
RESEARCH PAPER

DNA methylation biomarker selected by an ensemble machine learning 
approach predicts mortality risk in an HIV-positive veteran population
Chang Shu a,b, Amy C. Justiceb,c, Xinyu Zhanga,b, Vincent C. Marconid, Dana B. Hancocke, Eric O. Johnsone,f, 
and Ke Xua,b

aDepartment of Psychiatry, Yale School of Medicine, New Haven, CT, USA; bConnecticut Veteran Healthcare System, West Haven, CT, USA; 
cDepartment of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; dDivision of Infectious Disease, Emory University School of 
Medicine, Atlanta, GA, USA; eGenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI 
International, Research Triangle Park, NC, USA; fFellow Program, RTI International, Research Triangle Park, NC, USA

ABSTRACT
Background: With the improved life expectancy of people living with HIV (PLWH), identifying vulner-
able subpopulations at high mortality risk is important. Evidences showed that DNA methylation 
(DNAm) is associated with mortality in non-HIV populations. Here, we established a panel of DNAm 
biomarkers that can predict mortality risk among PLWH.
Methods: 1,081 HIV-positive participants from the Veterans Ageing Cohort Study (VACS) were divided 
into training (N = 460), validation (N = 114), and testing (N = 507) sets. VACS index was used as a measure 
of mortality risk among PLWH. Model training and fine-tuning were conducted using the ensemble 
method in the training and validation sets and prediction performance was assessed in the testing set. 
The survival analysis comparing the predicted high and low mortality risk groups and the Gene 
Ontology enrichment analysis of the predictive CpG sites were performed.
Results: We selected a panel of 393 CpGs for the ensemble prediction model that showed 
excellent performance in predicting high mortality risk with an auROC of 0.809 (95%CI: 0.767,-
0.851) and a balanced accuracy of 0.653 (95%CI: 0.611, 0.693) in the testing set. The high mortality 
risk group was significantly associated with 10-year mortality (hazard ratio = 1.79, p = 4E-05) 
compared with low risk group. These 393 CpGs were located in 280 genes enriched in immune 
and inflammation response pathways.
Conclusions: We identified a panel of DNAm features associated with mortality risk in PLWH. 
These DNAm features may serve as predictive biomarkers for mortality risk among PLWH.

Abbreviations: AUC: Area Under Curve; CI: Confidence interval; DMR: differentially methylated 
region; DNA: Deoxyribonucleic acid; DNAm: DNA methylation; DAVID: Database for Annotation, 
Visualization, and Integrated Discovery; EWA: epigenome-wide association; FDR: False discovery 
rate; FWER: Family-wise error rate; GLMNET: elastic-net-regularized generalized linear models; GO: 
Gene ontology; HIV: Human immunodeficiency virus; HM450K: Human Methylation 450 K 
BeadChip; k-NN: k-nearest neighbours; NK: Natural killer; PC: Principal component; PLWH: people 
living with HIV; QC: Quality control; SVM: Support Vector Machines; VACS: Veterans Ageing Cohort 
Study; XGBoost: Extreme Gradient Boosting Tree
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Introduction

Combination antiretroviral therapy has significantly 
improved the life expectancy of people living with 
HIV (PLWH), but there is still a gap in life expectancy 
between PLWH and the general population [1–4]. It is 
important to identify vulnerable groups with a high 
risk of mortality among PLWH and to deliver early 
interventions and clinical care for those patients. 
Previous studies have demonstrated that the 
Veterans Ageing Cohort Study (VACS) index is

significantly associated with mortality and is consid-
ered a measure of mortality risk among PLWH [5–7]. 
The VACS index is a composite score summing HIV 
progression measures and general organ injury indi-
cators of the kidneys and liver, which may be able to 
capture the early stage of elevated risk for mortality.

