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AbstrAct
The most meaningful advancement in cancer treatment in 
recent years has been the emergence of immunotherapy. 
Checkpoint inhibitor blockade and adoptive T cell 
therapy have shown remarkable clinical effects in a wide 
range of tumour types. Despite these advances, many 
tumours do not respond to these treatments, which 
raises the need to further investigate how patients can 
benefit from immunotherapy. This effort can now take 
advantage of the recent technological progress in single-
cell, high-throughput sequencing and computational 
efforts. In this review, we will discuss advances in 
different immunotherapies and the principles of cancer 
immunogenomics, with an emphasis on the detection 
of cancer neoantigens with human leucocyte antigen 
peptidomics, and how these principles can be further used 
for more efficient clinical output.

IntroduCtIon
Immunotherapy has emerged in the recent 
decade as a leading therapy against cancer, 
with therapies such as checkpoint immune 
blockade now commonly used against many 
tumours and sometimes given as a first-
line therapy.1 The major immunotherapies 
commonly administrated target checkpoint 
molecules on tumour cells that suppress the 
activation of T cells2 3 (mainly CD8+ cyto-
toxic T cells) able to eliminate tumour cells. 
The checkpoint molecules most commonly 
targeted are programmed death-1 (PD-1)4 
and cytotoxic T-lymphocyte associated protein 
4 (CTLA-4).5 Unlike targeted therapy against 
oncogenes (eg, BRAF and MEK), immuno-
therapy has a lower response rate but a more 
durable benefit.6 Immunotherapies have 
been shown to induce long-lasting disease 
stabilisation in ~30% of patients,7 8 and when 
two immunotherapies are combined, they 
can improve immune output9 10 and reach a 
responsiveness of 60% in the case of patients 
with cutaneous melanoma.11

The majority of patients, however, still do 
not respond to a single immunotherapy.12–14 
Moreover, as in cancer-targeted therapies, 
resistance against immunotherapy occurs in 
many cases.15 In addition, toxicity and side 
effects, mainly autoimmune symptoms, might 
emerge.16 17 Finally, in some patients with a 

specific genetic signature, immunotherapy 
might even worsen disease progression.18 19 
These pitfalls and obstacles are the main chal-
lenges in developing better immunotherapies 
and a deeper understanding of their mecha-
nism of success or failure.

Recent years have seen many new attempts 
to improve current immunotherapies or 
to find alternative ones. Novel approaches 
include the testing of anti-PD-1 or CTLA-4 
antibodies in combination with targeted 
therapy6 or photodynamic therapy.20 Many 
other immune checkpoint molecules 
expressed by CD8+ T cells, such as TIM-3, 
LAG-3 and TIGIT, are now being inves-
tigated as future therapies.2 21 22 Other T 
cell-related molecules, such as CD25, which 
is expressed on CD4+ Tregs

23 or the costimula-
tory checkpoint molecule OX40,24 have also 
been proposed for immunotherapy. In addi-
tion, non-T cell-mediated therapies, such as 
dendritic cell (DC) vaccines,24 25 local expan-
sion of DCs in the tumour site26 and natural 
killer cell therapy,27 are currently being 
researched and developed.

However, our understanding of the inter-
actions between tumour and immune cells, 
and the reasons for the success or failure of 
a specific immunotherapy within the context 
of a specific cancer type, is far from complete. 
The emergence of immunogenomics in the 
recent decade28 29 offers modern cancer 
research the tools to decipher these compli-
cated mechanisms in unprecedented detail 
and are now advancing the field towards 
better future clinical benefits.

