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 Background: This study aimed to identify important marker genes in lung adenocarcinoma (LACC) and establish a prognos-
tic risk model to predict the risk of LACC in patients.

 Material/Methods: Gene expression and methylation profiles for LACC and clinical information about cases were downloaded from 
the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, respectively. Differentially 
expressed genes (DEGs) and differentially methylated genes (DMGs) between cancer and control groups were 
selected through meta-analysis. Pearson coefficient correlation analysis was performed to identify intersec-
tions between DEGs and DMGs and a functional analysis was performed on the genes that were correlated. 
Marker genes and clinical factors significantly related to prognosis were identified using univariate and mul-
tivariate Cox regression analyses. Risk prediction models were then created based on the marker genes and 
clinical factors.

 Results: In total, 1975 DEGs and 2095 DMGs were identified. After comparison, 16 prognosis-related genes (EFNB2, 
TSPAN7, INPP5A, VAMP2, CALML5, SNAI2, RHOBTB1, CKB, ATF7IP2, RIMS2, RCBTB2, YBX1, RAB27B, NFATC1, 
TCEAL4, and SLC16A3) were selected from 265 overlapping genes. Four clinical factors (pathologic N [node], 
pathologic T [tumor], pathologic stage, and new tumor) were associated with prognosis. The prognostic risk 
prediction models were constructed and validated with other independent datasets.

 Conclusions: An integrated model that combines clinical factors and gene markers is useful for predicting risk of LACC in pa-
tients. The 16 genes that were identified, including EFNB2, TSPAN7, INPP5A, VAMP2, and CALML5, may serve 
as novel biomarkers for diagnosis of LACC and prediction of disease prognosis.
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Background

Lung cancer is one of the most common cancers and a severe 
threat to human health. The number of lung cancer-related 
deaths is growing, with an estimated one-quarter of cancer-
related deaths due to the disease [1]. There are 2 main types 
of lung cancer: small cell lung cancer and non-small cell lung 
cancer (NSCLC). Lung adenocarcinoma (LACC) is the most fre-
quent histological subtype of NSCLC, accounting for approxi-
mately 75% of all cases of lung cancer. Over the past few de-
cades, incidence of LACC in China has rapidly increased [2]. 
Despite recent advances in multimodality therapy, the overall 
5-year survival rate for patients with LACC is only 15% [3], be-
cause two-thirds of lung cancers are discovered at advanced 
stages. Furthermore, 30% to 55% or more of patients who un-
dergo resection for lung cancer experience relapse of disease 
within 5 years and die of metastatic recurrence [4]. Currently, 
it is impossible to accurately identify specific patients at high 
risk of recurrence to provide individualized therapy.

In recent years, molecular characterization of NSCLC has 
reached an unprecedented level of detail [5,6]. Vascular inva-
sion, poor differentiation, tumor size, and high tumor prolifer-
ation index have been found to have prognostic significance. 
In addition, advances in human genomics have revolutionized 
methods of identifying new prognostic factors for human can-
cer [7,8]. For instance, Jiang et al. [9] identified 16 survival mark-
er genes on the basis of datasets from previous studies. Beer 
et al. [10] evaluated a group of survival marker genes for use in 
identification of high-risk patients with LACC. Moreover, global 
gene expression profiling based on microarray technology has 
identified novel gene signatures and potential biomarkers to 
better predict patient prognosis in lung cancer [11–15], such as 
KRAS [16], p53 [17], SLC1A6, MGB1, REG1A, and AKAP12 [18]. 
Despite this progress, however, it remains challenging to ac-
curately predict prognosis in patients with LACC.

In this study, we integrated gene expression profiling, meth-
ylation profiling and clinical characteristics to identify impor-
tant marker genes that could predict survival and prognosis 
in a cohort of patients with LACC. A comprehensive prognos-
tic risk model was constructed based on tumor marker genes 
and clinical factors. Reasonable use of reliable tumor mark-
ers may be helpful in early diagnosis of LACC and prediction 
of prognosis in patients with the disease.