A large body of evidence has demonstrated that 
epigenetic modification is influenced by internal 
and external environmental changes and is asso-
ciated with the early stages of pathophysiological 
processes [8–11]. DNA methylation (DNAm), one
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of the most widely studied epigenetic marks, is 
strongly correlated with ageing [12–14], substance 
use (e.g., cigarette smoking and alcohol consump-
tion) [15–21], and a variety of diseases [8– 
11,22,23]. Since DNAm is relatively stable and 
easy to detect in body fluids obtained through 
non-invasive procedures, DNAm marks have 
emerged as robust biomarkers for disease diagno-
sis [24], disease subtype classification [25,26], and 
treatment response monitoring [27,28].

Since DNAm biomarkers are objectively measured 
and can reflect pathological processes of disease pro-
gression, DNAm can be used to identify individual 
vulnerability and mortality risk among PLWH. In 
some cases, DNAm alterations can occur before clin-
ical diagnosis. For example, a longitudinal study of 
DNAm showed that most DNA methylome changes 
occurred 80–90 days before clinically detectable glu-
cose elevation [29]. As another example, mitochon-
drial epigenetic changes can indicate early-stage 
prediabetes [30]. Although the clinical diagnosis of 
myocardial infarction has been well established, DNA 
methylation in the blood has utility in the diagnosis 
and monitoring of cardiac pathologies and in the 
study of normal human cardiac physiology and devel-
opment [31]. These studies support the utility of 
DNAm features as biomarkers of risk for future 
onset of disease. Here, we apply this approach to 
identify individuals with a high risk of mortality in 
an HIV-positive population.

DNAm plays an important role in HIV infec-
tion and disease progression. We previously 
reported the association of two CpG sites in the 
promoter region of NLRC5 with HIV infection 
[32]. NLRC5 is a major transcriptional activator 
of the MHC class I gene. DNAm has also been 
linked to HIV comorbid diseases, such as diabetes 
and kidney function [33,34]. Furthermore, ageing 
is significantly associated with thousands of CpGs 
in the epigenome, and the epigenetic clock and 
DNAm age are becoming widely recognized [12– 
14]. DNAm marks are predictive of mortality in 
non-HIV populations [35–40]. Therefore, we 
hypothesized that DNAm is associated with mor-
tality risk among PLWH and that DNAm signa-
tures in the blood can serve as biomarkers to 
predict mortality among HIV-positive individuals.

Machine learning methods have been widely 
applied to select DNAm features that are

informative for the clinical diagnosis and classifica-
tion of complex diseases [20,41,42]. Ensemble 
machine learning methods can aggregate multiple 
machine learning models (base models) and usually 
provide better prediction outcomes than single base 
models [43,44]. An ensemble approach has been 
shown to perform well in personalized medicine 
and disease outcomes, such as in cancer and dia-
betes [45,46].

In this study, by applying an ensemble machine 
learning approach, we aimed to identify DNAm 
features that can serve as biomarkers of mortality 
risk among HIV-positive individuals. Here, the 
VACS index was used as a measure of mortality 
risk in an HIV-positive population [5–7,47]. These 
predictive DNAm biomarkers can potentially be 
used for informing future clinical care and provid-
ing new insights into the epigenetic mechanism of 
mortality risk among HIV-positive patients.

Methods

An overview of our analytical approach is shown in 
the flowchart in Figure 1. Our prediction model was 
built with training and validation sets profiled on the 
450 K array and then independently evaluated with 
the testing set profiled on the EPIC array. Briefly, we 
first applied an ensemble learning approach to build 
a machine learning model to predict high or low 
mortality risk, and we then examined the association 
of the selected CpG features with mortality by 
a survival analysis. Then, we conducted a Gene 
Ontology enrichment analysis for the selected 
DNAm features. Last, we conducted a meta- 
analysis of the epigenome-wide association (EWA) 
on the VACS index of the entire sample.

