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ABSTRACT

ChiP-seq is increasingly used to characterize
transcription factor binding and chromatin marks
at a genomic scale. Various tools are now available
to extract binding motifs from peak data sets.
However, most approaches are only available as
command-line programs, or via a website but with
size restrictions. We present peak-motifs, a
computational pipeline that discovers motifs in
peak sequences, compares them with databases,
exports putative binding sites for visualization in
the UCSC genome browser and generates an exten-
sive report suited for both naive and expert users.
It relies on time- and memory-efficient algorithms
enabling the treatment of several thousand peaks
within minutes. Regarding time efficiency, peak-
motifs outperforms all comparable tools by several
orders of magnitude. We demonstrate its accuracy
by analyzing data sets ranging from 4000 to 128 000
peaks for 12 embryonic stem cell-specific tran-
scription factors. In all cases, the program finds
the expected motifs and returns additional motifs
potentially bound by cofactors. We further apply
peak-motifs to discover tissue-specific motifs in
peak collections for the p300 transcriptional
co-activator. To our knowledge, peak-motifs is the
only tool that performs a complete motif analysis
and offers a user-friendly web interface without
any restriction on sequence size or number of
peaks.

INTRODUCTION

ChIP-seq (1,2) has recently become a method of choice to
study the binding preferences of transcription factors,
as well as the localization of epigenetic regulatory marks
at a genomic scale. The first steps of the computational
analysis (read mapping and peak calling) typically result in
several thousands of peak regions ranging between 200
and 10000 bp. Motif analysis is required to extract the
relevant information from these regions: discover
binding motifs that capture the binding specificity of the
pulled-down factor and their possible co-regulators;
compare discovered motifs to databases to predict
associated transcription factors; predict the exact pos-
itions of the binding sites (usually much shorter than the
peak regions); study the binding specificity of transcrip-
tion factors in various contexts (cell types, mutant strains
and transcription factor isoforms).

Specialized software tools have recently been developed
for the analysis of ChIP-seq peaks, supporting different
combinations of motif-related tasks (Table 1). An import-
ant bottleneck for most existing tools is that the
underlying algorithms were originally developed to
discover binding motifs from a small set of co-regulated
promoters, and can hardly treat the thousands of peaks
produced by ChIP-seq experiments. This limitation is
typically circumvented by restricting motif discovery to a
few hundreds peak regions and by truncating the peaks to
a maximal width (e.g. 100 bp) to further reduce the total
size of the sequence set (3—5). However, given the power of
the genome-wide experimental approach, one would like
to be able to analyze the full data set. Some alternative
algorithms support the analysis of large-scale data sets but
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are only available via a Unix shell interface (6-8), or as
MATLAB functions (9), and are thus of poor usability for
life-science researchers.

We have developed a computational pipeline called
‘peak-motifs’, motivated by the pressing need for a statis-
tically reliable, time-efficient and user-friendly framework
to analyze full data sets of ChIP-seq peaks or similar data
(ChIP-PET, ChIP-on-chip, CLIP-seq). This comprehen-
sive pipeline takes as input a set of peak sequences,
discovers exceptional motifs, compares them with motif
databases, predicts binding site positions and returns a
structured HTML report with direct links to visualization
in the UCSC genome browser (Figure 1). This tool can
also be used for differential analyses, where two datasets
are given as input (e.g. test versus control, or peaks from
two experimental conditions), to discover motifs specific
to one of the datasets.

We first show that this motif discovery approach is
significantly faster than other available alternatives,
thereby allowing processing of comprehensive ChIP-seq
data sets, even from the web server. We then demonstrate
the biological relevance of the motifs discovered by our
pipeline with two study cases, highlighting the benefit of
analyzing complete datasets and using complementary
approaches for motif discovery.

MATERIALS AND METHODS

The motif discovery step relies on a combination of
tried-and-tested algorithms integrated in the software
suite regulatory sequence analysis tools (RSAT, http://
rsat.ulb.ac.be/rsat/) (10-12), which use complementary
criteria to detect exceptional words (oligonucleotides and
spaced motifs): global over-representation of oligonucleo-
tides (oligo-analysis) or spaced pairs (dyad-analysis),
heterogeneous positional distribution (position-analysis)
and local over-representation  (local-word-analysis)
(12-15).

