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ABSTRACT
◥

Cholangiocarcinoma is a form of hepatobiliary cancer with an
abysmal prognosis. Despite advances in our understanding of
cholangiocarcinoma pathophysiology and its genomic landscape,
targeted therapies have not yet made a significant impact on its
clinicalmanagement. The low response rates of targeted therapies in
cholangiocarcinoma suggest that patient heterogeneity contributes
to poor clinical outcome. Here we used mass spectrometry–based
phosphoproteomics and computational methods to identify
patient-specific drug targets in patient tumors and cholangiocarci-
noma-derived cell lines.We analyzed 13 primary tumors of patients
with cholangiocarcinoma with matched nonmalignant tissue and 7
different cholangiocarcinoma cell lines, leading to the identification
and quantification of more than 13,000 phosphorylation sites. The
phosphoproteomes of cholangiocarcinoma cell lines and patient
tumors were significantly correlated. MEK1, KIT, ERK1/2, and
several cyclin-dependent kinases were among the protein kinases

most frequently showing increased activity in cholangiocarcinoma
relative to nonmalignant tissue. Application of the Drug Ranking
UsingMachine Learning (DRUML) algorithm selected inhibitors of
histone deacetylase (HDAC; belinostat and CAY10603) and PI3K
pathway members as high-ranking therapies to use in primary
cholangiocarcinoma. The accuracy of the computational drug
rankings based on predicted responses was confirmed in cell-line
models of cholangiocarcinoma. Together, this study uncovers fre-
quently activated biochemical pathways in cholangiocarcinoma and
provides a proof of concept for the application of computational
methodology to rank drugs based on efficacy in individual patients.

Significance: Phosphoproteomic and computational analyses
identify patient-specific drug targets in cholangiocarcinoma, sup-
porting the potential of a machine learning method to predict
personalized therapies.

Introduction
Cholangiocarcinoma is the second most common primary hepatic

malignancy, originating from cholangiocytes in the biliary tract (1).
Global incidences and mortality rates are growing annually with
prognosis remaining poor;most patients die within a year of diagnosis,
irrespective of treatment modality (2). At present, the only chance of
“curative” treatment is surgical resectionwhen the disease is diagnosed

at an early stage, but even then, 5-year survival is less than 20% (3).
Progress has been made in understanding the mutational landscape of
cholangiocarcinoma, but the translation of this new knowledge into
effective therapies has been slow (4). Mutations are most frequently
found on genes that are common to other solid tumors, such as
receptor tyrosine kinases (e.g., FGFR1–3, ERBB2, c-MET, EGFR),
intracellular signaling molecules (e.g., KRAS, BRAF/ARAF, PI3KCA),
tumor suppressors (e.g., TP53, SMAD4, CDKN2A/B), and epigenetic
modifiers [e.g., ARID1A, BAP1, MLL3, isocitrate dehydrogenase 1/2
(IDH1/2); refs. 4–8].

Chemotherapies such as gemcitabine plus cisplatin are widely accept-
ed as the standard of care (2, 9). Clinical trials of targeted therapies have
shown that some patients respond well to such treatments, but most do
not, even after stratification using genetic markers. As a recent example,
the pan-FGFR inhibitor BGJ398 (Infigratinib) showed a 15% response
rate (RR) in an unselected population compared with 19% in patients
with alterations in their FGFR2 gene. Even for those patients that initially
responded, acquired resistance limited efficacy (10, 11). Similarly, Pemi-
gatinib, a recently approved selective inhibitor of FGFR1, 2, and 3
achieved 35.5% RR in patients with FGFR2 fusions/rearrangement
(12). Other examples of genetic-based stratification of targeted therapies
include trials that assess IDH inhibitors, CDK4/6 inhibitors, BH3
mimetics (targetingMCL1), PARP/ATM inhibitors, immune checkpoint
inhibitors, and epigenetic modifiers (4–8, 13–16). While it is clear that
stratification using genetic markers can improve RRs in the selected
population, more needs to be done to improve understanding of the
molecular alterations in each subtype, in order to reveal more effective
drug targets and identify better predictive biomarkers for selection of the
most effective targeted therapy for a given patient (6–8, 17).

Protein kinases are a large enzyme family of the human genome
consisting of approximately 520 genes (18, 19). By catalyzing reversible
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posttranslational phosphorylation of protein amino acid residues
[mainly on serine (Ser), threonine (Thr) or tyrosine (Tyr)] protein
kinases are able to regulate key signaling pathways that control cell
replication, growth, metabolism, and death (20, 21). Kinase activity is
commonly deregulated in cancer, through a combination of cellular
events, for which the genetic component is important but not fully
deterministic (22–24). Other molecular events, in addition to genetic
alterations, such as epigenetic regulation of gene expression, signals
from the microenvironment, and the activation status of phosphatases
also contribute to kinase, and hence, oncogenic pathway activation.
Consequently, stratification of kinase therapies based on genetic
alterations has not been as effective as originally expected (25, 26).
The hierarchy and global contribution of each kinase activity in
primary tumors is yet to be fully established, but it is acknowledged
that kinases determine cancer cell phenotype (27). A number of kinase
inhibitors are clinically in use for cholangiocarcinoma or are in
development (28) and identifying tumors addicted to the target kinase
(by assessing not only its expression, but also its activation status), is
expected to provide ameans to stratify patients for therapywith greater
accuracy than currently possible (29, 30).