Study population

All participants in sample sets 1 and 2 (Figure 1) 
were from the VACS that is a prospective cohort 
study of veterans focusing on the clinical outcomes 
of HIV infection [5]. DNA samples were extracted 
from the peripheral blood of 1,081 HIV-positive 
men from the VACS. Participants in sample set 1 
were randomly partitioned into a training set (80%, 
N = 460) and a validation set (20%, N = 114), and 
sample set 2 was used as the independent testing set 
(N = 507). Table 1 shows the demographic and
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clinical information on patient age, sex, race, smok-
ing status, CD4 count, viral load, HIV medication 
adherence, VACS index, and mortality in the train-
ing, validation, and testing sets. The training and 
validation sets included slightly older individuals 
and more African Americans than the testing set. 
The VACS index was slightly lower in the testing set 
than in the training and validation sets. There were 
no significant differences in sex, smoking, HIV med-
ication adherence, CD4 count, log10 HIV-1 viral load 
or 10-year mortality across the three sample sets.

Mortality risk

The VACS index is a well-established score for 
mortality risk among PLWH [5–7]. The VACS 
index is scored by summing preassigned points for 
age, CD4 count, HIV-1 RNA, hemoglobin, platelets, 
aspartate, and alanine transaminase (AST and ALT), 
creatine, estimated glomerular filtration rate

(eGFR), and viral hepatitis C infection [7]. High 
mortality risk among PLWH was defined as 
a VACS index score > 40, which was based on 
a prior observation that the predicted 3-year mor-
tality of 10% for this group was significantly higher 
than that for the group with VACS index scores ≤ 
40 [48]. Prediction models were developed by 
machine learning methods to predict high mortality 
risk (VACS index > 40) and low mortality risk 
(VACS index ≤ 40) groups among PLWH.

Genome-wide DNAm profiling and quality 
control

DNA samples in sample set 1 were profiled by 
Infinium Human Methylation 450 K BeadChip 
(HM450K, Illumina Inc., CA, USA), and DNA sam-
ples in sample set 2 were profiled by the Infinium 
Human Methylation EPIC BeadChip (Illumina Inc., 
CA, USA) (Figure 1). DNAm for the training and

Figure 1. Flowchart of analytical procedures for selecting CpG sites in the peripheral blood methylome, machine learning prediction 
models to predict high and low mortality risk groups, survival analysis, Gene Ontology enrichment analysis, and epigenome-wide 
association analysis.

Table 1. Study sample characteristics.
Training set (N = 460) Validation set (N = 114) Testing set (N = 507) p value*

Age (year, mean ± sd) 52.56 (7.54) 51.21 (8.09) 50.86 (7.67) 0.002
Female (%) 6 (1.3) 1 (0.9) 11 (2.2) 0.452
Race (%)
Caucasian 45 (9.8) 9 (7.9) 46 (9.1) 0.003
African Americans 392 (85.2) 103 (90.4) 409 (80.7)
Other 23 (5.0) 2 (1.8) 52 (10.3)
Smokers (%) 360 (59.4) 309 (58.4) 294 (58.0) 0.719
HIV treatment adherence (%) 362 (78.7) 85 (74.6) 382 (75.3) 0.399
CD4 count 432.68 (291.43) 411.82 (281.55) 450.61 (280.05) 0.287
log 10 HIV-1 viral load 2.76 (1.22) 2.68 (1.17) 2.83 (1.22) 0.399
VACS index (mean ± sd) 30.62 (20.35) 35.50 (21.83) 35.46 (22.35) 0.001
10-year mortality (%) 123 (26.7) 32 (28.1) 121 (23.9) 0.477

*ANOVA test is used for continuous variables, chi-square test is used for categorical variables 
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validation sets were evaluated using the same quality 
control (QC) protocol [49] in the R package minfi 
[50]. In detail, CpG sites on sex chromosomes and 
within 10 base pairs of a single nucleotide polymorph-
ism were removed. The detection p-value threshold 
was set at 10−12 for both sample sets 1 and 2. After QC, 
408,583 CpG sites common between the HM450K 
and EPIC arrays were used for analysis to ensure the 
same coverage between the two sets. DNA methyla-
tion among the common CpG sites was highly corre-
lated between the HM450K and EPIC arrays 
(r = 0.986). Proportions of 6 cell types (CD4 + T 
cells, CD8 + T cells, natural killer T cells, B cells, 
monocytes, and granulocytes) were estimated for all 
participants in sample sets 1 and 2 using an estab-
lished method [51].

