features specifically hindering their translation.
Moreover, if lincRNA sequence signatures were shaped
through evolution, are those signatures stronger and more
detectable in species whose genomes are under more intense
selection, as is the case for sequence biases in mRNAs? To
address these questions, we comprehensively analyzed se-
quence signatures indicative of hindered translation in
lincRNAs and compared them with those in mRNAs and in
neutrally evolving genomic sequences. We also compared the
strengths of the lincRNA sequence signatures across five
eukaryotes with various degrees of selection pressure and be-
tween all lincRNAs and those with the highest cytoplasmic
expression levels. We further examined whether codon bias of
lincRNAs could reduce their ribosome-binding in a cell-type-
specific manner, using experimental data from five human cell
lines.

Results

Open Reading Frames Are Frequent in lincRNAs
To investigate signatures in lincRNAs sequences decreasing
translation efficiency, we focused on five species (Homo sapi-
ens, Mus musculus, Drosophila melanogaster, Caenorhabditis
elegans, and Schizosaccharomyces pombe). We selected these
species because their genomes contain a sizable number
(>1,000) of annotated lincRNA genes, and they are under a
range of natural selection pressure, as seen in the strength of
their mRNA codon usage bias (Subramanian 2008).

In order to exclude potential biases in the sequences of
lincRNAs, we removed lincRNAs overlapping other genes,
repetitive sequences (Jurka et al. 2005), and likely novel coding
regions (predicted based on PhyloCSF score [Lin et al. 2011]
or identified from Ribo-Seq data [Martinez et al. 2020])
(see “Materials and Methods”; supplementary table S1,
Supplementary Material online). For each lincRNA, we
extracted all ORFs longer than 30 nucleotides (¼10 codons),
starting with a canonical start codon (AUG) and ending at
the first in-frame stop codon (UAG, UAA, UGA). To evaluate
the lincRNA sequence bias in each species, we compared

lincRNA signatures with those in likely neutrally evolving
sequences. We chose nuclear (intronic) and non-transcribed
(intergenic) sequences because these are not in contact with
the translation machinery and therefore provide an unbiased
reference. In particular, we analyzed ORFs in randomly se-
lected intronic and intergenic regions of the same length
and with the same GþC content (fraction of G and C
nucleotides) as lincRNAs (see “Materials and Methods”).
Since differences in the genomic sequence composition
across species may affect the lincRNA measures, hindering
their direct comparison, we only compared the deviations of
lincRNAs from controls between species.

Most lincRNAs (>93% for each species) had at least one
ORF (fig. 1A). Except for fission yeast, more lincRNAs than
control regions contained ORFs. The number of ORFs per
lincRNA was higher in all species, and its median ranged be-
tween 5 (fruit fly and C. elegans) and 9 (fission yeast) (supple-
mentary fig. S1, Supplementary Material online). The longest
ORFs (median length between 44 and 55 codons in different
species) were significantly shorter in lincRNAs than in intronic
and intergenic control regions for fission yeast and than in
intronic regions for C. elegans (fig. 1B). Longest lincRNA ORFs
were longer than longest control ORFs in mammals and fruit
fly.

RNA Sequence around lincRNA Start Codons Appears
Suboptimal for Translation Initiation in Fission Yeast
and C. elegans
For each gene, we only considered the mRNA isoform with
the longest coding region, and the lincRNA isoform with the
longest ORF (supplementary table S1, Supplementary
Material online). From random intronic and intergenic
regions of the same length as the lincRNA isoform harboring
the longest ORF, we selected as control the longest ORF (>10
codons) with GþC content matching that of the longest
lincRNA ORF. Additionally, we analyzed the longest ORF in
coding genes’ 30 untranslated regions (UTRs), which likely
represent the least translated cytoplasmic RNA sequences
(Guttman et al. 2013), and longest ORFs in 50 UTRs of
mRNAs, which were reported to resemble ribosome associa-
tion with that of lincRNAs (Chew et al. 2013).