Phosphoproteomics is an arm of proteomics that focuses on the
characterization of phosphorylation events. The phosphorylation
status of a protein represents the balance of kinases and phosphatases
activities. Thus, computational methods have been devised to harness
the information inherent in phosphoproteomics data to impute read-
outs of net activation of kinase-driven oncogenic signaling path-
ways (31, 32). LC/MS-MS phosphoproteomics is now a routine
technique in most proteomics laboratories with these methods
enabling quantification of more than 10,000 phosphorylation sites
per experiment (33, 34). The recent emergence of big data platforms,
with the development of computational approaches that can infer
responses to drug therapy such as kinase activities from phosphopro-
teomic data, is starting to present a means by which therapies can be
recommended (35–38).

Clinical evidence indicates that it may be difficult to identify
universal protein drug targets that may be suitable for all patients
with cholangiocarcinoma (2, 4). Therefore, the aim of this work
was to identify patient-specific drug targets in cholangiocarcinoma.
To achieve this, we analyzed phosphoproteomic data from a panel
of representative cholangiocarcinoma cell lines and surgically
resected cholangiocarcinoma tissue. Computational methods were
then used to analyze the phosphoproteomic data in order to
identify overactive kinases and to apply a clinically relevant
machine learning (ML) model of cholangiocarcinoma in silico.
These computational models allowed us to identify kinase inhibi-
tors and other drug classes as potential therapeutics for individual
patients with cholangiocarcinoma. The present results illustrate the
potential of ML in recommending therapies based on the cholan-
giocarcinoma phosphoproteome.

Materials and Methods
Clinical samples

Tumor (T) tissue samples were taken from the cholangiocarci-
noma tumor mass, while matched background (B) liver tissue
samples were distant to the tumor mass (n ¼ 13). All tissue samples
were snap frozen (�80�C) within 30 minutes of surgical resection.
All patients gave written informed consent. The study was institu-
tionally approved and samples were accessed via King’s Liver
BioBank (NHS Health Research Authority, Research Ethics Com-
mittee 08/H0704/117). Additional nonconfidential clinical infor-

mation such as subtype, tumor stage, gender, and recurrence are
summarized in Supplementary Table S1.

Cell lines, compounds, and viability assay
Extrahepatic cholangiocarcinoma (EH-CCA) cell lines EGI-1

(CVCL_1193), TFK-1 (CVCL_2214), and CCC-5 (CVCL_LM83)
were purchased from the DSMZ-German Collection. MMNK-1
(CVCL_M266) a benign cholangiocyte cell line, IH-
cholangiocarcinoma (IH-CCA) cell lines KKU-213 (CVCL_M261)
andOZ (CVCL_3118) were purchased from the Japanese Collection of
Research Bioresources Cell Bank. IH-CCA cell lines HuCCT1
(CVCL_0324) & HuH-28 (CVCL_2955), and gallbladder cancer cell
lines TGBC1TKB (CVCL_1769) & TGBC24TKB (CVCL_1770) were
purchased from Cell Bank, RIKEN BioResource Research Centre.
MCF10a (CVCL_0598) a benign epithelial cell line was obtained from
G.Ficz (Barts Cancer Institute, QMUL). Before an experimental
run Mycoplasma testing was performed (MycoAlert, Lonza). Specific
culture conditions are detailed in Supplementary Table S2.

CDK1 andCDK2 inhibitor AZD5438 and JAK2 inhibitor AZD1480
were from AstraZeneca. CDK4/6 inhibitor LY2835219 (Abemaciclib)
was from Eli Lilly and Company and theMEK1/2 inhibitor trametinib
fromGlaxoSmithKline. Otherwise, all test compoundswere purchased
from Selleckchem, solubilized in DMSO and stored at �80�C. Con-
trols for all experiments was vehicle (DMSO) alone. Cellular viability
was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT; Sigma-Aldrich) colorimetric assay.

Tissue/cell preparation for mass spectrometry: lysis and
protein digestion

Lysis buffer was prepared fresh on the day of tissue pulverization/
lysis and consisted of 8 mol/L urea in 20 mmol/L HEPES (pH 8)
supplemented with 1 mmol/L Na3VO4, 1 mmol/L sodium, 1 mmol/L
sodium b-glycerol phosphate, and 2.5 mmol/L Na2H2P2O7. Frozen
tissue specimens weighing 0.05 to 0.8 g were pulverized on dry ice and
liquid nitrogen using a MultiSample BioPulverizer (catalog no.
59012MS, BioSpec). Ground tissue samples were transferred to 2 ml
Lo-bind Eppendorf tubes containing equal amounts of glass beads
(Sigma G8772–100G) and 1,000 mL lysis buffer on ice. Samples were
vortexed, then rotated at 4�C for 30 minutes to homogenize the
samples. After lysis, samples were centrifuged at 4�C for 5 minutes
at 15,000� g. The lysate was transferred to a fresh 2 mL Lo-bind tube
for sonification (Diagenode Bioruptor Plus) at 50% intensity, for 3
bursts of 15 seconds, resting 15 seconds between pulses. Finally,
samples were spun at 15,000 � g, 4�C for 10 minutes, and the sample
transferred to fresh 2 mL Lo-bind tubes. Protein concentration was
determined using the Pierce bicinchoninic acid (BCA) assay (Thermo
Fisher Scientific).