The motif comparison step is performed by compare-
matrices (12), which supports a wide range of scoring
metrics and displays the results as multiple alignments of
logos, enabling to grasp the similarities between a dis-
covered motif and several known motifs. This feature is
particularly valuable to reveal adjacent fragments of the
discovered motif showing similarities with two distinct
known motifs, suggesting a bipartite motif for two
factors (see the SOCT motif in Figure 4 and below).

As the individual components of the workflow have
been described previously (12), we briefly explain here
the choice of parameters for the different steps of
peak-motifs analyses. The full list of commands and
parameters are automatically reported at the end of each
peak-motifs report. The parameters used for the case
studies are available in the peak-motifs reports on the
supporting  website  (http://rsat.bigre.ulb.ac.be/~rsat/
supp_material_peak-motifs/).

Motif discovery

Word-based analysis is performed with hexanucleotides
(k = 6) and heptanucleotides (k = 7). The significance
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tests underlying pattern detection ensure a control of the
rate of false positives, with suitable multi-testing correc-
tions. The motif discovery algorithms support higher
order background models, which are of particular import-
ance for modeling genomic sequences of vertebrates.
For oligo-analysis, expected word frequencies were
estimated with a Markov model of order m =k — 2,
trained in the peak sequences. The website also allows to
select lower order Markov models, which are less stringent
but achieve a higher sensitivity with small data sets. For
differential analysis, the expected frequency of each k-mer
is estimated by taking the observed frequency of the same
k-mer in the control set. Significant words are assembled
using ‘pattern-assembly’ and converted to position-specific
scoring matrices with matrix-from-patterns.

Motif comparison

Discovered motifs are compared (using compare-matrices)
to one or several databases of known transcription factor
binding motifs. The website directly supports comparisons
with JASPAR (16), UNIPROBE (17), REGULONDB
(18) and Drosophila-specific collections (19), thus
providing a vast choice of known motifs, for a wide
range of organisms. Personal or license-protected motif
collections can also be uploaded. Several metrics are
computed to measure the similarity between each matrix
pair (Pearson correlation, width normalized correlation,
logo dot product, correlation of information content,
normalized Sandelin—Wasserman, sum of squared dis-
tances and normalized Euclidian similarity). As these
metrics span over very different ranges, we convert them
to ranks and compute a mean rank in order to obtain
a robust comparison metrics.

Matrix scanning

Peak sequences are scanned to predict binding sites with
the program matrix-scan, using as background model
a Markov chain of order 1 trained on the peak sequences
themselves. Noteworthy, a Markov order m > [ is required
to account for the CpG avoidance observed in vertebrate
genomes, and for other types of context-dependent residue
probabilities. Predicted binding sites are mapped onto the
genome (convert-features) and exported as BED files to
be automatically loaded as custom tracks on the UCSC
genome browser.

RESULTS

Peak-motifs processes full-sized ChIP-seq data sets in
a few minutes

We assessed the time efficiency of peak-motifs by
analyzing data sets of increasing sizes (from 100 to
1000000 peaks of 100bp each), with total sequence
sizes ranging from 10kb to 100 Mb The computing
time of the motif discovery algorithms integrated in
peak-motifs increases linearly with sequence size and
outperforms all the other existing motif discovery tools
used in this comparison (Figure 2, Supplementary File
S1). Data sets of several tens of megabytes are
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Figure 1. Schematic flow chart of the peak-motifs pipeline. For sake of clarity, only the main analysis steps are depicted. The pipeline takes as input

a set of peak sequences, and runs several de novo motif discovery algorithms based on different detection criteria: over-representatio

n, differential

representation (test versus control), global position bias or local over-representation along the centered peaks. Transcription factors are predicted by

matching discovered motifs against several public motif databases and/or against user-uploaded motif collections. Peak sequences are

scanned with

the discovered motifs to predict precise binding positions. These positions are then automatically exported as an annotation track for UCSC genome

browser, thus enabling a flexible visualization in their genomic context.