Since the sequence around start codons was identified as
regulating translation in mRNA (Eraslan et al. 2019), we ex-
amined the sequence context around lincRNA start codons
(fig. 1C). We found that in all species, the lincRNA sequence
context was less similar to the consensus mRNA sequence
motif, itself showing similarity to the Kozak sequence motif
(Kozak 1989), than the individual sequence context around
mRNA start codons (fig. 1D). Moreover, in fission yeast, this
similarity was lower than the similarity of control ORFs and
ORFs in 30 UTRs and 50 UTRs. There was no difference be-
tween lincRNAs and controls in C. elegans, whereas for mam-
mals and fruit fly, the similarity for lincRNA was higher than
for the controls. In mammals, 50 UTRs were more similar to
mRNAs than lincRNAs. Thus, the RNA sequence around
lincRNA start codons appears less favorable for translation
initiation in fission yeast but not in other species.
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FIG. 1. Prevalence, length, and start codon sequence context of lincRNA ORFs. (A) Percentage of lincRNA transcripts with ORFs (>10 codons; red dot)
and percentage of random control regions with ORFs (in introns shown as gray and in intergenic regions shown as black violins), for five species.
For each lincRNA transcript, 10 length- and GþC content-matched control sequences were randomly selected from introns and intergenic regions.
P values are indicated from a one-sample t-test. (B) Median length of longest ORFs in lincRNAs (red), and intronic (gray) and intergenic (black) control
sequences. Error bars represent median absolute deviations. P values are indicated from Wilcoxon’s rank-sum test. (C) Information content (see
“Materials and Methods”) for the region 612 nucleotides around AUG start codons for different ORFs (columns, indicated on top) and species (rows,
indicated left). The sequence motif around mRNA start codons shows some similarity with the Kozak consensus sequence (gcc(A/G)ccAUGG).
(D) Sequence similarity with the consensus mRNA sequence motif for the region 612 nucleotides around start codons (see “Materials and Methods”)
for mRNA coding regions (blue), lincRNA longest ORFs (red), longest ORFs in intronic and intergenic control sequences (black), and longest ORFs in
30 UTRs (green) and 50 UTRs (magenta). P values (<0.05) are indicated from Wilcoxon’s rank-sum test to compare lincRNAs with control regions,
30 UTRs, or 50 UTRs. P values are marked red if the median lincRNA value is below the value for the other region.
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Codon Composition of lincRNAs Is Distinct from
mRNAs’ and Controls in Fission Yeast and C. elegans
mRNA codon usage is biased and contributes to translation
regulation (Tuller, Waldman, et al. 2010; Hanson and Coller
2018). We investigated if biased frequencies of trinucleotides
in lincRNAs—which for simplicity we refer to as codons—can
contribute to decreasing translation efficiency. To gain global
insight into codon usage in different RNA types, we per-
formed a multiple correspondence analysis of their codon
counts in different species (supplementary table S2,
Supplementary Material online). We found that RNA types
and species were clearly spread with orthogonal directions in
the first two components (fig. 2A). In particular, fission yeast
and C. elegans were grouped, as were both mammals. The
fruit fly was equidistant to both groups.

Although for mammals and fruit fly, the codon composi-
tion of lincRNAs was positioned between mRNAs and
controls, controls were closer to mRNA than lincRNA for
C. elegans and fission yeast. In addition, 30 UTR codon usage
tended to be more distant from mRNA codon usage than
lincRNAs’. These distinctions in codon usage between RNA
types were reflected in the patterns of correlation strengths
between codon frequencies of different RNA types (fig. 2B). In
particular, for C. elegans and fission yeast, the correlation be-
tween mRNA and control codon frequencies was stronger
than the correlation between lincRNA and mRNA codon
frequencies.

In Species under Strong Selection, Less Abundant
tRNAs Are More Represented in lincRNA Codons
Than in mRNA and Control Regions
Next, we investigated how codon usages in different RNA types
relate to tRNA abundances. As a first estimate of tRNA abun-
dances in different species, we used the number of annotated
tRNA genes for each tRNA anticodon type (see “Materials and
Methods”), which correlates well with tRNA abundances
(Tuller, Carmi, et al. 2010). We used wobble-base pairing and
tRNA editing efficiencies (dos Reis et al. 2004) to estimate ef-
fective tRNA anticodon abundances for all codons, including
those lacking a complementary tRNA encoded in the genome
(see “Materials and Methods”). We found that mRNA codon
frequencies correlated better with relative tRNA abundances
than lincRNA codon frequencies for all species (fig. 3A). For
fission yeast and fruit fly, the difference was more pronounced
among highly expressed cytoplasmic mRNAs and lincRNAs
(see “Materials and Methods”). For C. elegans and fission
yeast—the two species with the strongest mRNA codon usage
bias—lincRNA codon frequency correlated less with tRNA
abundances than control codon frequency, suggesting a
lincRNA codon usage bias towards codons corresponding to
lower abundance tRNAs. On the contrary, in mammals,
lincRNA codon frequencies are better correlated with tRNA
abundances than controls. The correlations between tRNA
abundances and codon frequencies for lincRNAs and controls
were similar in fruit fly, locating this species in between the
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other groups again. Notably, the overall pattern of correlation
strengths for different RNA types and species was similar
among groups of codons with identical GþC content (sup-
plementary fig. S3, Supplementary Material online), suggesting
that differences in GþC content between RNA types and
species are not causing the observed differences in correlations
between codon and tRNA frequencies.

The tRNA adaptation index (tAI) is a measure for the
correspondence between codon frequencies in an ORF and
tRNA abundances (dos Reis et al. 2003). The tAI ranges from 0
to 1, where higher values indicate a preferential usage of
codons decoded by more abundant tRNAs. For all species,
mRNA coding regions had significantly higher tAI values
(P< 10�300, Wilcoxon rank-sum test) than lincRNA ORFs
(fig. 3B; supplementary fig. S4, Supplementary Material on-
line). ORFs had significantly lower tAIs in lincRNAs than in
control regions in C. elegans and fission yeast, whereas for
mammals, tAIs were higher in lincRNAs than in controls
(fig. 3B; supplementary fig. S4, Supplementary Material on-
line). These tAI differences between lincRNA and controls
align with the correlation analysis results (fig. 3A), potentially
indicating that lincRNAs have adapted to use codons corre-
sponding to less abundant tRNAs in fission yeast and
C. elegans. Notably, the longest ORFs in 30 UTRs also had
lower tAIs than controls in fission yeast, C. elegans, and fruit
fly, but similar tAIs as controls in mammals.

