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Background. Optical coherence tomography (OCT) is an innovative imaging technique that generates high-resolution intra-
coronary images. In the last few years, the need for more precise analysis regarding coronary artery disease to achieve optimal
treatment has made intravascular imaging an area of primary importance in interventional cardiology. One of the main challenges
in OCT image analysis is the accurate detection of lumen which is significant for the further prognosis.Method. In this research,
we present a new approach to the segmentation of lumen in OCT images. ,e proposed work is focused on designing an efficient
automatic algorithm containing the following steps: preprocessing (artifacts removal: speckle noise, circular rings, and guide
wire), conversion between polar and Cartesian coordinates, and segmentation algorithm. Results. ,e implemented method was
tasted on 667 OCT frames. ,e lumen border was extracted with a high correlation compared to the ground truth: 0.97 ICC
(0.97–0.98). Conclusions. Proposed algorithm allows for fully automated lumen segmentation on optical coherence tomography
images. ,is tool may be applied to automated quantitative lumen analysis.

1. Introduction

Today’s medical practice diagnosis of coronary artery disease
(CAD) is made using mostly invasive imaging modalities
among which coronary angiography is the most popular one,
being currently considered the standard during cardiac
catheterization and hemodynamic assessment. However,
coronary angiography produces “luminogram” delineating
only the shape of the contrast-filled lumen without any in-
formation about plaque morphology or vessel wall [1]. ,is is
why most recently angiography is accompanied by newer
intravascular imaging techniques like IVUS and OCT which
employ acoustic waves and near-infrared light, respectively, in

order to generate cross-sectional, volumetric images of cor-
onary arteries [2]. OCTprovides images of high contrast and
very high spatial resolution (10–20 µm), 10 times higher than
IVUS, thus allowing characterization of atherosclerotic pla-
ques and assessment of coronary stenting including stent
apposition and struts coverage [3, 4]. One of the main
challenges in OCT image analysis is the accurate detection of
lumen which is significant for the further prognosis.

,is paper is organized in 4 sections as follows: Section
1.1 presents themotivation of this work and the review of the
state of the art in the area of lumen segmentation. Section 2
specifies the overview of the implemented algorithm. ,e
conducted statistical analysis, results, and discussion of the
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achieved outcomes are presented in Section 3. At last,
Section 4 closes the paper and highlights future directions.

1.1. Motivation. OCT images clearly depict the boundaries
between lumen and vessel, which facilitate image in-
terpretation. Currently image processing has been mainly
conducted manually by Core Lab analysts, but due to large
number of cross sections in OCT image sequence, this is
usually a time-consuming process with high inter-
intraobserver variability [5]. However, above limitations
can be addressed by introducing automatic image analysis
including detection of lumen contours [6, 7]. Lumen seg-
mentation is the first but crucial step in the image analysis
process as it allows detection of stenosis and high-risk
plaques. It has been addressed not only for OCT pull-
backs but also for IVUS image sequences [8, 9].

1.2. RelatedWorks. Automatic lumen contour detection can
be a very challenging step as OCT images typically contain
various artifacts like guide wire shadowing, motion artifacts,
bifurcations, or nondiluted intraluminal blood. As the
analysis of OCT images is a demanding process, many
automatic methods have been developed for lumen de-
tection in OCT [2, 10–16] in recent years.

,ese methods usually employ multistep image pro-
cessing techniques including binarization approach
[10, 11, 16], morphological operations [10, 11], intensity
curve methods [16], Markov random field (MRF) model [2],
or wavelet transform [12].

Different OCT technologies, various image textures, dif-
fused and complex lesions and, furthermore, not well diluted
blood from vessels have a huge impact on segmentation
outcome as well as feature extraction in above described
methods [2, 8–10]. Additionally, images with poor luminal or
substantial luminal blood in contact with the arterial wall
cannot be well delineated by active contour methods [14].

Methods developed and proposed by other research
teams tend to be very accurate and have good computational
cost. But, they applied them for high-quality images in-
cluding only one kind of individual artifacts. Due to these
obstacles, there is still room for a complex solution which
could improve the segmentation process for most cases.

Diffused and complex lesions have motivated the de-
velopment of the proposed method for OCTanalyses with a
new sequence of morphological operations, and in-
terpolation methods which have been designed to re-
construct lumen object, resulting in a more accurate
segmentation outcome, even in the presence of bifurcation
structures and not well-diluted intraluminal blood. Most of
the listed above methods can only be applied on the healthy
or nonbifurcation images [11] or for good quality images
without artifacts [10, 16].