In the dark, 0.5 mg protein was reduced and alkylated by
sequential incubation in 4 mmol/L dithiothreitol (DTT) and 8
mmol/L iodoacetamide (IAA), each for 30 minutes, in a heat block
set to 25�C (shaking at 1,200 rpm). The urea concentration was
reduced to 2 mol/L by the addition of 20 mmol/L HEPES (pH 8) for
protein digestion. Then 100 mL of trypsin beads [50% slurry of
TLCK-trypsin (Thermo-Fisher Scientific; catalog no. 20230)] con-
ditioned with 3 washes of 20 mmol/L HEPES (pH 8) were added
and the samples incubated for 16 hours at 37�C with agitation.
Trypsin beads were removed by centrifugation at 2,000 � g for 5
minutes at 5�C. The resultant peptide solutions were desalted on
10 mg Oasis HLB cartridges (Waters). For proteomics analysis
peptides were eluted with 500 mL of acetonitrile (ACN) solution
[30% ACN, 0.1% trifluoroacetic acid (TFA)], dried in a speed
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vacuum (RVC 2–25, Martin Christ Gefriertrocknungsanlagen
GmbH) and stored at �80�C.

Phosphorylated peptide enrichment
Enrichment of phosphorylated peptides was performed with TiO2

(GL Sciences) as previously described, with some modifications (39).
In brief, peptide eluents were normalized to 0.5 mL with glycolic acid
buffer 2 (1mol/L glycolic acid, 5%TFA, 80%ACN) and incubatedwith
25 mL of TiO2 slurry (50% slurry in 1% TFA) for 5 minutes with end
over end rotation, at room temperature and then centrifugation for 30
seconds at 1,500 � g. For each sample, 80% of the supernatant was
transferred to a fresh tube and stored on ice. The remaining 20% was
used to resuspend the bead pellets that were loaded into empty
prewashed PE-filtered spin-tips (Glygen Corp) and packed by centri-
fugation at 1,500 � g for 3 minutes. Spin tips were then sequentially
washed with 100 mL of glycolic acid buffer 2, ammonium acetate buffer
(100mmol/L ammoniumacetate in 25%ACN) and 10%ACNby room
temperature centrifugation for 3 minutes at 1,500 � g. For phospho-
peptide recovery, the addition 50 mL of 5% ammonium water followed
by centrifugation for 5 minutes at 1,500 � g was repeated four times.
Eluents were snap frozen on dry ice, dried in a speed vacuum, and the
peptide pellets stored at �80�C.

LC/MS-MS
For phosphoproteomics, peptide pellets were resuspended in 20 mL

of reconstitution buffer (20 fmol/mL of yeast enolase in 3% ACN, 0.1%
TFA), sonicated in a water bath and then 5 mL of each sample loaded
onto an LC/MS-MS system consisting of a Dionex UltiMate 3000
RSLC directly coupled to an Orbitrap Q-Exactive Plus mass spec-
trometer (Thermo Fisher Scientific). For proteomics, pellets were
resuspended in reconstitution buffer (0.5 mg/mL) and 2 mL were
injected into the mass spectomtery (MS) equipment. The LC system
used mobile phases A (3% ACN: 0.1% FA) and B (100% ACN; 0.1%
FA). Peptides were trapped on a m-precolumn (catalog no. 160454)
at 10 mL per minute flow rate and separated on Thermo Scientific
EASY-Spray LC Column (PepMapTM RSLC C18, 2 mm, 100Å, 75 mm
� 50 cm; P/N ES803, S/N 10637404) set to a temperature of 40�C. The
following parameters were used: 3% to 23% B gradient for 60 minutes
and a flow rate of 0.3 mL/minute. Samples were run in the LC/MS-MS
system in a randomized manner by shuffling samples before loading.
As they eluted from the nano-LC system, peptides were infused into
the online connected Q-Exactive Plus system operating with a 2.1
second duty cycle. Acquisition of full scan survey spectra (m/z 375–
1,500) with a 70,000 full width at half maximum (FWHM) resolution
was followed by data-dependent acquisition in which the 20 most
intense ions were selected for higher energy collisional dissociation
(HCD) and MS/MS scanning (200–2,000 m/z) with a resolution of
17,500 FWHM. A 30-second dynamic exclusion period was enabled
with an exclusion list of a 10 parts per million (ppm) mass window.
Overall duty cycle generated chromatographic peaks of approximately
30 seconds at the base, which allowed the construction of extracted ion
chromatograms (XIC) with at least 10 data points.

Computational MS
Mascot Daemon 2.5.0 (Matrix Science Ltd) was used to automate

peptide identification from MS data. Peak list files [Mascot Generic
Format files (MGF)] from RAW data were generated with Mascot
Distiller v2.5.1.0 and loaded into the Mascot search engine (v2.5) to
match MS/MS data to peptides (40). The searches were performed
against the SwissProt Database (uniprot_sprot_2014_08.fasta for
phosphoproteomic analysis) with an FDR of approximately 1% and

the following parameters: 2 trypsinmissed cleavages, mass tolerance of
�10 ppm for the MS scans and �25 mmu for the MS/MS scans,
carbamidomethyl Cys as a fixed modification, PyroGlu on N-terminal
Gln, and oxidation of Met as variable modifications. For phospho-
proteomic experiments phosphorylation on Ser, Thr, and Tyr was also
included as variable modifications. Using the in-house developed Peak
Statistic Calculator (Pescal), XIC for all the peptides identified across
all samples were constructed with �7 ppm and�2 minutes mass and
retention time windows, respectively. Peak areas from all XIC were
calculated. Undetectable peptides were given an intensity value of 0.
Values of three analytic replicates per sample were averaged and
intensity values for each peptide were normalized to total sample
intensity.