Feature selection of CpG sites in the training set

We first preselected a panel of CpG sites associated 
with high mortality risk among PLWH based on the 
EWA of the VACS index score in the training set. 
CpG sites with p < 0.001 were preselected to build the 
prediction models. A liberal cut-off of p < 0.001 was 
arbitrarily set to ensure a sufficient number of pre-
dictive DNAm features to build the prediction mod-
els. The variable importance (a score between 0 and 
100) of each preselected CpG site was ranked by 
elastic-net regularized generalized linear models 
(GLMNET) by the R package caret [52] based on 
100 bootstraps, where each bootstrap included 70% 
of all samples. CpG sites with zero variable impor-
tance for 80% of the bootstraps were considered to be 
nonpredictive features and were removed from 
further model development. The remaining CpG 
sites were ranked based on the median importance 
ranking among 100 bootstraps and were divided into 
20 groups. Each CpG group was used to build 
machine learning models.

Developing machine learning prediction models 
for mortality risk among PLWH

1) Model development in the training set: We devel-
oped an ensemble method that aggregated the predic-
tion results from four base machine learning models: 
random forest (RF), GLMNET, support vector 
machines (SVM) and k-nearest neighbours (k-NN) 
[53–56] using the model choice of ‘rf’, ”glmnet”,

”svmLinear” and ‘knn’ in the R package caret [52]. 
These four base models have been commonly used in 
predicting binary outcomes and have expanded the 
diversity of algorithms [53–56]. Ten-fold cross- 
validation was used in the model training process to 
minimize overfitting. These four base models were 
independently trained to predict mortality risk 
among PLWH in the training set and then aggregated 
by the ensemble method using the R package 
caretEnsemble (ver. 2.0.1) [57]. The prediction perfor-
mance of each ensemble model was evaluated by 
using area under the receiver operating characteristic 
curve (auROC) and the area under the precision- 
recall curve (auPRC).

2) Final CpG group selection in the validation 
set: The CpG group with the highest auROC in the 
validation set was selected as the final feature 
group for the ensemble model.

3) Independent evaluation in the testing set: 
Using the ensemble model and the final feature 
group, we predicted the high mortality risk group 
and evaluated prediction performance in the test-
ing set by using auROC and balanced accuracy. 
Balanced accuracy was defined as the average 
accuracy obtained on each class, as shown in the 
following formula [58]. Balanced accuracy was 
used in this study to avoid biased accuracy due 
to imbalanced samples [58]. The 95% confidence 
interval of balanced accuracy was estimated by 
1,000 stratified bootstraps of the testing set.

Balanced accuracy ¼
1
2

True positive
True positiveþFalse negative

þ
True negative

True negativeþ False positive

 !

Survival analysis

By using the final ensemble model, we classified 
each individual in the entire sample as having as 
high or low mortality risk. Kaplan-Meier survival 
curves presented 10-year survival probability by 
high or low mortality risk group. Survival analysis 
was conducted using a Cox proportional hazards 
model on 10-year mortality comparing the high 
and low mortality risk groups. We used age as 
time scale t, and our model adjusted for sex, 
race, smoking, self-reported HIV medication 
adherence, log10 of HIV viral load and CD4 count.
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h tð Þ ¼ h0t exp

β1predicted mortality riskþ β2 sex
þβ3 raceþ β4 smoking þ β5 HIV
medication adherenceþ β6log10
viral loadð Þ þ β7 CD4count
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Biological interpretation of the predictive panel 
of CpG sites on mortality risk among PLWH

We performed Gene Ontology (GO) enrichment 
analysis using missMethyl to adjust for bias by 
different numbers of CpG sites per gene [59,60]. 
Genes that harbour or are located near at least one 
predictive CpG site were used for GO analysis.