Applying genomic tools to assess immune 
biomarkers
Cancer immunogenomics segregates into 
several branches. In the basic research 
branch, bulk and single-cell RNA sequencing 
(scRNA-seq), T cell receptor (TCR) 
sequencing, mass cytometry and other 
multidimensional and/or high-throughout 
methods are used to characterise, phenotype 
and distinguish both tumour cells and their 
microenvironment, with a high emphasis on 
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immune cells, analysed by a myriad of computational 
tools. In the more clinically oriented branch, whole-
exome sequencing, mass spectrometry and various 
computational approaches are directed towards iden-
tifying features of the tumour that can be manipulated 
therapeutically, such as through vaccination or the iden-
tification of T cell clones that can eliminate tumours in 
a patient-specific manner. These two branches are not 
dichotomous but rather intertwined and overlap each 
other in a complimentary manner.

scRNA-seq29 is being used more and more frequently 
to inspect the transcriptome of tumours and their 
microenvironment.30 Recent single-cell analyses have 
characterised both the tumours and participants of the 
immune system in glioma,31 melanoma,32 liver,33 breast34 
and head and neck35 cancers. In basic science, this tech-
nique is now widely used also to dissect alterations in and 
modulations of the immune response, such as T cells 
in melanoma mouse models.36 37 scRNA-seq can now be 
complimented by high-dimensional immune profiling 
on the protein level, using mass cytometry (CyTOF38), a 
technique employed recently, for instance, to profile the 
human immune response to anti-PD1 treatment39 and to 
construct immune atlases of lung adenocarcinoma40 and 
clear cell renal cell carcinoma.41 As in scRNA-seq, CyTOF 
is now also being applied to profile murine tumour 
responses in order to gain insights into the human condi-
tion.37 42 Finally, scRNA-seq and CyTOF can be used side-
by-side as a means to compare, as was recently done in a 
mouse model of sarcoma to reveal changes in monocyte/
macrophage populations following immunotherapy.43

A complementary approach in cancer immunog-
enomics is the evaluation of the immune status of the 
tumour, which enables to predict, using computational 
methods, patient survival following and potential benefit 
from therapy. Data obtained from The Cancer Genome 
Atlas, for instance, can be used for this purpose.44 Several 
transcriptomics-based algorithms have already been 
developed to decipher the immune cell composition 
within tumours.45 Impressively, some of these algorithms, 
such as the Cell type Identification By Estimating Relative 
Subsets Of known RNA Transcripts46, have been shown 
to effectively characterise the immune composition of 
tumours in a quantitative manner comparable to that 
of immunohistochemistry or flow cytometry.47 48 Other 
approaches, such as combining the transcript levels of 
granzyme A and perforin in order to characterise cyto-
lytic activity,49 use scRNA-seq for immune profiling50 or 
the sequencing of the TCR repertoire as a measure of 
T cell diversity versus clonality,51 which can also provide 
insight into the immune state of a tumour.

Immunogenomics-guided discovery of biomarkers of 
immunotherapy efficacy
The fact that only a fraction of patients respond to 
immunotherapy highlights the need for better patient 
matching and, if possible, early detection, which drives 
the search for reliable and accessible biomarkers. The 

issue of the questionable reliability of previously used 
protein markers, such as PD-L1 expression,52 in predicting 
response to immunotherapy53 may now be resolved by 
applying more genomic approaches to establish appro-
priate biomarkers.

The intersection between immunogenomics, cancer 
genomics and immunotherapy has led to a key question in 
the field concerning the correlation between mutational 
load and response to immunotherapy. The current hypoth-
esis in the immunotherapy field is that tumours with an 
increased mutational load will present more neoantigens 
and, thus, will be more immunogenic.54 55 Accordingly, 
patients with melanoma and lung cancer who respond to 
checkpoint blockade therapy are often characterised with 
a high mutational load.56–58 Another example is colorectal 
cancer, which is known to be refractory to immuno-
therapy for most patients,14 with some clinical benefit 
demonstrated only in a minority of patients with a high 
mutational load due to mutations in the mismatch repair 
genes.59 Indeed, it was recently reported that a mismatch 
repair defect can predict a better response to immuno-
therapies in other cancer types as well.60 61 However, other 
reports undermine the correlation between mutational 
load and response to immunotherapy.53 62 Specifically, 
some reports concerning melanoma have shown that 
neoantigen burden is not correlated with T cell density63 
and that some cancer types, such as clear cell renal cancer 
carcinoma, do respond to immunotherapy despite having 
a low mutational burden.64