Bioinformatics and ML approaches
The first computational model applied, was Kinase Substrate

Enrichment Analysis (KSEA) where activation of a given kinase
pathway is inferred from phosphoproteomic data as previously
described (27). While the second approach was Drug Ranking Using
Machine Learning (DRUML; ref. 41). KSEA is an enrichment method
based on statistical hypothesis tests that identifies kinase activities
(measured as the phosphorylation of validated kinase substrates)
significantly overrepresented in a given dataset compared with a
background/reference dataset. In contrast, DRUML is an algorithm
designed for prediction and generates a ranked list of drugs based on
their efficacy to reduce cancer-cell proliferation. Of note, DRUMLuses
internally normalized distance metrics of drug response as input
feature and is built from an ensemble of ML models trained on in
house proteomic/phosphoproteomic data of cancer cells (n¼ 48) that
have been validated with external data (4).

Hierarchical clusters were constructed within the R statistical
computing environment (3.2.3) using the Euclidean distance metric
in the heatmap2 package. EC50 were calculated in R from the cell
viability data using the dose response curves package (W1.4 function).
Statistical analysis was performed in R (version 3.2.3) or Microsoft
Excel 2013. A paired, two-tailed Student t test was applied to assess
significance in phosphoproteomic and proteomic data between
matched samples. Normalized intensity values were assumed to
follow a normal distribution. Groups were assumed to present
similar variance and P values were adjusted for multiple testing
using Benjamini–Hochberg procedures, while hypergeometric test-
ing was used to calculate enrichment in KSEA analysis.

Results
Characterization of the cholangiocarcinoma phosphoproteome

We performed a phosphoproteomic analysis of cholangiocarci-
noma cell lines and patient tumors using label-free LC/MS-MS
(Fig. 1A). The study included 13 primary human T samples with
matched adjacent B tissues (Fig. 1B) and 9 human cancer cell lines
derived from cholangiocarcinoma (n ¼ 7) and gallbladder cancers
(n ¼ 2; Fig. 1C). Clinical features of patients are shown in Supple-
mentary Table S1. For comparison, 2 epithelial nonmalignant cell lines
derived fromhuman breast and cholangiocyte cells were also analyzed.
The tumor and adjacent tissue samples were analyzed in triplicate,
whereas cell lines were analyzed from two independent cultures in
technical triplicate (n¼ 2� 3). Overall, 14,119 and 13,749 phosphor-
ylation sites were identified (FDR < 0.02) in primary tumors and cell
lines, respectively, leading to the generation of 2,008,716 quantitative
data points. The principal component analysis (PCA) plots demon-
strated grouping of samples according to cell of origin or anatomic
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location of cholangiocarcinoma as illustrated in Supplementary
Fig. S1A and S1B.

Unsupervised hierarchical clustering of all samples based on nor-
malized phosphopeptide signals showed a distinct separation between
the T and B primary cholangiocarcinoma tissues, with samples
clustering by pathology (T or B, not by patient) and by technical
replicate (Fig. 1B). Similarly, for the analysis of phosphoproteomes
derived from cholangiocarcinoma cell lines, replicates grouped togeth-
er by cell line identity in unsupervised hierarchical clustering analysis

(Fig. 1C). These results indicate that the label-free phosphoproteomics
approach produced highly reproducible and high-quality quantitative
data.

To compare the phosphoproteomes of cell lines and primary tissue
samples, we summed the intensities of phosphopeptides derived from
given proteins to generate quantitative values for 4,610 phosphopro-
teins. Comparison between averaged phosphoprotein signals derived
from tumors and those generated from cell lines showed a strong
correlation between the datasets (Pearson R¼ 0.60, P¼ 1.2E-16), thus

Figure 1.

Phosphoproteomics analysis of cholangiocarcinoma cell lines and patient tumors. A, Summary of workflow analysis for tumors and cell lines of patients with
cholangiocarcinoma.B,Unsupervised hierarchical clustering based on normalization according tomean across all samples for protein phosphorylation sites (ppsites)
identified in patient resected tissue. Dendogram demonstrating clustering according to whether samples are replicates or from primary T/B liver. C, Unsupervised
hierarchical clustering based on normalization according to mean across all samples for protein phosphorylation sites identified in cell lines. Dendograms
demonstrating clustering according to whether sample replicate and cell type. D, Pearson correlation plot of phosphoprotein signals from cholangiocarcinoma cell
lines (n ¼ 9) versus patient cholangiocarcinoma tissue (n ¼ 13) illustrating a high level of similarity between samples sets. E, Number of phosphoproteins in
cholangiocarcinoma phosphoproteomes belonging to the named hallmark genes, gene ontology (GO) cellular location and process. F, Enrichment of gene ontology
cellular process and hallmark genes in cholangiocarcinoma phosphoproteomes relative to the human Swissprot Uniprot proteome.
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revealing a surprisingly high similarity between the phosphopro-
teomes of cell lines and primary cholangiocarcinoma tissue samples
(Fig. 1D). Mapping the identified cholangiocarcinoma phosphopro-
teome to hallmark genes, pathways, and ontologies highlighted that
cholangiocarcinoma-derived phosphoproteins have roles in funda-
mental biological processes including signal transduction, mitosis, and
gene expression among others and are annotated to be present in
subcellular locations including the cytosol, plasma membrane, and
nucleus (Fig. 1E). In order to identify highly represented pathways in
the cholangiocarcinoma phosphoproteome, the data was compared
with the Swissprot Uniprot proteome by enrichment analysis. Several
pathways and gene sets were found to be enriched relative to the total
proteome (at FDR-adjusted P < 0.05 by hypergeometric test) including
known oncogenic processes such as Hippo signaling, mitotic cytoki-
nesis, Myc targets, and PI3K/mTOR signaling (Fig. 1F). These results
show that our phosphoproteomics data is of high quality; we provide
these data as a community resource in the PRIDE repository of
proteomics data (PXD027329).