To further evaluate the extent and direction of codon
usage bias in lincRNAs, we compared their tAIs with tAIs
for trinucleotides in frameshifted ORFs. Such ORFs preserve
the nucleotide content and sequence, including potential
functional RNA sequence or structure motifs (see
“Materials and Methods”). To account for underlying (di-)nu-
cleotide biases in the genomic sequence of each species, we
performed the same comparison with control region ORFs
and used this as a reference. Overall, tAI differences (DtAI)
between original and frameshifted ORFs were positive for
mRNAs in all species (supplementary fig. S5, Supplementary
Material online), indicating generally higher tAIs for the orig-
inal coding sequences. DtAIs between original and frame-
shifted ORFs were closer to zero for other ORFs. In
C. elegans and fission yeast, lincRNA DtAIs were significantly
lower than controls, indicating that lincRNA tAIs tend to be
lower than the frameshifted ones more often than for control
ORFs. This strengthens the hypothesis that in C. elegans and
fission yeast, lincRNA ORFs are biased for preferential usage of
codons corresponding to less abundant tRNAs as opposed to
maintaining specific RNA sequence or structure motifs. DtAIs
for lincRNAs were overall larger than the controls in mouse.

dos Reis et al. (2004) proposed the correlation between tAI
and the synonymous codon usage bias as a test for transla-
tional selection on mRNA coding regions in a species. Here,
we modified this to test for a correlation between tAI and the
overall codon usage bias (not just among synonymous
codons; see “Materials and Methods”). This test confirmed
that correlation coefficients were larger for mRNAs than for
lincRNAs (r> 0.52 and r< 0.06, respectively, for all species),
indicating a stronger adaptation of mRNA codon usage to

tRNA abundances than for lincRNAs (fig. 3C). Furthermore,
the correlation was higher among cytoplasmic mRNAs
(r> 0.58) in human, fruit fly, and fission yeast, whereas
it tended to be smaller among cytoplasmic lincRNAs
(r<–0.03) in fission yeast. Strikingly, for C. elegans and fission
yeast, lincRNA correlation coefficients were significantly lower
than those for control ORFs (P< 0.03), and correlations were
also significantly lower for 30 UTR ORFs compared with con-
trol ORFs (P< 10�4, probability for a higher correlation co-
efficient for 30 UTRs than for controls observed in 10,000
bootstrapped samples; see “Materials and Methods”). These
results indicate that codons in noncoding ORFs are even less
correlated with tRNA abundances than control codons in
these species, potentially hindering translation. LincRNAs
were also weaker correlated than 50 UTRs in C. elegans, but
stronger in human, fruit fly, and fission yeast.

Cytoplasmic lincRNA Codons Correspond to Lower
Expressed tRNAs Than Control Codons in Three out
of Five Human Cell Lines, Concordant with Reduced
Ribosome-Binding
In multicellular eukaryotes, tRNA expression is often tissue-
and cell-type-specific (Dittmar et al. 2006; Pinkard et al. 2020),
allowing to evaluate the impact of varying tRNA abundances
on ribosome-binding to cytoplasmic lincRNAs. We focused
on five human cell lines (GM12878, HEK293, HeLa-S3, HepG2,
and K562), for which extensive experimental data are available
to quantify relative tRNA expression levels, total and cytoplas-
mic lincRNA expression levels, and ribosome-binding to
lincRNAs ([ENCODE Project Consortium 2004; Kishore et al.
2013; Subtelny et al. 2014; Cenik et al. 2015; Calviello et al.
2016; Aktaş et al. 2017; Solomon et al. 2017; Huang et al. 2019;
Martinez et al. 2020]; see “Materials and Methods” and sup-
plementary table S3, Supplementary Material online).

tRNA abundances varied between cell lines (fig. 4A), with
GM12878, HeLa-S3, and K562 showing relatively similar tRNA
abundances (Spearman correlation >0.87), whereas those in
HEK293 and HepG2 differed (Spearman correlation <0.75).
Using these tRNA abundances, we calculated cell-line-specific
tAIs (fig. 4B) and confirmed that abundant cytoplasmic
lincRNAs had significantly lower tAIs than cytoplasmic
mRNAs in all cell lines. Cytoplasmic lincRNA tAIs were also
lower than tAIs of mRNAs with matching cytoplasmic ex-
pression levels (P< 10�12; see “Materials and Methods”). In
the three cell lines showing similar tRNA abundances
(GM12878, HeLa-S3, and K562), tAIs of abundant cytoplasmic
lincRNAs were significantly lower than tAIs of control ORFs
(P< 0.03) and than tAIs of all expressed lincRNAs (P< 0.04).
For HEK293 and HepG2, tAIs of highly expressed cytoplasmic
lincRNAs were not different from those of all expressed
lincRNAs or control ORFs.