Manual segmentation by independent observers is mainly
used as the reference for particular method validation. To
increase the value of our work, we have compared our out-
comes with two widely used, commercially available systems
(Medis medical imaging systems and St. Jude Medical OPTIS
integrated system). Moreover, the test was conducted on the

same dataset for the results to be reliable. ,is algorithm
achieved higher classification results compared to existing
OCTsegmentation programs, scoring 0.97 ICC in lumen area
compared with a gold standard ground-truth method.

In this paper, we propose a fully automated method to
segment the lumen area in run OCT pullbacks without
excluding any frames. Our solution can be used to analyze
poor quality images as well as images with diseased vessels
and bifurcations.

2. Materials and Methods

,e proposed automated lumen detection algorithm on
intracoronary optical coherence tomography images consists
of two main stages: preprocessing (image enhancement and
artifacts removal) and lumen segmentation with contour
correction. Image analysis has been implemented in Matlab
software using the Image Processing Toolbox, where the
flowchart of the proposed algorithm is presented in Figure 1.

2.1. Database Specification. ,e analyzed material is com-
posed of 667 frames of different patients, from the Medical
University of Silesia. Images used in this study were acquired
by the FD-OCT system (C7-XR system OCT Intravascular
Imaging System, Westford, MA) and two kinds of imaging
catheters: the C7 Dragonfly and Dragonfly OPTIS catheter
with automatic pullback, drive motor optical controller. ,e
analyzed data were obtained with the pullback speed of
20mm/s and 18mm/s, respectively.

,e chosen images contain a variety of vessel features
like lumen irregularities caused by intraluminal masses
(thrombus), branches, or different intensity profiles due to
not well-diluted blood (Figure 2).

2.2. OCT Image Preprocessing. OCT images are in-
homogeneous, complex (variation in degree of intensity and
shape), and furthermore they contain extraneous artifacts,
such as bright concentric circular rings and bright structure
from guide wire with a characteristic shadow behind it.
,ese types of artifacts appear in almost every frame which
makes the advanced image analysis steps impossible.
,erefore, the preprocessing stage is necessary to obtain the
binary image of the intimal layer (the most inner layer of
three layers building the vessel wall) without artifacts from
the diagnostic catheter and improve the quality of the image
for further analysis (Figure 3).

,e proposed algorithm receives as an input each frame in
turn from the whole OCT image dataset. Multiframe images
have been saved in DICOM format (pullback run), and each
frame is a 2D RGB image in a Cartesian coordinate system.

Firstly, all calibration markers and text remarks are
removed from the image using a mask of the pixels that are
colored. ,e analyzed RGB image is converted into
grayscale with the NTSC 1953 standard, which converts
RGB values to grayscale values by forming a weighted sum
of the R, G, and B components.

After converting the RGB image to the grayscale image,
the polar transform is applied, and further preprocessing
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stages are being performed in polar coordinates. ,is
transformation allows us to convert the circular shape of the
coronary artery visible in a cross-sectional view to a
straightened structure. In mathematics, the polar coordinate
system is a two-dimensional coordinate system in which
each point on a plane is determined by a distance from a
reference point and an angle from a reference direction.

,e ring shape distortion from the imaging catheter in
polar space is shown as the straightened structure on the left
side of the image with the known size—Dragonfly catheter
with a diameter of 2.7 French which gives 0.91mm. Using
the knowledge about spatial resolution of the image and

catheter diameter, we can calculate the region of structure
and remove it from the image. Another significant artifact,
which may limit the segmentation process, is a speckle noise
from not well-diluted blood. Speckle noise may affect the
lumen segmentation outcome by classifying it mistakenly as
a tissue resulting in underestimated real lumen area.

In order to remove any destructive speckle effects without
damaging borders, we use a median filter with a 5 × 5 window
[17]. After median filtering, the Gaussian smoothing operator
is used to “blur” the image, aiming at removing unnecessary
details and reducing noise from background. ,e Gaussian
smoothing operator is a 2-D convolution operator that uses a

Preprocessing Lumen segmentation

Figure 1: Proposed methodology for automatic lumen contour detection on OCT images. ,e flowchart shows the major steps of the
detection process including preprocessing and segmentation with their outcomes.

(a) (b)

(c) (d)

Figure 2: Examples of OCTcross-sectional view: (a), (b) lumen irregularities with visible thrombus, (c) residual blood, and (d) bifurcations.
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kernel of Gaussian values representing the shape of a Gaussian
(bell-shaped) hump.