Kinase substrate and pathway enrichment analysis of
phosphoproteomics data identifies active kinases in
cholangiocarcinoma

To identify differentially regulated kinases and pathways in
cholangiocarcinoma relative to background tissue, we analyzed the
phosphoproteomics data using pathway enrichment analysis and
KSEA methods (27). KSEA considers validated kinase substrates or
downstream targets to derive values of enrichment associated to the
activation of kinases. This analysis led to the identification of 55
kinases with at least 10 substrates in tumor samples and 66 in cell
lines. Of these, frequently activated kinases in tumors relative to
background and in cancer cell lines included MEK1 (gene name
MAP2K1), KIT, ROCK1/2, ERK1/2 (MAPK1/3), ABL2, and several
cyclin-dependent kinases such as CDK1, CDK2, CDK4, and CDK5
(Fig. 2A and B). Enrichment analysis against pathways and hallmark
genes further showed an increase in oncogenic processes such as JAK/
STAT signaling, angiogenesis, RAS signaling, and mitotic gene sets
relative to noncancer cells (Fig. 2C andD). Representation of the data
in heatmap where pathways, kinase activities, and patients are sepa-
rated by hierarchical clustering, uncovered differences in the extent of
pathway activation across patients and cell lines (Fig. 2E and F),
indicating that there is a high degree of biochemical heterogeneity
across patients.

To confirm the results of KSEA and ontology enrichment analysis,
the data was interrogated for known markers of kinase activation by
comparing absolute phosphorylation signals (normalized to total
phosphorylation signal) across sample groups. Thus, these quantita-
tive values of protein phosphorylation, which are here termed ppIndex,
represent the proportion of phosphorylation signal relative to total
measured phosphorylation within a sample, expressed in ppm units.
Relative phosphorylation across individual samples is shown in Sup-
plementary Fig. S2. Phosphorylation of ERK1/2 (gene names MAPK1
and MAPK3) and MAP2K2 (MEK2) were increased in primary
tumors and cell lines relative to background (Fig. 3A), in agreement
with the result of KSEA. Additionally, phosphorylation of PRAS40
(AKT1S1) at S183, amarker ofmTOR signaling activity, was increased,
as were some phosphorylation sites on 4EBP1 (Fig. 3B).While the JAK
substrate STAT3 at Y705 was decreased in tumors relative to back-
ground (Fig. 3B). Also, consistent with KSEA, phosphorylation of
CDK1, CDK7, and their substrates were increased in tumors and cell
lines relative to background (Fig. 3C). Thereby, our analysis uncovered
kinases commonly activated in cholangiocarcinoma (Fig. 3A–C) as

well as patient-specific overactive signaling pathways in cholangio-
carcinoma primary tumors and cell line models (Fig. 2E and F).

Identification of synergistic kinase inhibitor combinations
To confirm that the activation of kinase-driven pathways in cho-

langiocarcinoma cells is functionally relevant, we next investigated
whether the observed increase in CDK1/2, CDK4/6, and MAPK
activities across the cholangiocarcinoma primary tumors and cell lines
over background tissue, translates to targeted drug sensitivity. To this
end, we assessed the viability of a panel of cell lines treated with specific
inhibitors of CDK1/2 (AZD5438), CDK4/6 (LY2835219), or MEK1/2
(trametinib) with a range of concentrations (10, 50, 100, 5000, 1,000
nmol/L) for 48 hours. TheMEK inhibitor (MEKi) was themost potent
compound in reducing cell viability for 3 of the 4 cell lines tested
(Fig. 3D). KKU-213 viability was affected by CDK1/2 inhibition at
concentrations above 1,000 nmol/L (Fig. 3E), whereas EGI-1 cells were
themost sensitive to the CDK4/6 inhibitor (Fig. 3F). However, overall,
the cholangiocarcinoma cell lines tested showed modest sensitivity to
single kinase inhibitor treatment (Fig. 3D–F). Notably, we observed
that these cells activated several pathways in parallel (Fig. 2) and
showed elevated levels of phosphorylation in known substrates of the
kinases that the selected compounds target (Fig. 3A). We therefore
postulated that multiple prosurvival nodes within cancer cells may be
providing compensatory signals that allow cells to escape treatments
with single drugs, as observed in other cancer models (42).

To test this hypothesis, EGI-1 cells were treated with a panel of
compounds as single agents or in combinationswith selection based on
the KSEA output. We also tested the JAK2 inhibitor AZD1480 as the
JAK/STAT pathway was elevated in cholangiocarcinoma tissue
(Fig. 2), although we also noted that the levels of the JAK substrate
STAT3pY705 in tumor tissueswas lower relative to background tissue.
We found that each of the treatments had morphologic effects on
EGI-1 cells following 48 hours of treatment compared with control
cells (Supplementary Fig. S3).