We next focused on lincRNAs classified as cytoplasmic in
all five human cell lines (see “Materials and Methods”). tAIs
for these 41 lincRNAs varied between cell lines and tended to
be higher in HepG2 and HEK293 than in other cell lines. These
differences in cell-line-specific tAIs were largely reflected in
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ribosome-binding differences (estimated from Ribo-Seq data;
see “Materials and Methods”) between cell lines for the same
41 cytoplasmic lincRNAs (fig. 4C). In particular, ribosome-
binding in HEK293 was not different from HepG2 and tended
to be higher than for GM12878, HeLa-S3, and K562.
Interestingly, increased lincRNA translation was reported be-
fore in the liver and kidney (van Heesch et al. 2019), although
comparing between immortalized cell lines and primary cells
from human tissues may be difficult. Thus, tAIs of abundant
cytoplasmic lincRNAs were smaller than those of control
ORFs in three out of five cell lines, concordant with reduced
ribosome-binding in these cell lines.

Ribosome-Binding Reflects tAI Differences between
Cytoplasmic RNA Types, Particularly for Codons at the
Beginning of ORFs
To further understand the relationship between tAI and
ribosome-binding, we focused on three types of cytoplas-
mic RNAs: mRNAs, lincRNAs, and annotated lincRNAs
with experimentally validated small protein-encoding
ORFs (smORFs; see “Materials and Methods”). We

observed that differences in tAIs between RNA types
were mostly concordant with differences in ribosome-
binding, estimated from Ribo-Seq data. In particular, tAIs
of lincRNAs and smORFs were significantly different from
those of mRNAs (fig. 5A), and relative ribosome-binding,
which accounts for differences in ORF length and expres-
sion between RNA types (see “Materials and Methods”),
was significantly lower for lincRNAs than for other cyto-
plasmic RNA types, for instance in K562 (fig. 5B).

However, differences in relative ribosome-binding between
lincRNAs and smORFs were more pronounced than their dif-
ferences in tAIs (fig. 5C, first panel). Previously, the codon usage
immediately downstream of mRNA start codons was pro-
posed to play a specific role in facilitating translation initiation
and thereby contributing to efficient translation elongation
(Tuller, Carmi, et al. 2010; Bentele et al. 2013). Thus, we inves-
tigated if tAIs calculated for the first codons downstream of
start codons in different RNA types may better agree with the
observed ribosome-binding differences. Indeed, tAIs calculated
for the first 10 or 20 codons tended to match better the differ-
ences in ribosome-binding between RNA types in K562 cells
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(fig. 5C, last two panels) and in almost all other cell lines (sup-
plementary fig. S6, Supplementary Material online, last two
rows). We found no indication for the RNA sequence or struc-
ture context around start codons of smORFs and lincRNA
ORFs to explain the observed ribosome-binding differences
between these cytoplasmic RNA types (data not shown).

These observations suggest that the first ORF codons in
cytoplasmic lincRNAs can influence ribosome-binding, po-
tentially through impeding translation initiation.

Discussion
In the absence of any functional role of the peptides result-
ing from lincRNA translation, it would likely be advanta-
geous to reduce stable associations between lincRNAs
and ribosomes for several reasons: unwanted lincRNA

translation wastes energy (Wagner 2005), reduces the
pool of ribosomes available for mRNA translation (Raveh
et al. 2016), and may lead to the synthesis of peptides with
possibly harmful interference. Furthermore, it may hinder a
potential regulatory function of lincRNAs, and, given the
association between mRNA translation and transcript sta-
bility (Presnyak et al. 2015; Tuck et al. 2020), translation of
lincRNAs might impact their cytoplasmic expression levels,
with potentially disadvantageous consequences.

We analyzed signatures of repressed or inefficient transla-
tion in lincRNA sequences from five eukaryotes (summarized
in fig. 6). The analyzed signatures included general properties
such as the prevalence and length of ORFs, signatures related
to translation initiation such as the sequence context around
start codons, and signatures indicative of efficient elongation
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such as the codon usage and its relation with tRNA abundan-
ces. To evaluate the specificity of the latter signatures, we
compared them with those in frameshifted ORFs and per-
formed a translational selection test. Although all analyzed
signatures in lincRNAs were markedly different from those in
mRNAs, for all species, all lincRNA signatures in fission yeast
and most signatures (except fewer ORFs and less efficient
translation initiation) in C. elegans were also stronger than
in intronic and intergenic control sequences.

These differences in lincRNA sequence signatures across
species are consistent with a stronger selection pressure (or
more efficient selection) on the sequences of lincRNAs in
fission yeast and C. elegans than in other eukaryotes, where
translational selection on mRNA was also found to be weaker
(dos Reis and Wernisch 2009).

We acknowledge that, although statistically significant,
some of the observed effect sizes of the signatures hindering
translation in fission yeast and C. elegans are relatively small.
However, the consistency of these effects across multiple,
largely independent, signatures substantiates the hypothesis
that lincRNA sequences are biased to hinder translation in
these species. Moreover, because of their lower expression
level—likely connected to lower selection pressure—
sequence biases in lincRNAs are expected to be smaller
than in mRNAs.

The lack of observed signatures counteracting translation
(in particular those related to translation initiation and ORF
occurrence) in species such as human and mouse may also
suggest that lincRNA translation is not universally repressed in
these species but to be so in a more cell-type-specific manner.
Indeed, estimating cell-type-specific tRNA expression levels,
we observed for three out of five human cell lines that codons
in abundant cytoplasmic lincRNAs are less correlated to the
expressed tRNAs than trinucleotides in control ORFs (fig. 4B).
Such a result is consistent with previous reports of cell-type- or
condition-specific translation of human lincRNAs (Wang et al.
2017; van Heesch et al. 2019; Chen et al. 2020; Martinez et al.
2020; Ouspenskaia et al. 2021), potentially because some pep-
tides cause no harm or even serve a function in specific cell
types or under certain conditions.