processed in a few minutes on a personal computer (the
most efficient tool, oligo-analysis, treats 100 Mb in
3min). This linear time response enables peak-motifs
to scale up efficiently with sequence size, and allows
us to provide an ecasy access via a web interface,

without any data size restriction. This moreover gives
us the possibility to run four distinct algorithms in
order to detect motifs of various types (oligonucleotides,
spaced pairs) based on complementary criteria
(over-representation, positional heterogeneity).
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Figure 2. Time efficiency of motif discovery algorithms integrated in
peak-motifs (plain lines) compared to alternative algorithms (dotted
lines). The abscissa indicates sequence sizes, the ordinate processing
times. The programs oligo-, dyad-, position-analysis and DREME
show a linear time complexity (the power is ~1), ChIPMunk has
a quasi-linear complexity (power 1.27) and MEME a more than
quadratic complexity (power 2.21). See Supplementary File S1 for the
detailed analysis.

Analysis of the ChIP-seq peak sets for 12 DNA-binding
transcription factors involved in mouse ES cell
pluripotency and self-renewal

To evaluate the accuracy of the predicted motifs, we
analyzed the ChIP-seq peak sets for 12 DNA-binding
transcription factors involved in mouse embryonic stem
cell pluripotency and self-renewal (20). The read sequences
were downloaded from the Gene Expression Omnibus
website and mapped with Bowtie (21) on the mouse
mm9 assembly. Peak regions were extracted from reads
using MACS (22) with a false discovery rate threshold
of 0.2, and processed with PeakSplitter (23) to obtain
actual peaks. For the Smadl data set, MACS did not
return a single peak with the selected parameters.
We, therefore, used the peaks from the initial data set
GSM288348, which contains 1084 ChIP-seq peaks for
the Smadl factor. The other data sets comprise between
4249 peaks for Stat3 (totaling 1.4 Mb) and 128469 peaks
for Esrrb (36.6 Mb).

For ecach of the 12 tested factors, peak-motifs
discovered the correct motif (Figure 3). The relevant
motifs were generally detected independently by several
of the four algorithms, indicating that they are not only
over-represented (oligo-analysis, dyad-analysis) but also
positionally biased around peak centers (local-word-
analysis, position-analysis). For several peak sets, recent
studies (5,24) using novel motif-finding programs
returned more accurate motifs than the original study,
which was restricted to the 500 top-scoring peaks. Our
comprehensive analysis also returned more accurate

Nucleic Acids Research, 2012, Vol. 40, No. 4 e31

motifs than the original study, and performed as well or
better than other recent motif-finding programs, as
detailed below.

In the Sox2 and Oct4 peak sets, peak-motifs found not
only the composite ‘SOCT’ motif bound by the Sox2/Oct4
complex (reported by Chen and co-workers), but also
the distinct motifs recognized by Sox2 (CTCTTTGTT)
and Oct4 (ATGyAAAt), respectively (Figure 4, top).
Interestingly, in the Oct4 data set, unknown motifs were
returned with a high significance, (i.e. motifs with no
significant similarity with the consensus encompassed by
the common databases). Such motifs may reveal alterna-
tive consensus, as in the case of the motif crTATGCGCA
TAyg, which actually corresponds to an alternative
Oct4 motif, also detected in other recent studies (5,24).

As discussed by Chen and co-workers, Nanog and
Smadl frequently bind the same regions as Sox2/Oct4,
which raises a particular difficulty for motif discovery.
Indeed, their analysis of the Nanog peak set returned
a Sox2-like motif instead of the Nanog binding motif.
Subsequently, this Sox2-like motif was erroneously
annotated as Nanog binding in the TRANSFAC
database (matrix VENANOG _02), although its consensus
(CYWTTGTTNT) clearly differs from the previously
annotated Nanog consensus (GGGNCCATTKCC,
TRANSFAC matrix VSNANOG_01). The prevalent
motif discovered by peak-motifs in Nanog peaks corres-
ponds to the SOCT binding motif, while the canonical
Nanog motif is not found. However, peak-motifs reports
a motif (sCGCmaTCAbg) that is not similar to any
motif found in the databases (Figure 4, middle).
A similar motif with a ccAT(C/T)A core was also
reported by Bailey (5), and actually corresponds to an
experimentally validated alternative Nanog motif (25).