Viability assays confirmed that trametinib (MEKi, at 30 nmol/L) is
the only kinase inhibitor that reduces EGI-1 viability at low dose.
However, all combination treatments that included trametinib
enhanced EGI-1 cell death compared with trametinib monotherapy
(Fig. 3G). The combination of LY2835219 (CDK4/6i, at 50 nmol/L)
with AZD5438 (CDK1/2i, 100 nmol/L) and AZD5438 (100 nmol/L)/
trametinib (30 nmol/L) were particularly synergistic (combination
index 0.5 and 0.55, respectively) (Fig. 3H), as assessed by the Bliss
independence model (43). Additionally, triple inhibition with trame-
tinib, LY2835219, and AZD5438 was synergistic with a combination
index of 0.3. While the JAK inhibitor was ineffective in reducing cell
viability by itself or in combination with trametinib, these results
suggest that inhibition of several CDKs in combination with the
MAPK pathway may be required for full inhibition of cholangiocar-
cinoma cell viability.

DRUML predicts drug efficacy in cholangiocarcinoma
In order to identify drugs, other than kinase inhibitors, that may be

efficacious for cholangiocarcinoma, we reanalyzed the phosphopro-
teomic data using DRUML. DRUML is a recently developed algo-
rithm, trained on the responses of cancer cell lines (n ¼ 48) to 411
drugs with different modes of action, using an ensemble of ML
models (41). The highest ranking drugs (i.e., predicted to be more
efficacious by DRUML) for both tumors of patients with cholangio-
carcinoma and cell lines included leptomycin b (an antibiotic), oua-
bain (Na/K-ATPase inhibitor), obatoclax mesylate (Bcl-2 inhibitor),
panobinostat [HDAC inhibitor (HDACi)], belinostat (HDACi) and
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dinaciclib (CDK inhibitor; Fig. 4A and B). The predicted efficacy of
drugs in cells lines and primary tumors correlated (Fig. 4C), suggesting
that cell lines can be an appropriate model for ranking drugs based on
DRUML predicted efficacy.

Toxicity to noncancer cells is a key factor that severely limits the
clinical efficacy of drugs. We therefore explored the utility of identi-
fying drugs with potentially a high therapeutic window by distinguish-
ing those with high predicted efficacy in primary cholangiocarcinoma

relative to background tissue. We selected drugs with an average
predicted area above the drug dose response curve (AAC) more than
0.2 in tumors and an overall greater efficacy in tumors relative to
background (Fig. 5A). A total of 36 drugs passed these criteria
(Fig. 5B). Among the drugs with greater difference in predicted
efficacy were two HDACi (belinostat and CAY10603), metabolic
inhibitors (fluvastatin, lovastatin, ML210), tubulin inhibitors (vinblas-
tine and vinorelbine), and several kinase inhibitors including

Figure 2.

Heterogeneity of kinase activation and hallmark gene enrichment in cholangiocarcinoma cell lines and primary tumors. A and B, KSEA of phosphoproteomes from
cholangiocarcinoma (CCA) cell lines relative to MCF10a (A) or from primary cholangiocarcinoma tissue relative to background (B). C and D, Pathway enrichment
analysis of hallmark genes from cholangiocarcinoma cell lines relative to MCF10a (C) or from primary cholangiocarcinoma tissue relative to background (D). E and F,
Hierarchical clustering and heat maps for KSEA inferred kinase activities (E) and pathway enrichment for hallmark genes (F) in the cholangiocarcinoma cell lines and
cholangiocarcinoma primary tumors.
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dasatinib, midostaurin (a multi-targeted kinase inhibitor), trametinib
(a MEK inhibitor), and momelotinib (JAK inhibitor). Inhibitors of the
PI3K/MTOR/AKT pathway were particularly well represented in this

set, with three drugs targeting PI3K rated in the top-ranking drugs for
cholangiocarcinoma. Other PI3K/ATK/MTOR pathway inhibitors in
this selected set included GSK2636771 (a PIK3CB inhibitor),
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Markers of kinase pathway activation in cholangiocarcinoma and kinase inhibitor synergy.A–C, Selectedmarkers of kinase activation in primary cholangiocarcinoma
tissue, background tissue, and cholangiocarcinoma cell lines. ppIndex, proportion of phosphorylation signal relative to total measured phosphorylation within a
sample, expressed in ppm.D–F, Low-dose targeted combination therapies effectively induce cell death in EGI-1 cells. Cell survival assay in cholangiocarcinoma panel
treated with 10, 50, 100, 500, 1,000 nmol/L of (i) MEK1/2 inhibitor trametinib, (ii) CDK4/6 inhibitor LY2835219, (iii) CDK1 inhibitor AZD5438. Y-axis represents
percentage of viability. Viabilitywas assessed usingMTT assay and x-axis represents dosing of drug compound in nmol/L; logarithmic scalewas used. Data points are
mean� SEM (n¼ 3 per condition and duplicated). G, Cell survival assay in EGI-1 cells treated with low-dose single agents or treatment combinations as detailed in
inserted table. Viability assessed using MTT assay; n ¼ 6 per condition. ��� , P < 0.001; ns, nonsignificant. H, Combination indexes for combination treatments,
summarizing additivity, synergy, or antagonism of drug combination as defined by Bliss independence.