Interestingly, we detected similar signatures hindering
translation in the longest ORFs of 30 UTRs, and the transla-
tional selection test revealed lowest correlation values for
30 UTRs for all species (fig. 3C). Several signatures were even
slightly stronger for 30 UTRs than for lincRNAs, such as the
difference of codon usage with mRNAs for C. elegans and
fission yeast (fig. 2A), or lower tAIs for C. elegans, fission yeast,
and fruit fly (supplementary fig. S4, Supplementary Material
online). These signatures could result from a stronger selec-
tion pressure on 30 UTRs than on lincRNA ORFs, potentially
because most 30 UTRs are more expressed in the cytoplasm
and are evolutionarily older (Ulitsky and Bartel 2013)
and thus had more time for adapting their sequence to
tRNA abundances. The fact that 30 UTR tAIs for mammals
were not lower than control tAIs (supplementary fig. S4,
Supplementary Material online) might indicate that, in these
species, the selection pressure on noncoding ORFs is not

sufficiently strong to result in tAIs lower than for control
ORFs, or that cell-type-specific translation regulation is
more relevant. Longest ORFs in 50 UTRs, in contrast, showed
a better start codon context for translation initiation in mam-
mals, likely indicating a frequent functional role of upstream
ORFs in these species.

We explored the functional impact of varying tRNA ex-
pression levels on ribosome-binding to lincRNAs by analyzing
cell-type-specific tAIs and ribosome-binding to cytoplasmic
lincRNAs in five human cell lines. We propose a mechanistic
link between tAI and ribosome-binding to lincRNA ORFs that
would allow cell-type-specific hindering of lincRNA transla-
tion. tAIs for the first 10–20 codons of cytoplasmic ORFs
appeared to better match differences in ribosome-binding
between coding and noncoding RNA types in several cell
lines, suggesting that codons at the start of ORFs are partic-
ularly important for hindering ribosome engagement and
translation initiation (or promoting it in case translation
would be advantageous).

This study provides a comprehensive analysis of signatures
hindering efficient translation in lincRNA sequences of five
species and five human cell lines. Although the analyzed spe-
cies are widely studied model organisms, several recently
identified lincRNAs (Akay et al. 2019) and peptide-coding
lincRNAs (Martinez et al. 2020; Ouspenskaia et al. 2021) in-
dicate that the annotation of lincRNAs and their translation
status may not yet be complete. We believe that with more
accurate lincRNA annotations our identified sequence signa-
tures will become stronger, and they may help to distinguish
genuine lincRNAs with regulatory roles in the cytoplasm from
those coding for peptides in a cell-type- or condition-specific
manner. An interesting aspect is how cell-type- and
condition-specific tRNA expression imposes different con-
straints on the evolution of cytoplasmic lincRNA sequences
to either curb ribosome-binding in specific cell types or pro-
mote it to enable peptide translation in others. Analyzing the
impact of natural genetic variation or targeted mutations in
lincRNA sequences on ribosome-binding and peptide trans-
lation might shed light on these questions.

Materials and Methods

Gene Annotations
We downloaded gene annotations and genomic sequences
from GENCODE (Frankish et al. 2019) (www.gencodegenes.
org, last accessed December 8, 2021) for Homo sapiens (v19
corresponding to hg19) and Mus musculus (vM16 corre-
sponding to mm10), from Ensembl (www.ensembl.org, last
accessed December 8, 2021) for D. melanogaster (dm6) and
C. elegans (ce11), and from EnsemblFungi (http://fungi.
ensembl.org, last accessed December 8, 2021) for S. pombe
(ASM294v2). For C. elegans, we also included lincRNA genes
recently identified by Akay et al. (2019) and not contained the
Ensembl gene annotations. We chose fission yeast as opposed
to the more commonly studied budding yeast because the
number of annotated lincRNA genes is much larger in fission
yeast (>1,000) than in budding yeast (<100). For all species,
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we excluded genes on mitochondrial chromosomes from
our analysis as these are translated using mitochondrial
tRNAs.

mRNA Coding Regions
For each mRNA gene we analyzed only the longest coding
region starting with a canonical start codon (AUG), from all
coding regions present in different transcript isoforms.