Material and Methods

Data collection for meta-analysis

The datasets for LACC, including gene expression and meth-
ylation profiles obtained from the same patient population, 

were downloaded from the National Center of Biotechnology 
Information Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/) and the European Bioinformatics 
Institute database on September 5, 2017. The datasets were 
further screened according to the following inclusion criteria: (1) 
Presence of LACC and normal control samples; (2) Availability of 
more than 50 samples; and (3) More than 20 000 total probes 
detected in the dataset. Finally, a total of 7 gene expression pro-
file (GSE75037, GSE33532, GSE43458, GSE30219, GSE32863, 
GSE10072 and GSE62949) and 4 methylation profile datasets 
(GSE32861, GSE49996, GSE63384, and GSE62948) were se-
lected. Detailed information about them is shown in Table 1. 
Furthermore, GSE62949 and GSE62948 were both included in 
dataset GSE62950 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE62950).

Data collection for construction of the prognostic risk 
prediction model

Data on gene expression and methylation profiles for LACC 
used to construct the prognostic risk prediction model were 
downloaded from The Cancer Genome Atlas (TCGA) database 
(https://gdc-portal.nci.nih.gov/). After matching the methyla-
tion and gene expression profiles, 473 matched tumor samples 
were obtained. A total of 335 tumor samples were obtained 
by removing the samples that did not have survival progno-
sis information. These data were used as the training datas-
et. At the same time, the expression profile for LACC tissue, 
GSE37745 [19] (platform: GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array), was downloaded from 
the GEO database. This dataset, which contains 106 LACC tis-
sue samples, was used as an independent validation dataset 
for the prognostic risk prediction model. Clinical information 
about the 2 datasets is shown in Table 2.

Preprocessing, quality control, and differential expression 
analysis of data used in the meta-analysis

We used the oligo package [20] (http://www.bioconductor.org/
packages/release/bioc/html/oligo.html) in R3.4.1 language for 
CEL data conversion, missing values supplementation (median 
method), background correction (MAS method), and data nor-
malization (quantile method) of the GSE333532, GSE43458, 
GSE30219, and GSE1072 datasets, which were downloaded 
from the GEO database based on the Affy platform. Using the 
limma package [21] (https://bioconductor.org/packages/release/
bioc/html/limma.html) in the R3.4.1 language with the Illumima 
platform (quantile method), gene annotation, log2 conversion, 
and data normalization were performed on the GSE75037 and 
GSE32863 datasets (TXT format). For methylation profiling of 
GSE32861, GSE49996, GSE63384, and GSE62948, we identi-
fied the chromosomal sites and methylation beta values us-
ing the GenomeStudio Methylation Module [22].
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The main purpose of the meta-analysis was to comprehen-
sively generate multiple research results using multiple ex-
perimental datasets, improve the ability to generate statistics, 
and screen for more reliable genes. Because these datasets 
were collected from different samples and experiments, they 
may be subject to bias. Therefore, the MetaQC [23] package 
(https://cran.r-project.org/web/packages/MetaQC/index.html) 
in R3.4.1 was used to perform quality control on the datas-
ets. Next, the differentially expressed genes (DEGs) and dif-
ferentially methylated genes (DMGs) were screened out us-
ing MetaDE.ES in MetaDE [24] package (https://cran.r-project.
org/web/packages/MetaDE). The tau2=0, and Qpval >0.05 were 

used as the homogeneity test parameters; a false discovery 
rate (FDR) <0.05 was set as the threshold.