Cholangiocarcinoma Phosphoproteomics and Machine Learning

AACRJournals.org Cancer Res; 81(22) November 15, 2021 5771



rapamycin (which targets mTORC1), AS601245 (targets GSK3B), and
AT6867 (whose intended targets are AKT and S6K; Fig. 5B). Ranking
of drugs per patient showed that the HDACi belinostat was the highest
ranked drug for all patients (Fig. 5C). CAY10603, another HDACi,
was the second ranking drug in patients 1 and 5,while avicinD, a plant-
derived triterpenoid known to induce apoptosis in cancer cells, was
second ranking in 5 out of the 13 patient samples tested (Fig. 5C).
Hierarchical clustering of the predicted drug response data
highlighted patterns of drug responses specific for each patient.
Together, these results uncover potential patient-specific drugs for
cholangiocarcinoma.

Functional validation of DRUML-predicted drug sensitivity
rankings

To validate the DRUML-predicted drug responses for the panel of
cholangiocarcinoma cell lines, the predicted responses were compared
with experimental drug responses obtained from repositories of drug-
response data. There was a remarkably high correlation between
predicted drug responses and experimental drug responses for cell
lines (n ¼ 5) present in the PharmacoDB repository of drug-response
data (accessed Oct 2020) for the selected drugs (Fig. 6A) with the

exception of the noncancer cell lineMCF10A. The association was also
significant for approved drugs and for those in different stages of
clinical development (Fig. 6B). Overall, the correlation between
predicted and measured drug responses was statistically significant
when considering all drugs and those at different stages of clinical
development (phase I–III; P values ranked from 1.6e-3 to 1.3e-61 by
Spearman rank correlation; Fig. 6C). In addition, to further validate
our DRUML rankings, we measured the viability of EH-CCA (EGI-1)
and IH-CCA (HuCCT1) cell lines treatedwith compounds found to be
high ranked by DRUML (HDACi: belinostat and CAY10603) relative
to a low ranked compound (Quizartinib, a tyrosine kinase inhibitor).
In agreement with the correlation between predicted and actual
responses across a large number of drugs (Fig. 6), the results were
consistent with DRUML-derived rankings (Supplementary Fig. S4A–
S4C) thus supporting the utility of DRUML in identifying drugs with
high efficacy in decreasing cholangiocarcinoma proliferation.

Discussion
In addition to genomics, several other OMIC techniques now exist

to enable oncologists, at least in principle, to make truly informed

Figure 4.

Drug ranking usingmachine learning (DRUML) prediction of drug efficacy in cholangiocarcinoma primary tumors and cell lines.A, Top 30 drugs predicted by DRUML
to be efficacious in cholangiocarcinoma cell lines. B, Top 30 drugs predicted by DRUML to be efficacious in patient cholangiocarcinoma tissue. C, Correlation plot
betweenDRUML-predicted highest rankingdrugs in cholangiocarcinoma cell lines versus patient cholangiocarcinoma tissue, demonstrating agood correlation. AAC,
average predicted area above the drug dose response curve.
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therapeutic decisions based on a patient’s cancer biology. These tools,
which include proteomics and phosphoproteomics, have the potential
to provide oncologists with large volumes of molecular data. However,
finding actionable targets from OMIC datasets is challenging, as the
link between molecular (genetic or proteomic) markers, phenotype,
and pathophysiology is complex and not necessarily linear (27). To
overcome this problem, computational methods based on statistics
and ML have been developed in order to gain biological information
from these complex datasets, as well as enable prediction of drug
responses (27, 41, 44). Ultimately, the combination of OMIC tech-
nology with ML will advance the development of artificial intelligence
tools for personalizing treatments (45).

Treating cholangiocarcinoma is challenging, with patient out-
comes remaining poor despite the improvement in the understand-
ing of the cellular mechanisms that underlie this complex dis-
ease (2, 4). This is in part related to the molecular heterogeneity of
cholangiocarcinoma, meaning single-target therapeutics are mainly
ineffective, even after patient stratification based on genetic
markers (10–12). A deeper understanding of the cholangiocarci-

noma OMIC landscape will help develop novel biomarkers for
disease treatment. This study both adds to the limited data on the
cholangiocarcinoma phosphoproteome, as well as simultaneously
exploring the clinical utility of computational algorithms, such as
KSEA and DRUML, to recommend therapeutic strategies for the
individual patient. This approach could potentially prove to be
more effective than therapeutic stratification based on genetic
alterations that are presently accepted clinically (25, 26). This view
is consistent with the increasing realization of the contribution that
nongenetic mechanisms make to disease progression and to ther-
apeutic drug resistance in cancer (46).

Our work demonstrates that label-free MS phosphoproteomics is
able to reliably distinguish cholangiocarcinoma samples according to
pathology, whether that be patient-specific derived tumor tissue or
cancer cell line (Fig. 1). To further explore the kinase pathways of
therapeutic interest in cholangiocarcinoma we applied the bioinfor-
matic pipeline KSEA (27), where validated kinase substrates or targets
are used to infer state of kinase activation. Using this computational
approach, the kinases that we identified as of importance in

Figure 5.