Identification of Open Reading Frames in lincRNAs
We excluded lincRNA genes overlapping other gene annota-
tions by at least one nucleotide on either strand, those over-
lapping regions of high PhyloCSF score (Lin et al. 2011)
(PhyloCSF Novel tracks downloaded from https://data.broad-
institute.org/compbio1/PhyloCSFtracks/, last accessed
December 8, 2021 for human, mouse, fruit fly, and C. elegans),
and, in case of human, those overlapping regions experimen-
tally identified to encode small proteins based on Ribo-Seq
data in human cell lines (supplementary table 1 of Martinez
et al. 2020). Furthermore, we excluded lincRNA genes with
exons that overlapped (by more than 30 nucleotides) with
simple repeats or low complexity regions (repeat masker
annotations downloaded for human, mouse, fruit fly, and C.
elegans from http://hgdownload.soe.ucsc.edu/goldenPath/,
last accessed December 8, 2021), as such regions might bias
the sequence composition of lincRNAs. We list the number of
remaining lincRNAs after all these filtering steps in supple-
mentary table S1, Supplementary Material online. We identi-
fied ORFs longer than 30 nucleotides (¼10 codons) that start
with a canonical start codon (AUG) and end at the first in-
frame stop codon (UAG, UAA, UGA) and for each lincRNA
gene kept only the transcript isoform harboring the longest
ORF for further analysis.

Intronic and Intergenic Control Sequences
As controls, we considered nuclear (intronic) and non-tran-
scribed (intergenic) sequences. We took intronic regions from
mRNA genes and excluded the ten nucleotides flanking exons
on each side. The chosen intergenic regions did not overlap
any gene annotation on either strand. We excluded intronic
and intergenic regions that overlapped with likely novel cod-
ing regions (based on PhyloCSF novel track for human,
mouse, fruit fly, and C. elegans, and Ribo-Seq data for human)
and with repetitive sequence regions (from repeat masker
annotations for human, mouse, fruit fly, and C. elegans). For
each selected lincRNA transcript, a control sequence of the
same length was randomly selected from intronic and inter-
genic regions using bedtools shuffle (Quinlan and Hall 2010).
In each control sequence, we identified the longest ORF (>10
codons). If the fraction of G and C nucleotides (rounded to
two decimal places) matched the lincRNA ORF’s, we retained
the sequence as a control for that lincRNA; otherwise, we
repeated the random selection until a sequence with equal
GþC content was found.

To compare ORF identification in lincRNAs and control
sequences (fig. 1A and B), we randomly selected, for each
lincRNA transcript, ten length- and GþC content-matched
control sequences from intronic and from intergenic regions.

Longest ORFs in 30 UTRs and 50 UTRs
We defined ORFs (>10 codons) in 30 UTRs and 50 UTRs of
coding genes from a canonical AUG start codon to the first
in-frame stop codon. For each gene, we considered in our
analysis only the longest ORF out of ORFs in 30 UTRs (or
50 UTRs) of different isoforms.

Small Protein-Encoding ORFs
The human smORFs we used were the longest ORFs in an-
notated lincRNAs that overlapped (by at least one nucleotide
on the same strand) with a small protein-encoding region,
identified experimentally by Martinez et al. in three human
cell lines based on Ribo-Seq data (supplementary table 1 of
Martinez et al. 2020), or with a region with high PhyloCSF
score (Lin et al. 2011) (downloaded from https://data.broad-
institute.org/compbio1/PhyloCSFtracks/, last accessed
December 8, 2021 for human).

Sequence Context around Start Codons
To analyze the sequence context around start codons, we
counted the fraction of nucleotides (A, C, G, T) at each po-
sition in the region 612 nucleotides around. We calculated
the information content (I) at each position as:
I ¼ 2þ

P
n¼A;C;G;T fn log2ðfnÞ, where fn is the frequency of

nucleotide n. The probability (P) for the consensus mRNA
start codon motif (also referred to as similarity) was calcu-

lated as: P ¼ expf
P12

l¼�12 logðfn lð ÞÞ�=L
� �

g, where L is the

total length of the start codon region, and fnðlÞ is the fre-

quency of nucleotide n (for mRNA) at position l around
the start codon of an ORF.

Estimation of Relative tRNA Abundances Based on
tRNA Gene Counts
We downloaded tRNA gene predictions from GtRNAdb
(http://gtrnadb.ucsc.edu/GtRNAdb2/, last accessed
December 8, 2021) (Chan and Lowe 2016) for all species
studied. We counted the number of annotated tRNA
genes coding for the same tRNA anticodon type taking
into account high confidence tRNA gene predictions.
We calculated effective tRNA abundances using previously
determined weights to account for the contributions of
tRNA editing and wobble-base pairing at the first tRNA
anticodon position (dos Reis et al. 2004). Specifically, the
weights w were w(G:U)¼0.41, w(I:C)¼0.28, w(I: A)¼0.9999,
and w(U:G)¼0.68, where the first letter denotes the first
nucleotide of a tRNA anticodon nucleotide triplet and the
second letter the third nucleotide of a codon. We then
calculated effective tRNA abundances as:

ðtRNANNUÞeff ¼ tRNANNU þ ½1� wðG:UÞ� � tRNANNC

ðtRNANNCÞeff ¼ tRNANNC þ ½1� wðI:CÞ� � tRNANNU

ðtRNANNAÞeff ¼ tRNANNA þ ½1� wðI:AÞ� � tRNANNU

ðtRNANNGÞeff ¼ tRNANNG þ ½1� wðU:GÞ� � tRNANNA

The above nucleotide triplets are the corresponding codon
sequences (i.e. the reverse complements of the tRNA antico-
don sequences). N stands for any nucleotide.
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Estimation of Cell-Type-Specific tRNA Abundances
Due to the repetitive nature of tRNAs, their strong secondary
structure, and the high frequency of posttranscriptional tRNA
modifications, high-throughput experimental quantification of
tRNA expression levels is challenging. Two dedicated experi-
mental high-throughput approaches for the quantification
of tRNA expression, hydro-tRNA-Seq (Gogakos et al. 2017)
and DM-tRNA-Seq (Zheng et al. 2015), have been proposed
and were applied in human HEK293 cells. smallRNA-Seq
was also used previously to quantify tRNA expression
(Gingold et al. 2014; Ji et al. 2015; Hernandez-Alias et al.
2020), and these data are more widely available for different
human cell types. Thus, we used smallRNA-Seq-based tRNA
abundances to calculate cell-type-specific tAIs for all cell lines,
as follows.