Intratumour heterogeneity (ITH)65 has been suggested 
to be another, if not better, predictor of an antitumour 
immune response, as low tumour heterogeneity was shown 
to predict response to checkpoint blockade,51 66 and 
pan-cancer analyses also support this notion.67 68 Further 
support comes from the findings that patients with mela-
noma who respond to PD-1 blockade exhibit enriched 
mutations towards BRCA153 and that patients who 
harbour a specific cluster of melanoma germline antigen 
MAGE-A show resistance to CTLA-4.69 These observations 
and their interpretations are currently under heated 
debate, and their understanding will be instrumental for 
future patient selection. Finally, other genomic mecha-
nisms may play a role in determining responsiveness to 
immunotherapy, such as insertion–deletion mutations.70

Immunogenomic studies have also proven their use in 
delineating mechanisms of tumour evasion from elimi-
nation by the immune system. One such mechanism is 
disruption of the antigen-presentation machinery. This 
can be achieved by acquired mutations of the human 
leucocyte antigen (HLA) component β2M71 72 or loss of 
the HLA alleles.73 An alternative escape mechanism is 
disruption of the interferon-γ signalling pathway, which 
upregulates HLA surface expression on tumour cells 
and which is manifested by mutations in genes along the 
pathway, such as the kinases Janus kinase 1 (JAK1) and 
JAK2 or the downstream transcription factor signal trans-
ducer and activator of transcription 1AT1.74–76 Interfer-
on-γ can activate other tumour escape mechanisms, such 
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as the upregulation of checkpoint inhibitor molecules on 
the tumour cell surface, including PDL-1.77 Tumours can 
also immunoedit neoantigens and downregulate their 
expression at the RNA level or delete the mutant alleles 
on the DNA level.78 79

Unbiased genomic screens that use the (clustered 
regularly interspaced short palindromic repeats (CRIS-
PR)-CRISPR-associated protein 9 (CAS9)) whole genome 
screen hold great potential to uncover new resistance 
mechanisms, as was shown in tumour mouse models.80 
This method has already yielded considerable findings 
and the identification of several resistance mechanisms. 
It was recently shown by a CRISPR screen, for instance, 
that genes of the SWI/SNF chromatin remodelling 
complex gain resistance to immunotherapy in murine 
tumour cells81 and that knockout of the PBRM1 gene 
from tumour cells increases cancer sensitivity to immu-
notherapy, a discovery supported by the finding that 
human patients with clear cell renal cell carcinoma who 
carry mutations in PBRM1 respond more favourably to 
immunotherapy.64 Another CRISPR screen using human 
cell lines identified Apelin receptor as a modulator of 
interferon-γ signalling in tumours via interaction with 
JAK1.80 Similarly, the tyrosine phosphatase PTPN2 was 
recognised as a novel resistance mechanism via a CRISPR 
screen, with its knockdown enhancing the response to 
immunotherapy, again via the interferon-γ pathway.82 
The CRISPR-CAS9 technique will enable further identi-
fication of genes involved in immunotherapy resistance 
and will reveal new and, hopefully, stronger biomarkers 
for better patient matching.

neoantigen quarry and identification
In addition to the use of immune checkpoint therapy, 
a more specific and patient-tailored approach, which 
is possible only due to massively parallel sequencing, 
is neoantigen identification. Exploring the potential 
of tumour neoantigens as a therapeutic approach and 
investigating how neoantigens interact with checkpoint 
blockade has been a major focus of cancer immunology 
for the past decade.1 83 84 Tumour neoantigens are anti-
gens presented exclusively on the tumour cells’ human 
leucocyte antigen (HLA) molecules. They are derived 
from patient-specific non-synonymous mutations, as 
well as indels in the cancer cells,55 70 which are unique 
from patient to patient. Neoantigen-specific T cells can 
be found both in the tumour85 and in the circulation of 
patients86 87 and healthy donors.88 They have been shown 
to be highly potent in eliminating tumours by both adop-
tive transfer89 or using vaccinations that increase their 
abundance.90 91 Interestingly, neoantigens are usually 
considered to activate CD8+ T cells, but neoantigens 
recognised by CD4+ T cells have also been reported.92 
Furthermore, immunotherapy itself can elicit additional 
neoantigen-specific T cell responses and can be viewed as 
an accompanying effect of checkpoint blockade.93 94