,e Gaussian filter is a low-pass filter, attenuating high-
frequency signals. It calculates a weighted average of each
pixel’s neighborhood, with the average weighted more towards

the value of the central pixels, and a Gaussian distribution
provides gentler smoothing and preserves the better edges [18].

An automatic thresholding on polar space is used to
generate a new binary image with clearly separated region
with high-gradient magnitude-intimal layer.

(a) (b)

(c) (d)

Figure 3: Output of the preprocessing step: (a) OCT input image, (b) artifact removal, (c) OCT image after polar transformation, and (d)
primary segmentation of the lesion in polar coordinates.
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2.3. Lumen Segmentation and Contour Drawing. Methods
and algorithms developed for segmentation of medical
structures are specific to application, imaging modality,
and type of body part to be studied. Because of image
complexity, there is no perfect method to segment all of the
medical structures with high efficiency. However, the
success of the lumen segmentation step is crucial for the
further analysis of OCT images and correct diagnosis.

,e outcome of the preprocessing stage is a binary image
with the primary segmented area that still contains small
artifacts like insufficiently diluted blood close to the imaging
catheter. To minimize the effect of artifacts on the final result,
we subject the image to morphological opening and closing
operations. While erosion and dilation have the major dis-
advantage of changing the size of our region of interest,
opening and closing retain the interesting area. Opening and
closing are basic methods of morphological noise removal.
Opening removes small, unwanted objects from the fore-
ground placing them in the background, while closing fills
small holes and connects disjoint objects in the foreground,
changing small areas of background into foreground [19].
Based on the lumen shape, we use a disk-shaped structuring
element to preserve the circular nature of the object. ,e disk-
shape element is a flat, structuring element, where R specifies
the radius (Figure 4).

,e radius was determined experimentally and set to 5.
Figure 5 shows examples of the results of morphological
opening and closing operations.

Artifacts from the imaging catheter and the guide wire
were removed in the preprocessing stage. However, the
shadow from guide wire makes the intimal layer disconti-
nuities what can be observed in Figure 3(c). A similar effect is
caused by bifurcations. ,e gap from guide wire shadow is
usually of the same size, regular, and easily to be found and
filled. More problematic are gaps caused by bifurcations which
can vary in size, and additionally, the remained objects of the
segmented lumen may have irregular shapes. Bifurcation
results in lumen area distortion can be observed in Figure 6(d).
,e interpolation of remaining regions is necessary to draw
the final lumen contour which should be as close as possible to
the expected values. To solve this problem, we have applied a
modified version of linear interpolation which is tailored to
our needs.

In order to connect the parts of lumen, we analyze the
boundary information (location and coordinates) of every
disconnected part of intima layer (traces of the exterior
boundaries of the object). We receive a cell array of
boundary pixel coordinates of all the objects in the binary
image [20]. To perform the linear interpolation, extreme
points are calculated as presented in Figure 7.

Few of the extrema points are candidates to the
contour points including bottom-left, top-left, and top-
right. We analyze the objects from the top to the bottom.
Following points are being interpolated: for the first,
upper object, we select the left-bottom point, and for the
second object which is located below, we choose between
the top-left and top-right points. ,e final choice is de-
termined by the value of Euclidean distance between
extremes. ,e bigger the bifurcation is, the longer the

distance will be. ,e individual extreme coordinates are
taken to calculate the distance and perform linear in-
terpolation. We experimentally checked that the cutoff
point for bifurcation is 2mm size. Figure 6 presents some
examples of chosen contour points. To avoid sharp
contour reconstructions, additional points have been
chosen by moving up and down from extreme points and
finding the first white pixel in the current row.

After setting the contour points, a linear interpolation
is used. In that way, all discontinuities (bifurcations,
shadow from guide wire and from artifacts) are filled.
,roughout this method, the lumen border line in the
polar image was obtained (Figure 6(c)). Finally, the lumen
border points are detected by the Sobel edge detection
algorithm [21]. ,e Sobel operator performs a 2-D spatial
gradient measurement and emphasizes regions of high
spatial frequency that corresponds to edges. After all
operations have been carried out, the resulting polar image
is transformed into an image in Cartesian coordinates.
Figure 8 shows each step of lumen segmentation.

As the segmentation outcome, the resulting contour does
not have the smoothness that the vessel is expected to have.
,e Savitzky–Golay sliding polynomial filter with window
width 35 and polynomial order 2 [22] is being applied.