Fastq files with smallRNA-Seq reads were downloaded for
different cell types from various sources (see supplementary
table S3, Supplementary Material online). Reads were prepro-
cessed using the fastx toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/, last accessed December 8, 2021) and then
mapped to native and mature tRNA sequences using sege-
mehl v0.2 (Hoffmann et al. 2009). Of the mapped reads, only
those with a minimum length of 15 nucleotides were
retained. To account for the high frequency of tRNA mod-
ifications, which may result in mapping mismatches, the
allowed mismatch ratio (mismatched nucleotides/read
length) was set to �10%. (Other mismatch ratio cutoffs,
<7% and <15%, were also tested for HEK293, but did not
improve the correlation with tRNA abundances derived from
hydro-tRNA-Seq [Gogakos et al. 2017] and DM-tRNA-Seq
[Zheng et al. 2015] data, or resulted in a smaller fraction of
reads mapping to tRNA sequences in sense direction; data
not shown.) tRNA abundances were calculated as the num-
ber of smallRNA-Seq reads mapping to each tRNA anticodon
type. Effective tRNA abundances are calculated from these as
described above.

tRNA Adaptation Index
As proposed by dos Reis et al. (2004), we calculated ORF tAIs
as the geometric mean of normalized effective tRNA abun-
dances complementary to codons in the ORF:

tAI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiYn

i
wi

n

q
;

where n is the total number of codons in an ORF and wi is the
normalized effective tRNA abundance of the tRNA anticodon
complementary to the codon at position i.

We obtained normalized tRNA abundances by dividing
each effective tRNA abundance by the maximum of all effec-
tive tRNA abundances:

wi ¼
ftRNAi

max ftRNAi
ð Þ ;

where ftRNAi
is the frequency of the tRNA complementary to

the codon at position i.
We chose to normalize to the maximum of all effective

tRNA abundances instead of the maximum among

synonymous codons coding for the same amino acid because
we wanted to analyze the global correspondence between
tRNA abundances and codon usage, independent of amino
acid identities.

We calculated first-10-codon and first-20-codon tAIs by
considering only the first 10 and 20 codons downstream of
the AUG start, respectively.

Randomized Control Sequences
Frameshifted tAIs were calculated from codon frequencies in
sequences starting one and two nucleotides downstream of
start codons and ending two and one, respectively, nucleo-
tides upstream of stop codons of ORFs.

Modification of the Correlation Test for Translational
Selection from dos Reis et al. (2004)
To test for translational selection on mRNA codon usage in a
species, dos Reis et al. (2004) proposed a correlation test, in
particular the correlation between tAI and the effective num-
ber of codons, adjusted for the GþC bias at the third codon
position of mRNAs. Here, we modified this translational se-
lection test to quantify the global correspondence between
codon usage bias and tRNA abundances for all 60 codons
(excluding start and stop codons), not just the correspon-
dence within groups of synonymous codons. For that, we
used the Kullback–Leibler divergence (KLD), which was
used before to quantify codon usage bias (Bentele et al.
2013). KLD is the relative entropy between the actual codon
usage in an ORF and the codon usage that would be expected
based on its GþC content:

KLD ¼ �
X

c
pobs cð Þ log2

pobs cð Þ
pexp cð Þ

� �
:

pobsðcÞ is the observed frequency of codon c among all
codons used in an ORF, and pexpðcÞ is the expected fre-
quency of codon c, given by the GþC content, fGC, of an
ORF and normed to 1 for all codons cc occurring in an ORF:

pexpðcÞ ¼ ð fGCð ÞnGC cð Þ 1� fGCð ÞnAT cð ÞÞ
=ð
X

cc
fGCð ÞnGC ccð Þ 1� fGCð ÞnAT ccð ÞÞ:

nGCðcÞ and nATðcÞ are the numbers of G or C and A or T
nucleotides, respectively, in codon c. We used the Spearman
correlation coefficient between (the negative) KLD and tAI as
a measure for the strength of translational selection. We esti-
mated the correlation coefficient confidence intervals (90%) in
figure 3C by 10,000 times bootstrapping with replacement. P
values indicate the probability for a higher or equal correlation
coefficient for lincRNAs (indicated in red) or a lower correlation
for lincRNAs (indicated in black) compared with control ORFs,
30 UTR, or 50 UTR ORFs among 10,000 bootstrapped samples.