Epigenome-wide association analysis on 
mortality risk among PLWH in all samples

Since DNA methylation of two sample sets was 
measured by two different platforms, we per-
formed EWA on high and low mortality risk 
groups separately in sample sets 1 and 2, and we 
then conducted a meta-analysis to detect epigen-
ome-wide signals in the entire sample. In each 
EWA, we used a two-step linear model approach 
as previously described [49]. The EWA model 
adjusted for confounding factors, including age, 
sex, race, smoking, cell type proportions and con-
trol principle components. EWA meta-analysis of 
sample sets 1 and 2 was conducted using METAL 
[61]. The weights of effect size were the inverse of 
the corresponding standard errors for the meta- 
analysis [61]. CpG sites with Bonferroni corrected 
p-value < 0.05 were considered statistically 
significant.

Results

Feature selection and ensemble model training 
for mortality risk among PLWH

High mortality risk among PLWH was defined as 
VACS index > 40 based on previous literature 
showing a predicted 3-year mortality of 10% for 
this group [48]. Prediction models were developed 
by machine learning methods to predict high mor-
tality risk (VACS index > 40) and low mortality 
risk groups (VACS index ≤ 40) among PLWH.

A panel of 856 CpGs with p < 0.001 was pre-
selected based on EWA in the training set. We 
ranked these candidate predictors by median 
GLMNET importance ranking among 100 boot-
straps using 70% of the training sample. We 
excluded 178 CpG sites that had a variable impor-
tance score of zero among 80% of the bootstraps. 
A final panel of 678 CpG sites were selected and 
formed into 20 groups based on importance rank-
ing to determine the best performing CpG group 
for the ensemble model (Figure 2).

In the training set, we used 4 common machine 
learning classification models (RF, GLMNET, 
SVM, and k-NN) as our base models for the 
ensemble method [53–56] and trained them inde-
pendently for the 20 groups of CpGs. The perfor-
mance metrics of GLMNET, RF and SVM were 
mostly comparable in terms of auROC and 
auPRC, and they plateaued to 1 with an increas-
ing number of CpGs in the training set (Figures 3 
and 4). The performance of k-NN was poorer 
than the other 3 methods, but its auROC and 
auPRC remained above 0.9 in the training set. 
An ensemble model combining the prediction 
results of all 4 base models was used (Figures 3 
and 4).

In the validation set, the performances of 4 base 
models varied. Three models, GLMNET, RF, and 
SVM, showed good performance with both 
auROC and auPRC > 0.8, but the performance of 
k-NN was poor with auROC < 0.8 (Figures 3 and 
4). The ensemble model showed the best perfor-
mance at 393 CpG sites with an excellent perfor-
mance of auROC (0.829). The accuracy of this 
prediction model was 0.807, and the balanced 
accuracy that accounted for class imbalances 
between participants at high and low risk of mor-
tality was 0.782. Thus, the ensemble model with 
393 DNAm features was used as the final predic-
tion model (Table S1).

In the testing set, the ensemble model with 393 
DNAm features showed excellent performance with 
auROC of 0.809 (95%CI: 0.767–0.851), prediction 
accuracy of 0.761 and balanced accuracy of 0.653 
(95%CI: 0.611, 0.693) (Figure 5), suggesting that our 
ensemble model with a panel of 393 features was able 
to differentiate between high and low mortality risk in 
an HIV-positive population.

EPIGENETICS 745



Survival analysis
By using our ensemble model that predicts indivi-
dual mortality risk, we found that participants pre-
dicted to have a high risk of mortality showed 
significantly lower 10-year survival probability than 
participants predicted to have a low risk of mortality 
(Figure 6). Using a Cox proportional-hazards model

adjusting for baseline age, sex, race, viral load, CD4 
count and antiviral medication adherence, partici-
pants who were predicted to have a high risk of 
mortality remained to have an elevated risk of mor-
tality compared with those predicted to have a low 
risk of mortality, with a hazard ratio (HR) of 1.79 
(95%CI: 1.35–2.37, p = 4E-05).

Figure 2. Variable importance ranking of predictive machine learning CpG sites. Variable importance is a score between 0 and 100, 
as calculated by elastic-net-regularized generalized linear models (GLMNET). We obtained variable importance scores from 100 
bootstraps. The top 20 ranked CpG sites and 20 bootstraps are shown.