For the Smad]1 factor, the peak size distribution of the
original data set seems to be biased toward very small
peaks (smallest peak is 1bp, mean size id 30 bp); neverthe-
less, peak-motifs was able to discover a motif agAAACA
AAGCmar that matches the canonical Smadl motif
(VESMAD1_01 adAAACAAAGcm). In  addition,
several other discovered motifs match a Sox-like motif
wGAACAATAga, confirming the frequent co-binding
of Smad1 and Sox.

In the E2fl peak set, peak-motifs discovered sev-
eral motifs matching the generic E2F consensus
(GGCGsg, matrix V$E2F_Q2) but distinct from the
E2fl1-specific consensus (TTTsGCGG, in Transfac
matrix VSE2F1_Q4; TTTsGCGC in JASPAR matrix
MAO0024.1) (Figure 4, bottom). Whereas no E2fl motif
was detected in the original study by Chen and co-workers
(20), an E2f-like motif similar to ours was reported in
ref. (5).

In summary, our analysis of the 12 peak sets from Chen
and co-workers significantly improved motifs as compared
to the original study, highlighting the value of applying
motif discovery to full-size data sets. Remarkably, in
addition to the motifs corresponding to the transcription
factors targeted by the experiments, peak-motifs also
returned several motifs corresponding to transcription
factors presumably involved in the same regulatory
pathways.
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Figure 4. Logos of the motifs discovered by peak-motifs for the factors
Oct4, Sox2, Nanog and E2fl adapted from the ChIP-seq data set by
Chen et al. (20).

Analysis of the ChIP-seq peak sets for p300 in four
different mouse embryonic tissues

Beyond the analysis of motif-specific DNA-binding tran-
scription factors, the ChIP-seq approach can be used to
characterize binding profiles of epigenetic regulators,
chromatin marks and generic cofactors. In contrast with
the transcription factors analyzed above, such cofactors
do not recognize specific DNA motifs, but interact with
various specific DNA-binding transcription factors and
facilitate the activation of their target genes by modifying
DNA structure. Genome-wide location analyzes of the
generic cofactor p300 have been performed to reveal
regions transcriptionally active in different tissues during
embryonic development (26,27). Since the DNA regions
identified by this approach likely contain binding sites for
the transcription factors specifically active in the analyzed
tissues and developmental stages, we wondered if
peak-motifs would be able to detect the corresponding
motifs. In this respect, we used peak-motifs to detect
motifs from the ChIP-seq peaks of the generic
enhancer-associated p300 cofactor. In the two aforemen-
tioned studies, binding profiles of this cofactor were
characterized in several embryonic mouse tissues (heart,
midbrain, forebrain and limb) and some binding regions
were validated as tissue-specific enhancers. However, the
transcription factors bound to those enhancers remain
unknown.

Nucleic Acids Research, 2012, Vol. 40, No. 4 e31

We retrieved the peak locations for all four tissues.
By running peak-motifs in the p300 peak sets in each of
these four tissues, we were able to identify motifs poten-
tially bound by tissue-specific regulators, as well as some
motifs common to all four data sets, probably correspond-
ing to ubiquitous activators (Supplementary File S2).
Peak-motifs compared these discovered motifs to motifs
of known factors stored in databases, including Transfac,
JASPAR and UniProbe. Tissue-specific motifs include
a motif found in the limb data set alone, which matches
the consensus of Hox9, known to be involved in limb
development (28). We also identify a GATA motif
specific to the heart data set, which presumably points
to a key factor of the cardiac gene regulatory network.
As a validation of these predictions, we verified that the
predicted transcription factors are indeed expressed in
the corresponding tissues, using expression data from
the MGI database (29) (Supplementary File S2).