Savitzky and Golay showed that a set of integers
(A−n, A−(n−1), . . . , A(n−1), An) could be derived and used as
weighting coefficients to carry out the smoothing operation
[23]. ,e use of these weighting coefficients, known as
convolution integers, is exactly equivalent to fit the data to a
polynomial.,erefore, the smoothed data point (yk)s by the
Savitzky–Golay algorithm is given by the following equation:

yk( s �


n
i�−nAiyk+1


n
i�−nAi

, (1)

where Ai are weighting coefficients to perform the smoothing
operation.

3. Results

,e validation of the described fully automated lumen seg-
mentation method has been performed on 667 intravascular
optical coherence tomography frames from different patients.
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Figure 4: Illustration of a flat structuring element [20].
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,e data were provided by the Medical University of Silesia.
Figure 9 presents the achieved results.

3.1. Statistical Analysis. Statistical analysis involves data ob-
tained from four methods: our algorithm, two commercially
available systems, and manual analysis (ground truth mask).
Continuous parameters were reported as mean and median
with the first and the third quartiles (Q1: 25%; Q3: 75%).

,e Bland–Altman analysis was used to assess the
agreement between two measurement methods. It is a
method comparison technique proposed by Altman and
Bland [24] based on the quantification of the agreement
between two quantitative measurements by studying the
mean difference and constructing limits of agreement.

,e results for the particularmeasurements were presented
as mean with 95% confidence interval and as median with the

(a) (b) (c)

Figure 5: Examples of the results after morphological opening and closing operations on OCT images in polar coordinates: (a) images after
Gaussian filtering, (b) images after binarization, and (c) images after morphological opening and closing operations.
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(a) (b) (c) (d)

Figure 6: Examples of chosen extrema points needed to perform linear interpolation: (a) binary image after preprocessing and artifact
removal with marked extrema, (b) extrema point connection (linear interpolation), (c) lumen segmentation outcome, and (d) input OCT
image with lumen contour tracing. Images (a)–(c) are in polar coordinates, and image (d) is after transformation to Cartesian coordinates.

Top-le� (1) Top-right (2)

Right-top (3)

Right-bottom (4)

Bottom-right (5)

Le�-top (8)

Le�-bottom (7)

Bottom-le� (6)

(a)

Top-le� (1) Top-right (2)

Right-top (3)

Right-bottom (4)

Bottom-right (5)

Le�-top (8)

Le�-bottom (7)

Bottom-le� (6)

(b)

Figure 7: Illustration of marked extremes for two different regions [20].
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first and the third quartiles. Discrepancies between the first and
the second analysis were calculated as absolute and relative
differences and presented as means with 95% CIs. Intraclass
correlations were calculated as the main measure of agreement
along with the graphical representation as the Bland–Altman
plots. Analyses for statistical computing were performed in R
language (R Core Team 2017, Vienna, Austria).

3.2. Validation of Automated Lumen Segmentation. In order
to validate the described algorithm, we compare four lumen
detection methods: our solution, ground truth mask, and
two commercially available systems including St. Jude

Medical and System (system 1) and Medis medical imaging
systems (system 2). Manual segmentation has been per-
formed by independent observers-interventional cardiolo-
gists with extensive clinical experience. Furthermore, our
experts were involved in the development of methodology
and results analysis.

,e following parameters have been analyzed for each of
the described methods: lumen area, mean lumen diameter,
minimal lumen diameter, and maximal lumen diameter, and
are collected in Table 1.

,e results of the assessed parameters are collected in
Tables 2–4 and presented by the Bland–Altman plots.

(a) (b) (c) (d) (e) (f ) (g) (h)

Figure 8: Lumen segmentation steps: (a) original image in Cartesian coordinates; (b) image after transformation to polar coordinates and
after catheter removal applying Gaussian filtering; (c) image in polar coordinates after binarization and morphological operations, small
artifacts are removed and small gaps filled; (d) Image in polar coordinates with marked extrema; (e) based on extrema, connection points are
chosen and linear interpolation is applied to fill all gaps; (f ) lumen segmentation outcomes; (g) segmented contour transformed back to
Cartesian coordinates and after smoothing filter; (h) final image, cross-sectional view with marked contour.

(a) (b) (c)

(d) (e) (f )

Figure 9: Results of the described lumen segmentation algorithm dedicated for OCT images. Presented images show six different cases
including various artifacts and difficulties.
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Table 1: Calculated parameters for each of the analyzed methods.