Figure 3. Area under the receiver operating characteristic (auROC) curve in the training and validation sets.
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Biological interpretations of predictive CpGs by 
Gene Ontology enrichment analysis

The 393 predictive CpGs were located in or near 
280 genes. The top 8 enriched pathways based on 
these 280 genes included response to virus 
(p = 4.26E-05), defence response (p = 1.29E-04), 
cytokine receptor binding (p = 1.48E-04) and reg-
ulation of response to interferon-gamma 
(p = 4.15E-04) (Table 2–3). Our findings suggested

that the selected 393 CpG sites are biologically 
relevant to HIV pathogenesis and progression.

Epigenome-wide association on mortality risk 
among PLWH

A meta-analysis of EWA of sample sets 1 and 2 
identified 208 epigenome-wide significant CpGs 
after Bonferroni correction (Figure S2). These

Figure 4. Area under the precision-recall curve (auPRC) in the training and validation sets.

Figure 5. Receiver operating characteristic (auROC) curve in the testing set.
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significant CpG sites were located in 112 genes and 
included genes previously reported as being asso-
ciated with HIV pathogenesis. For example, 
cg07839457 in NLRC5 was previously reported to 
be associated with HIV infection [32]. Interestingly, 
30 of 208 CpG sites were also in the panel of

machine learning predictive CpGs (Table 3). 
Twenty out of the 30 overlapping CpG sites were 
negatively associated with mortality risk, while 10 
CpG sites were positively associated with mortality 
risk. Some of the overlapping CpGs were located in 
viral response genes, such as IFITM1 and PARP9.

Discussion

In this study, we presented evidence that DNAm 
marks in blood were predictive of mortality risk in 
an HIV-positive population. We identified a panel 
of 393 CpG sites that were highly predictive for 
high vs. low risk of mortality among PWLH. We 
also found that our predicted mortality risk based 
on the ensemble model was strongly associated 
with mortality in HIV-positive individuals in the 
VACS cohort. In addition, the selected 393 DNAm 
features were located in genes enriched in HIV 
pathogenesis and progression. Thus, we identified 
a panel of 393 DNAm biomarkers that may 
enhance the understanding of the epigenetic 
mechanisms of mortality risk among PLWH.

Table 2. Gene ontology term enrichment analysis of the 
selected 393 CpG sites that predict mortality risk among HIV- 
positive population.

Term
Total 
genes

Predictive 
Genes P value

tumor necrosis factor receptor 
superfamily binding

46 7 8.33E-06

response to virus 303 15 4.26E-05
defence response 1505 39 1.29E-04
mitochondrial DNA metabolic 

process
18 4 1.43E-04

cytokine receptor binding 267 12 1.48E-04
regulation of response to 

interferon-gamma
25 4 4.15E-04

regulation of interferon- 
gamma-mediated signaling 
pathway

25 4 4.15E-04

cell-cell adhesion mediator 
activity

50 6 4.43E-04

intrinsic component of the 
cytoplasmic side of the 
plasma membrane

7 3 4.76E-04

immune response 1896 45 4.97E-04

Figure 6. Kaplan-Meier curves of predicted high and low mortality risk groups among people living with HIV.
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We demonstrated that a machine learning 
approach can predict mortality risk among HIV- 
positive individuals across different methylation 
data sets. One of the challenges of a machine 
learning method is overfitting. We attempted to 
limit overfitting in the development of the ensem-
ble prediction models in several ways: 1) model 
development and final model and feature selection 
were conducted separately in the training and 
validation sets, 2) 10-fold cross-validation was per-
formed during the training, 3) the ensemble model 
was used to aggregate prediction results from mul-
tiple base models instead of arbitrarily choosing 
a specific machine learning prediction model, 
and 4) the final model was evaluated in an inde-
pendent test set. We further observed that the 
performance of different models generated by the 
individual machine learning method varied. The 
ensemble-based modeling method outperformed 
some base models and could aggregate prediction 
results from all base models. Furthermore, our 
prediction model was built on training and valida-
tion sets profiled on the 450 K array, and it was 
independently evaluated in the testing set that was 
profiled on the EPIC array. Of note, removing

batch effects is an important step in EWA analysis. 
Methods have been applied to address the bias 
related to batches [62]. Here, our goal was to select 
a set of generalizable methylation markers that are 
relatively stable regardless of batch, cohort, and 
other confounding factors. Without removing 
batch effects within the set of CpG sites common 
to both arrays, our model still showed good pre-
dictive performance, indicating that our model is 
generalizable, regardless of methylation platform. 
Our results suggested that the ensemble prediction 
model is relatively stable and robust.