For further validation, we analyzed data generated by
ChIP-seq experiments targeting various heart-specific
transcription factors (Mef2, SRF, GATA4, Nkx2.5) in
the mouse HL1 cardiomyocyte cell line. Predicted motifs
for these data sets strengthen our findings (Figure 5): the
predicted GATA motif from the p300 heart data set
clusters with similar motifs obtained from the GATA4
data set. Similarly, several motifs obtained in HL1 data
sets cluster with the set of motifs from the p300 data
sets matching the Mef2 consensus, giving insight into
the highly combinatorial nature of cardiogenesis. We
also found two ‘ubiquitous’ motifs significantly over-
represented in all four data sets. The first is a C-rich
motif, which matches the binding motif of Sp1, consistent
with the fact that Spl functionally interacts with the
acetylase domain of p300 (30,31). The second motif
matches the Mef2 consensus (ATTTTTA). Interestingly,
Mef2 is known to be involved not only in muscle forma-
tion, explaining its presence in the heart and limb data set,
but also in CNS development (in particular neuron
differentiation).

The relevance of the discovered motifs opens the
exciting prospect of predicting which transcription
factors and enhancers are active in a given tissue and/or
at a given developmental stage, by discovering specific TF
motifs in the peaks pulled down by generic cofactors such
as p300.

Peak-motifs is accessible through a user-friendly web
interface

The simplest way to use peak-motifs is via its user-friendly
web interface, where all parameters (background
models, word lengths, etc.) are pre-selected according to
the optimal conditions found from our study cases. The
only required input is the set of peak sequences. A second
set of peak sequences can also be provided to serve as
background for differential analyses (treatment versus
control). Although peak-motifs is designed to process
full data sets, the interface offers the possibility to easily
reduce the analysis to a subset of top sequences, or yet to
clip peaks at a maximal size from their centers, thereby
reducing the need for data manipulation on the user
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Figure 5. Network of motifs discovered in the p300 data set. Each node represents a motif; the shape and color of the node denote the tissue (for the
p300 datasets) and the ChIPed-factor (for the HLI cell-line datasets, used as a validation), respectively. Two motifs are joined by a line if their
normalized correlation is above 0.75; the width of the line denotes the degree of correlation. Node labels refer to the algorithm used to discover
the motif: L (local-words), P (position-analysis), O (oligo-analysis), D (dyad-analysis) as well as the considered word length (6 or 7). The names of
the transcription factor(s) likely associated with the motif clusters are also indicated, together with a representative logo.

side. The web page is documented with a manual
providing detailed information about each option.
A ‘demo’ button fills up the form with a typical test set.
A tutorial further guides new users through choices of
parameters and explains how to interpret the results.
In addition to its website access, peak-motifs can be
used as a stand-alone application (Unix shell), as well
as SOAP/WSDL web services (thereby enabling bioinfor-
maticians to automate its use, without installing it on
their machine).

A particular effort has been made to generate a clear
and easily interpretable output for less-advanced users,
while providing links to the raw results for the expert
users. All result files are presented in standard formats
and are downloadable as an archive along with the
summary web page, to allow further analysis with
third-party software. To our knowledge, peak-motifs is
the only ChIP-seq pipeline offering direct visualization
of the predicted binding sites as custom tracks in
the UCSC genome browser. This feature is of prime
importance to interpret the results in light of the
genomic annotation, in order to plan experiments for
further validation of the results.

DISCUSSION

Peak-motifs is a comprehensive pipeline to efficiently
discover motifs and identify putative transcription
factors in ChIP-seq and related data sets. We
demonstrated its biological validity by recovering the
correct motifs from 12 ChIP-seq sets corresponding to
known transcription factors (20). We also performed an

original analysis of the binding profiles of the generic
cofactor p300 (26), which led us to predict specific
motifs and transcription factors that are active in
specific tissues at specific developmental stages. Our
benchmarks showed that for large data sets peak-motifs
outperforms its most serious competitors by a factor of at
least 100, allowing us to analyze full data sets in a matter
of minutes. This time efficiency enables an interactive web
access for comprehensive data sets, thereby constituting
a convenient tool for ChIP-seq data analyses even for
naive users. This tool will be of broad interest to
the increasing community of experimentalists and
bioinformaticians who are confronted to the challenging
issue of extracting interpretable information from the
massive amounts of data resulting from next generation
sequencing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Files 1 and 2.
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