Our method mean System 1 mean System 2 mean Ground truth mean
Lumen area (mm2) 5.99 6.04 5.76 5.89
Mean lumen diameter (mm) 2.72 2.72 2.66 2.68
Minimal lumen diameter (mm) 2.52 2.52 2.42 2.49
Maximal lumen diameter (mm) 2.91 2.93 2.87 2.88

Table 2: Statistical comparison of the parameters between our methodology and manual analyses by analyst (ground truth).

Our method
(first measure)
mean (CI)

Ground truth
(second measure)

mean (CI)

Our method (first
measure) median

(IQR)

Ground truth
(second measure)
median (IQR)

Difference Relative
difference

ICC (95%
CI)

ICC p

value

Lumen
area 5.99 (5.83–6.14) 5.89 (5.74–6.04) 6.45 (4.72–7.67) 6.29 (4.67–7.50) 0.10

(0.06–0.13)

−1.12%
(−1.55% to
−0.68%)

0.97
(0.97–0.98) <0.0001

Mean
lumen
diameter

2.72 (2.68–2.76) 2.68 (2.64–2.72) 2.88 (2.41–3.13) 2.82 (2.43–3.09) 0.03
(0.02–0.04)

−1.15%
(−1.48% to
−0.83%)

0.96
(0.95–0.97) <0.0001

Minimal
lumen
diameter

2.52 (2.48–2.56) 2.49 (2.45–2.53) 2.64 (2.18–2.96) 2.61 (2.10–2.93) 0.03
(0.02–0.03)

−1.11%
(−1.44% to
−0.78%)

0.98
(0.98–0.98) <0.0001

Maximal
lumen
diameter

2.91 (2.87–2.96) 2.88 (2.84–2.92) 3.07 (2.54–3.30) 3.01 (2.58–3.25) 0.04
(0.02–0.05)

−0.81%
(−1.23% to
−0.39%)

0.91
(0.89–0.92) <0.0001

Table 3: Statistical comparison of parameters between our methodology and commercially available system 1.

Our method
(first measure)
mean (CI)

System 1
(second
measure)
mean (CI)

Our method
(first measure)
median (IQR)

System 1
(second
measure)

median (IQR)

Difference Relative
difference

ICC (95%
CI)

ICC p

value

Lumen
area

5.99
(5.83–6.14)

6.04
(5.90–6.19) 6.45 (4.72–7.67) 6.50 (5.01–7.56) −0.06

(−0.08–−0.03)
1.67%

(1.25%–2.10%)
0.99

(0.98–0.99) <0.0001

Mean
lumen
diameter

2.72
(2.68–2.76)

2.72
(2.68–2.76) 2.88 (2.41–3.13) 2.87 (2.52–3.10) −0.00

(−0.01–0.00)
0.34%

(0.06%–0.63%)
0.98

(0.97–0.98) <0.0001

Minimal
lumen
diameter

2.52
(2.48–2.56)

2.52
(2.48–2.56) 2.64 (2.18–2.96) 2.52 (2.48–2.56) 0.00

(−0.01–0.01)
0.16%

(−0.16%–0.49%)
0.98

(0.97–0.98) <0.0001

Maximal
lumen
diameter

2.91
(2.87–2.96)

2.93
(2.89–2.97) 3.07 (2.54–3.30) 3.08 (2.66–3.28) −0.02

(−0.03–−0.00)
0.82%

(0.43%–1.21%)
0.94

(0.93–0.95) <0.0001

Table 4: Statistical comparison of parameters between our methodology and another commercially available system 2.

Our method
(first measure)
mean (CI)

System 2
(second

measure) mean
(CI)

Our method (first
measure) median

(IQR)

System 2 (second
measure) median

(IQR)
Difference Relative

difference
ICC (95%

CI)
ICC p

value

Lumen
area 5.99 (5.83–6.14) 5.76 (5.61–5.92) 6.45 (4.72–7.67) 6.13 (3.98–7.48) 0.22

(0.18–0.27)

−4.23%
(−4.88% to
−3.57%)

0.95
(0.93–0.97) <0.0001

Mean
lumen
diameter

2.72 (2.68–2.76) 2.66 (2.61–2.70) 2.88 (2.41–3.13) 2.79 (2.25–3.09) 0.06
(0.05–0.07)

−2.42%
(−2.85% to
−1.99%)