DRUML identification of drugs with predicted high therapeutic window. A, Comparison of predicted drug responses in cholangiocarcinoma and background tissue.
Drugs with an average drug response (AAC) > 0.2 in the primary tumor and an overall greater efficacy in tumor tissue relative to background are shown in red. B,
Drugs (n¼ 36) found byDRUML to have apredictedAAC>0.2 in the tumor tissue, with at least 1.1-fold greater efficacy in the tumor tissue comparedwith background
tissue. Boxplots show the median and interquartile ranges of predicted responses for the 13 patient samples. C, DRUML ranking of drugs according to each patient.
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cholangiocarcinoma included MEK1 (gene name MAP2K1), KIT,
ROCK1/2, ERK1/2 (MAPK1/3), ABL2, and several cyclin-
dependent kinases such as CDK1, CDK2, CDK4, and CDK5 (Fig. 2).
Although a number of these kinases have been cited as relevant in
cholangiocarcinoma carcinogenesis, genomic assessments for treat-
ment stratification have not always recapitulated the same importance
for these druggable molecules (24).

The therapeutic benefit of directly targeting dysregulated kinase
pathways was further assessed using cholangiocarcinoma cell lines
treated with inhibitors for highly active kinases as selected by KSEA.
Cholangiocarcinoma cell lines, despite their recognized limitations,
have previously been demonstrated in genomic analysis to be robust
cholangiocarcinoma disease models that recapitulate the genomic
landscape of the tumors from which they originate (47). Similarly,
we observed a high concordance between the phosphoproteomes of
cholangiocarcinoma cell lines and patient cholangiocarcinoma tumor

samples (Fig. 1D), suggesting that cholangiocarcinoma cell lines
reproduce cholangiocarcinoma biology and provide reasonable mod-
els for use in drug prediction validation.

Cell viability assays indicated that trametinib (MEK1/2 inhibitor)
was the most effective drug across 3 of the 4 cholangiocarcinoma cell
lines tested (Fig. 3). However, as prior studies have shown, inhibitors
when used independent of other therapeutics havemodest results, with
trametinib currently moving to clinical trial in combination with
hydroxychloroquine or dabrafenib (48). In our hands, kinase inhibi-
tors were not effective on their own at inhibiting cholangiocarcinoma
cell proliferation. As expected, an increase in treatment efficacy was
seen when a combination of therapeutics was used, particularly the
combination of abemaciclib/trametinib/AZD5438. These results sug-
gest that several kinase-driven proliferative pathways exist in cholan-
giocarcinoma cells with compensatory mechanisms limiting the effi-
cacy of treatment that target single pathways.

Figure 6.

Validation of DRUML for drug prioritization in cholangiocarcinoma cellular models. A, Correlation plots demonstrating concordance between DRUML-predicted
responses and all recorded drug responses in the PharmacoDB repository. B, Correlation plots for DRUML-predicted responses and recorded drug responses in the
PharmacoDB repository for approved drugs.C,Spearman ranked correlation demonstrating concordance betweenDRUMLpredictions and recordeddrug responses
from PharmacoDB as a function of drugs’ stage of development. AAC, average predicted area above the drug dose response curve.
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Due to the apparent limitation of kinase inhibitors and to further
explore other therapeutic options for cholangiocarcinoma (including
nonkinase inhibitors) we reanalyzed the cholangiocarcinoma phos-
phoproteomic data (patient tissue samples and cholangiocarcinoma
cell lines) using a recently developed DRUML algorithm (41). An
advantage ofDRUML, in comparisonwithKSEA, is that themodelwas
directly trained on drug response data and does not require compar-
ison to a control or reference sample, as it internally normalizes
distance metrics of a drug response. In contrast, KSEA infers kinase
activities and assumes the extent of kinase activation to determine
sensitivity of inhibitors against such kinase. Also, the association
between kinase activation and therapeutic sensitivity to the respective
kinase inhibitor may not hold true in tumors that activate several
kinase-driven pathways in parallel with the potential to compensate for
each other.

On the basis of DRUML (Fig. 5), the highest-ranking drugs pre-
dicted to have the greatest therapeutic effect included HDACi (belino-
stat and CAY10603), which have recently been reviewed as a future
therapeutic for cholangiocarcinoma (49), metabolic inhibitors (flu-
vastatin, lovastatin, ML210), tubulin (vinblastine and vinorelbine),
and several kinase inhibitors such as midostaurin, imatinib, and
dasatinib, the latter being a drug that is currently in trial for cholan-
giocarcinoma (2). Notably, DRUML’s predictions correlated with
recorded drug responses in PharmacoDB (Fig. 6). In addition, our
cell viability assays demonstrated that the HDACi were effective
(Supplementary Fig. S4). These initial findings are supportive of
DRUML’s ability to use phosphoproteomic data to recommend
therapeutic suggestions of clinical relevance.

The application of computational approaches to make treatment
recommendations based on the biological data of a given cancer holds
great promise. Limitations of the algorithms used in the present work
are mainly related to KSEA-derived kinase activities in tumors were
measured relative to those in background liver, and several drugs in the
DRUML algorithm have unknown modes of action, thus limiting the
mechanistic information that maybe derived from these inhibitors.
Furthermore, expansion of the training data for DRUML to include
other clinically relevant cholangiocarcinoma drugs, as well as model-
ing the effect of stromal cells, will increase the utility of these in silico
approaches for therapeutic decision making in cholangiocarcinoma.
Future work will test the predictive power of these algorithms in other
in vitro systems and in vivomodels such as patient derived xenografts.
Ultimately, clinical trials will be required to assess the power of this

technology as a multi-analyte companion diagnostic for multidrug
prioritization.

In summary, treatment of cholangiocarcinoma is suboptimal.
The computational approaches and data presented here, provide
both insight into the heterogeneity of biochemical pathway activa-
tion in cholangiocarcinoma and proof-of-principle analysis of
computational predictive modeling to advance personalized oncol-
ogy in this disease.
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