The potential of neoantigen identification is enormous 
and better identification and validation of neoantigens 

is in high demand. Neoantigens can be identified using 
numerous methods.95 The initial step involves whole-
exome or whole-genome sequencing, to identify 
patient-specific non-synonymous mutations.96 The bottle-
neck continues to be identifying neoantigens from the 
sequencing data. In recent years, a multitude of compu-
tational tools have been generated in order to predict 
which neoantigens bind the HLAs expressed on the 
surface of tumour cells with sufficient affinity (reviewed 
in Hackl et al45). However, as these technologies are labo-
rious and inaccurate, alternative techniques, such as 
HLA peptidomics, are now also in use97 98 (see below). 
Regardless of the technique used, for each patient the 
literature describes a very restricted number of validated, 
rather than predicted, neoantigens (between 0 and 5), 
which does not correlate with mutational load.86 87 89 96 99 
However, it has been suggested,95 and recently shown in 
patients,100 that it is the quality, or the ‘foreignness’ of 
the neoantigen, manifested by its homology to antigens 
derived from infectious diseases, rather than the actual 
number of neoantigens, that predicts patient survival. 
While various algorithms for determining the quality 
of neoantigens have been developed, a precise under-
standing of the importance of neoantigen quality is yet to 
be unravelled.101 102

The vast clinical potential of neoantigens, as demon-
strated in rodents that neoantigen-based vaccination can 
induce an antitumour response,93 103 is now being applied 
to treat patients in a number of pioneering works. 
Synthetic RNA-based91 and peptide-based104 vaccinations 
developed via neoantigen querying have been found to 
be fully immunogenic and to significantly benefit patients 
with melanoma. These works show that the technology 
for vaccinating patients with a personalised, antineoan-
tigen construct is possible. Neoantigens can also be used 
to engineer specific TCRs for T cells taken from patients 
ex vivo,105 as adoptive T cell transfer in general, and the 
technique to transduce T cells with cancer antigen-spe-
cific TCR is established for several years.88 106–109

the use of HLA peptidomics for neoantigen identification
An effective method for the identification of neoantigens 
is HLA peptidomics, which involves the co-immunopre-
cipitation of HLA-I bound peptides and the subsequent 
analysis of the peptidome using mass spectrometry, 
following which the peptidome is aligned to whole-exome 
data from the same samples, thus enabling the detec-
tion of bona fide neoantigens that are actually bound to 
the HLA, rather than predicted in silica. In vitro valida-
tion of the reactivity of the found peptides can be done 
using tumour-infiltrating lymphocytes (TILs) taken from 
the same patient or effector murine TILs. The method 
can be used both for quarrying human110 and murine 
neoantigens,111 with recent progress introducing high-
throughput screens.112

We recently successfully used HLA peptidomics to 
identify neoantigens from different melanoma metastasis 
and cell lines, accompanied by in-depth characterisation 
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of the T cell landscape.98 Using this technique, we are 
able to show that despite the low number of neoantigens 
detected, these handful of neoantigens are in fact highly 
robust—with two neoantigens sufficing to eliminate 90% 
of human melanomas when co-cultured with patient-
matched TILs. As these analyses were done on late-stage 
tumours, it may be the case that more neoantigens were 
presented at earlier stages of the disease and then immu-
noedited or that indeed each tumour harbours only a 
very limited number of neoantigens or that the detection 
level of HLA peptidomics is rather limited. Either way, 
identification of a few targetable antigens can have great 
clinical significance. Thus, HLA peptidomics can be suffi-
cient to discover immunodominant neoantigens, and a 
future pipeline for the detection of neoantigens for clin-
ical use can be envisioned.