0.94
(0.92–0.96) <0.0001

Minimal
lumen
diameter

2.52 (2.48–2.56) 2.42 (2.37–2.46) 2.64 (2.18–2.96) 2.56 (2.01–2.91) 0.10
(0.09–0.12)

−4.96%
(−5.53% to
−4.39%)

0.95
(0.85–0.97) <0.0001

Maximal
lumen
diameter

2.91 (2.87–2.96) 2.87 (2.83–2.91) 3.07 (2.54–3.30) 3.00 (2.50–3.26) 0.04
(0.02–0.06)

−1.11%
(−1.58% to
−0.63%)

0.89
(0.88–0.91) <0.0001
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Figure 10: Bland–Altman plot for (a) lumen area, (b) mean lumen diameter, (c) minimal lumen diameter, and (d) maximal lumen diameter
between our method and ground truth method.
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Figure 11: Continued.
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Figure 11: Bland–Altman plot for (a) lumen area, (b) mean lumen diameter, (c) minimal lumen diameter, and (d) maximal lumen diameter
between our method and automated lumen detection proposed by commercially available system 1.
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Figure 12: Bland–Altman plot for (a) lumen area, (b) mean lumen diameter, (c) minimal lumen diameter, and (d) maximal lumen diameter
between our method and automated lumen detection proposed by commercially available system 2.
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To enable the analysis of statistical data, the following
parameters have been collected additionally.

,e relative difference is calculated using the following
equation:

RD �


N
i�1 Ii − Oi/max Oi, Ii( ( 

N
∗100%. (2)

,e absolute relative difference is calculated using

ARD �


N
i�1 Ii − Oi


/max Oi, Ii(  

N
∗100%, (3)

where N is the total number of frames, i is the number of
current frame, Oi is the value for 1st measurement, and Ii is
the value for 2nd measurement.

3.3. Discussion of the Results. ,e lumen detection was
performed on a desktop computer with an Intel Core i5-
4200, 1.60GHz processor, 8GB RAM, Windows 10 64 bits,
and Matlab (R2016b). ,e average time of the lumen con-
tour detection was 1.099 s. ,e average time of manual
segmentation of a slice was approximately 60 seconds. As it
is shown, the computer-aided segmentation systems is much
faster than the manual segmentation; furthermore, it is
objective to the same cases and also very accurate. To val-
idate our proposed method, we tested the same dataset with
results from manual analyses and two commercially avail-
able tools for automatic lumen detection. We achieved high
correlation in lumen area compared with a gold standard
ground-truth method (manual analyses performed by an
expert): 0.97 ICC. ,e results in the literature [2, 11, 12]
reported an absolute difference of the mean lumen area of
0.1mm2. De Macedo et al. [11] obtained absolute difference
of mean lumen area of 0.17mm2. Our proposed method
showed similar results (absolute difference of mean lumen
area of 0.1mm2) to those presented previously published
methods, but what is worth to highlight in our validation
process is that all frames were included to analyse even
frames containing complex plaque, artifacts from residual
blood, or bifurcations with diameters > 2mm. Furthermore,
as we can see the parameters calculated by our methods are
similar to obtained results from both commercially available
systems (system 1 and system 2), the systems have not been
described in any paper. Our algorithm can be easily
implemented again and tested on a new dataset.

,e Bland–Altman plots (Figures 10–12) indicate a good
agreement between used methods, where the solid line denotes
the mean difference between the first and the second mea-
surement, while the dashed lines indicate ±1.96 standard de-
viation. Most points plotted are between the solid line (mean
diff) and the dashed line (mean ± 2 ∗ standard deviation).

An absolute difference of mean lumen area calculated
between our method and automated lumen detection pro-
posed by system 1 is of 0.06mm2 compared with system 2
results of absolute difference of mean lumen area of 0.22.
Although the lumen areas are similar in all methods and
there is high ICC between our method and the others
(0.95–0.99), the lumen diameters are shown with lower ICC,
especially between our method and system 2.

In terms of limitations, our method was not tested on
images with the presence of stents which could have a
negative impact on our algorithm. ,is limitation may be
solved in the future by developing methods to extract the
struts and fill the artifacts from strut shadows.

4. Conclusion

We presented a fully automated methodology which is able
to detect and draw correctly lumen contours in OCT images
including frames with bifurcations and artifacts from blood.
,e automated method was validated using the manual
analyzes performed by an Expert as a gold standard as well as
commercially available tools. ,e results suggest that our
method can be a useful tool for vessel segmentation and
further analysis. ,e achieved results indicate that the
proposed algorithm fulfills the requirement.
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