Our results showed that the CpG-based ensem-
ble prediction model is strongly associated with 
mortality in an HIV-positive population. This 
finding is consistent with previous literature show-
ing that DNAm marks in blood can predict mor-
tality in non-HIV populations [40]. We found that 
30 out of 393 CpGs reached epigenome-wide sig-
nificance. The majority of the 393 CpG sites are 
located within or near genes that are involved in 
known HIV pathology and progression. For exam-
ple, cg22930808 on PARP9 and cg07107453 on 
IFI44 were selected by the machine learning pre-
diction model and reached epigenome-wide

Table 3. Overlapping CpG sites between machine learning selected CpG sites and epigenome-wide significant CpG sites on mortality 
risk among people living with HIV.

probe Chr Position Nearest gene Variable Importance Meta Effect (SE) Meta P Refgene group Relation to CpG island

cg01971407 11 313,624 IFITM1 9.9 −0.0399 (0.0039) 8.05E-25 TSS1500 N_Shelf
cg22930808 3 122,281,881 PARP9;DTX3L 13.7 −0.1057 (0.0105) 7.24E-24 5UTR;TSS1500 N_Shore
cg23570810 11 315,102 IFITM1 13.0 −0.0638 (0.0065) 1.15E-22 Body N_Shore
cg14864167 8 66,751,182 PDE7A 12.0 −0.0832 (0.0085) 1.54E-22 Body N_Shelf
cg01190666 20 62,204,908 PRIC285 19.4 −0.0343 (0.0035) 1.79E-22 5UTR N_Shore
cg11702942 8 144,102,584 LY6E 7.8 −0.0382 (0.004) 7.52E-22 Body S_Shore
cg03607951 1 79,085,586 IFI44L 23.0 −0.0683 (0.0072) 3.58E-21 TSS1500
cg03848588 9 32,525,008 DDX58 14.4 −0.0274 (0.0029) 6.02E-21 Body N_Shore
cg04582010 11 313,120 IFITM1 22.1 −0.0455 (0.0052) 2.19E-18 TSS1500 S_Shore
cg18394552 5 159,428,643 24.4 0.0342 (0.0043) 1.57E-15
cg03753191 13 43,566,902 EPSTI1 4.1 −0.018 (0.0023) 2.43E-15 TSS1500 S_Shore
cg17267239 1 173,640,200 ANKRD45 21.8 −0.0186 (0.0025) 1.22E-13 TSS1500 S_Shore
cg12461141 11 5,710,654 TRIM22 37.6 −0.0274 (0.0037) 1.37E-13 TSS1500
cg09251764 17 6,659,070 XAF1 13.8 −0.0142 (0.002) 3.93E-13 TSS200
cg05626226 4 106,515,450 FLJ20184 11.5 0.0279 (0.004) 2.45E-12 Body
cg22959742 10 13,913,931 FRMD4A 16.4 0.0289 (0.0041) 3.08E-12 Body
cg16936953 17 57,915,665 TMEM49 11.3 −0.0379 (0.0056) 1.95E-11 Body
cg18181703 17 76,354,621 SOCS3 32.6 −0.0215 (0.0033) 1.15E-10 Body N_Shore
cg07107453 1 79,114,976 IFI44 4.8 −0.0292 (0.0046) 2.26E-10 TSS1500
cg25114611 6 35,696,870 FKBP5;LOC285847 12.8 −0.0125 (0.002) 4.78E-10 TSS1500;Body S_Shore
cg01059398 3 172,235,808 TNFSF10 26.7 −0.0289 (0.0047) 7.85E-10 Body
cg19459791 15 65,363,022 15.1 0.0159 (0.0026) 1.20E-09 S_Shelf
cg26282236 12 1,025,755 RAD52 30.2 0.0243 (0.0041) 3.63E-09 Body
cg06357748 12 1,025,529 RAD52 10.7 0.0277 (0.0047) 4.12E-09 Body
cg04442417 20 62,191,507 PRIC285 26.6 0.0201 (0.0035) 1.22E-08 Body Island
cg14602222 12 1,025,663 RAD52 13.2 0.0241 (0.0042) 1.42E-08 Body
cg26724018 11 5,716,255 TRIM22 11.9 −0.0171 (0.003) 1.49E-08 5UTR
cg03084350 3 38,065,265 PLCD1 18.0 0.0114 (0.002) 2.05E-08 Body N_Shore
cg00569896 4 204,382 0.2 0.0254 (0.0047) 5.78E-08 N_Shore
cg12126344 1 12,207,564 8.4 −0.011 (0.002) 7.36E-08
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significance; both genes are involved in HIV 
pathogenesis. Both cg22930808 and cg07107453 
are less methylated in the high mortality risk 
group than in the low mortality risk group. IFI44 
is an interferon-alfa inducible protein and is asso-
ciated with infection by several viruses. A previous 
study showed that higher expression of IFI44 
facilitated HIV-1 latency [63], which may increase 
mortality risk. In addition, cg12359279 is located 
in the MX1 gene (Interferon-Induced GTP- 
Binding Protein Mx1). MX1 encodes a GTP- 
metabolizing protein that is induced by interferon 
I and II and is involved in interferon gamma 
signaling and the Toll-like signaling pathway.