A possible future application for the HLA peptidomics 
technique is to identify neoantigens derived from recur-
ring mutations, which are very frequent in cancer.113 A 
main characteristic of melanoma, for instance, is recur-
rent mutations in BRAF, NRAS and NF1, though, to date 
none of these genes was ever reported to harbour a neoan-
tigen, as the vast majority of neoantigens are derived 
from passenger, rather than driver, mutations. However, 
the KRAS G12D mutation was shown to generate a reac-
tive neoantigen in a patient with metastatic colorectal 
cancer,105 and recurrent hotspot p53 mutations were 
shown to generate an immunogenic T cell response 
in ovarian cancer.114 Interestingly, it was reported that 
patients with desmpolatic melanoma, a rare form of 
melanoma characterised by a high number of mutations 
in NF1, respond very well (70%) to anti-PD1 therapy, 
compared with ~30% in cutaneous melanoma.115 These 
observations are of vast importance since, unlike most 
neoantigens, which are private and patient specific, these 
neoantigens might be shared between different patients 
and may be used in the future as an off-the-shelf product. 
However, the detection of these recurrent neoantigens 
might be extremely challenging, since there seems to be a 
strong evolutionary pressure to prevent these neoantigens 
from being presented. Despite this, future technology 
with higher resolution might facilitate the detection of 
neoantigens derived from recurrent mutations.

Future directions
As discussed above, immunotherapy strategies that 
enhance the antitumour T cell response, such as check-
point inhibitors and adoptive T cell therapy, exhibit 
remarkable clinical effects in a wide range of tumour 
types. However, many tumours do not respond to check-
point inhibitors and the determinants of treatment effi-
cacy remain largely unknown. Neoantigens that arise as 
a consequence of somatic mutations within the tumour 
represent an attractive means to promote immune 
recognition in cancer.93 Indeed, high mutational and 
neoantigen load in tumours have been associated with 
an enhanced response to immune checkpoint blockade 
therapy.57 58 116 117 The use of neoantigen-formulated 

vaccines has further emphasised the power latent in 
neoantigen-targeted immunotherapy.90 118 Cutaneous 
melanoma, which is among the most highly mutated 
malignancies,119 has the highest objective response rates 
to checkpoint blockade (~60% on combined CTLA-4 and 
PD-1 blockade).11 Yet, the reasons for the lack of response 
in a substantial number of patients remain obscure and 
call for investigation of mechanisms beyond mutational 
load. Indeed, ITH may influence immune surveillance51 66 
and pan-cancer analyses show better survival for tumours 
with low ITH.67 68 Clearly, by using the various unbiased 
and comprehensive tools described in this review, addi-
tional biomarkers that will predict response to immuno-
therapy will arise, allowing for superior patient matching 
for future immunotherapies.

Importantly, the assumption behind immune check-
point inhibitor therapy is that an antitumoral immune 
potential waits to be unleashed against tumour-presented 
antigens that drive the effector T cell response.93 120 The 
limitations in this therapeutic modality can be addressed 
by combining immune checkpoint inhibitors with the 
priming of patient T cells towards tumour neoanti-
gens. Yet, one needs to ensure that targeted neoanti-
gens are pronouncedly presented to the immune system 
and prompt strong T cell responses. Various vaccine 
systems have been suggested and tested for neoantigen 
delivery.121 122 However, the most suitable vaccine format, 
including how to choose which neoantigens to target 
and how many neoantigens need to be included in the 
vaccine regimen, is yet to be determined.

Finally, the intense efforts to identify novel strategies 
to overcome therapeutic resistance to immunotherapy 
through a deep understanding of the contribution of 
the tumour genetic composition, the immune microen-
vironment and neoantigen presentation are expected to 
generate new insights with significant clinical importance 
in the immediate future.
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