Quantification of Cytoplasmic Gene Expression Levels
per Species
We estimated cytoplasmic RNA expression levels for three
species (human, fruit fly, and fission yeast) by combining
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cytosolic gene expression quantifications from different stud-
ies (see supplementary table S3, Supplementary Material on-
line, for sources and accession codes). For fruit fly, we used
data from early embryos and two cell lines, S2 and ML-
DmD17-c3 (Aspden et al. 2014; Li et al. 2016; Bouvrette
et al. 2018). For fission yeast, we used data from two different
growth conditions (Subtelny et al. 2014; Herzel et al. 2018).
For humans, we used data from five cell lines, GM12878,
HEK293, HeLa-S3, HepG2, and K562 (ENCODE Project
Consortium 2004; Subtelny et al. 2014). For GM12878,
HeLa-S3, HepG2, and K562, we downloaded gene quantifica-
tions from ENCODE (www.encodeproject.org, last accessed
December 8, 2021). For HEK293 and the other species, we
downloaded fastq files with polyA-selected RNA-Seq reads
obtained from cytosolic RNA fractions, preprocessed them
using the fastx toolkit (http://hannonlab.cshl.edu/fastx_tool-
kit/, last accessed December 8, 2021), and quantified gene
expression levels using RSEM (Li and Dewey 2011) with
STAR (Dobin et al. 2013). We averaged gene expression levels
over replicates. To combine expression data from different
experiments for each species, we first ranked genes by their
cytoplasmic expression level in each experiment. We then
used the maximum rank across experiments as the combined
rank for each gene. Combined ranks were normalized to the
maximum combined rank so that genes with the highest
cytosolic expression levels had combined ranks close to 1.
We defined lincRNAs with a combined rank > 0.85 as top
cytoplasmic lincRNAs, and mRNAs with a combined rank >
0.99 as top cytoplasmic mRNAs.

Quantification of Total and Cytosolic Transcript
Expression Levels in Human Cell Lines
We used total and cytoplasmic transcript expression levels
for five human cell lines (GM12878, HEK293, HeLa-S3,
HepG2, and K562; see supplementary table S3,
Supplementary Material online, for sources and accession
codes). We downloaded transcript quantifications for four
cell lines from ENCODE (ENCODE Project Consortium
2004). For HEK293, we downloaded polyA-selected RNA-
Seq reads (Subtelny et al. 2014; Aktaş et al. 2017) and
preprocessed them using the fastx toolkit (http://hannon-
lab.cshl.edu/fastx_toolkit/, last accessed December 8,
2021). We quantified transcript expression levels using
RSEM (Li and Dewey 2011) with STAR (Dobin et al.
2013). We averaged expression levels over replicates. We
considered RNAs with TPM > 0.1 as expressed. We chose
the threshold for defining cytoplasmic RNAs as the first-
quartile (25%) of the mRNA cytosolic expression values for
each cell type. We excluded histone mRNAs, as these are
not usually polyadenylated and result in incorrect expres-
sion values in polyA-selected RNA-Seq.

We selected mRNAs with cytoplasmic expression levels
matching those of lincRNAs as follows. First, for each cyto-
plasmic lincRNA, we identified all mRNAs with similar
cytoplasmic expression levels (identical values after log10-
transformation and rounding to two decimal places). From
these mRNAs, we randomly sampled ten with replacement
for each cytoplasmic lincRNA.

Quantification and Analysis of Ribo-Seq Data in
Human Cell Lines
We downloaded Ribo-Seq data for five human cell lines from
several studies ([Subtelny et al. 2014; Cenik et al. 2015;
Solomon et al. 2017; Huang et al. 2019; Martinez et al.
2020]; see supplementary table S3, Supplementary Material
online). We trimmed adapter sequences from reads’ ends
using cutadapt v1.8 (Martin 2011), and retained reads with
a length between 16 and 35 nucleotides and a quality score of
�30 in at least 90% of the bases. We discarded reads that
mapped to human rRNAs or tRNAs (ENSEMBL database v91
[Zerbino et al. 2018]) using bowtie2 v2.3.0 (-L 15 -k 20)
(Langmead and Salzberg 2012). We further discarded reads
that mapped to two or more mRNA coding regions or lon-
gest lincRNA ORFs.

We determined the position of the ribosome P site
within Ribo-Seq reads from reads overlapping mRNA start
codons. In particular, we considered the three most fre-
quent distances of the AUG start codon from the read
start (read offset) for each read length (if they were found
in more than 500 reads and more than 1% of reads over-
lapping mRNA start codons). Then, for each longest
mRNA coding region or longest lincRNA ORF, we counted
Ribo-Seq reads if the corresponding ribosome P site was in-
frame, considering the three read offsets for that respective
Ribo-Seq read length.

We calculated the relative ribosome-binding for each lon-
gest coding region/ORF as the log2 ratio of the normalized
Ribo-Seq read count (plus a pseudo-count of 1.0) to the cy-
tosolic expression level (FPKM) of the transcript harboring
the longest coding region/ORF. We normalized the Ribo-Seq
read counts by the length of the coding region/ORF and the
total number of Ribo-Seq reads mapping in-frame to mRNA
coding regions, and multiplied by 1eþ 9.

We excluded histone mRNAs from this analysis, as these
are not usually polyadenylated and result in incorrect ex-
pression values in polyA-selected RNA-Seq and snoRNAs,
as these may associate with ribosomes that translate other
RNAs.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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