Studies have shown that comorbidity and age-
ing are associated with HIV-related excess mortal-
ity [64–66], and some immune biomarkers can 
partially explain HIV-related excess mortality risk 
[67]. Since the VACS index included measures of 
immune function and indicators for general organ 
injury, it is plausible that predictive CpG sites 
(based on the VACS index) are located near 
genes involved in immune system development 
or other functions, such as liver or kidney func-
tions. Among the 393 predictive CpG sites, no 
CpG site located on the genes overlapped with 
previously reported liver or kidney diseases. 
However, two of the 393 CpG sites, cg16249932, 
and cg00463367, are located near genes related to 
immune system development (MAEA and 
GATA3).

The biological relevance of these 393 CpG sites 
was further supported by the Gene Ontology 
enrichment analysis. The top enriched pathways, 
such as response to virus and cytokine receptor 
binding, may indicate important biological path-
ways that lead to increased risk of mortality among 
PLWH.

We acknowledge that there are several limita-
tions in this study. We defined high mortality 
risk by a cut-off of 40 for the VACS index 
based on previous literature, with a predicted 
3-year mortality of 10% for individuals with 
a VACS index score >40 [48]; the cut-off for 
defining high mortality risk may vary in other 
populations. Additionally, the generalizability of 
our prediction model may be limited because our 
samples were predominantly middle-aged men. 
All samples in our study were HIV-positive, and

we cannot infer whether the identified CpGs are 
relevant to predicting mortality in an HIV- 
negative population. Last, we are unable to vali-
date the array-based DNA methylation of the 
selected CpG sites by machine learning or to 
identify significant CpG sites by EWAS through 
a different platform. However, in a different sam-
ple, we found a high correlation of PBMC methy-
lome between EPIC and the methyl-capture 
sequencing platform (r = 0.986) on the same 
4 peripheral blood monocyte cells. Future studies 
in other populations to validate the ensemble 
prediction model are warranted.

Conclusions

We identified a panel of 393 predictive DNAm 
features in blood that was predictive of mortality 
risk among PLWH. These DNAm features may 
serve as biomarkers to identify individuals at 
high risk for mortality and may help to prioritize 
genes to better understand the mechanisms of 
mortality risk in an HIV-positive population. 
These DNAm features have the potential to be 
used for monitoring HIV progression in future 
clinical care.
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