Analysis of correlation between gene expression and 
methylation levels

For the above obtained DEGs and DMGs, we selected the in-
tersection genes, which then served as candidate tumor mark-
er genes. The Pearson coefficient correlation between gene 
expression level and methylation level was calculated using 
the cor function (https://www.rdocumentation.org/packag-
es/stats/versions/3.4.1/topics/cor) in R3.4.1. Then the DAVID 

GEO accession Platform
Total probe 

number
Total 

sample
Normal 
sample

Cancer 
sample

Gene expression

GSE75037 GPL6884 Illumina 48803 166 83 83

GSE33532 GPL570 Affymetrix 54675 60 40 20

GSE43458 GPL6244 Affymetrix 33297 110 80 30

GSE30219 GPL570 Affymetrix 54675 98 84 14

GSE32863 GPL6884 Illumina 48803 116 58 58

GSE10072 GPL96 Affymetrix 22283 107 58 49

Gene methylation

GSE32861 GPL8490 Illumina 27578 118 59 59

GSE49996 GPL8490 Illumina 27578 88 44 44

GSE63384 GPL8490 Illumina 27578 70 35 35

GSE62948 GPL8490 Illumina 27578 56 28 28

Table 1. The gene expression profiling and methylation profiling datasets in this study.

GEO – Gene Expression Omnibus.

Clinical characteristics TCGA (N=335) GSE37745 (N=106)

Age (years, mean±SD) 65.19±10.25 62.94±9.22

Sex (Male/Female) 155/180 46/60

Pathologic M (M0/M1/–) 226/13/96 –

Pathologic N (N0/N1/N2/–) 214/60/55/6 –

Pathologic T (T1/T2/T3/T4/–) 111/180/29/14/1 –

Pathologic stage (I/II/III/IV) 180/81/61/13 70/19/13/4

Radiation therapy (yes/no/–) 41/254/40 –

Targeted molecular therapy (yes/no/–) 99/194/42 –

Tobacco smoking history (current/reformed/never/–) 70/206/45/14 –

Recurrence (yes/no/–) 104/176/55 26/27

Death (dead/alive) 120/215 77/29

Recurrence-free survival time (months, mean±SD) 22.27±27.77 54.11±53.48

Overall survival time (months, mean±SD) 27.54±29.74 61.74±49.96

Table 2. Clinical information from The Cancer Genome Atlas (TCGA) and GSE62254 datasets.

‘–’ – Represents information unavailable.

e925833-3
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Ke H. et al.: 
Multiple factors prognostic model of lung adenocarcinoma
© Med Sci Monit, 2020; 26: e925833

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



Bioinformatics Database, v6.8 [25,26] (https://david.ncifcrf.
gov/), was used to perform enrichment analyses of the candi-
date tumor marker genes from the Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases.

Screening of tumor marker genes and clinical factors 
related to prognosis

From among the total tumor marker gene set and the corre-
sponding clinical factors for the tumor samples, we then iden-
tified the tumor marker genes and clinical factors significantly 

related to prognosis, using the univariate and multivariate Cox 
regression analyses in the Bioconductor R3.4.1 survival pack-
age [27] (http://bioconductor.org/packages/survival/). A log-
rank test P<0.05 was used as the threshold for significance.

Construction and validation of the risk prediction model

Using the prognosis-associated tumor marker genes identified 
by the Cox regression analysis, we constructed a risk prediction 
model and calculated a prognostic index (PI) for each sample. The 
samples in the training set were divided into high- and low-risk 

IQC EQC CQCg CQCp AQCg AQCp SMR

Gene expression profiling

 GSE75037 5.27 3.23 106.65 158.86 32.71 90.88 1.62

 GSE32863 4.38 3.16 64.14 146.51 26.46 96.74 2.42

 GSE33532 4.81 3.23 59.25 171.49 25.50 84.37 2.86

 GSE43458 6.09 1.10 101.10 114.30 19.53 29.46 3.92

 GSE30219 6.64 3.71 83.97 107.69 47.87 63.89 4.33

 GSE10072 8.06 9.19 12.24 8.92 9.78 14.52 7.76

Methylation profiling

 GSE32861 9.80 5.00 19.24 41.01 6.17 24.77 3.28

 GSE49996 6.22 4.96 46.70 42.02 8.67 33.56 3.14

 GSE63384 7.56 3.05 24.57 33.79 3.45 17.84 5.67

 GSE62948 5.11 3.63 59.25 60.27 29.49 84.37 3.25

Table 3. MetaQC quality control of 6 expression profiling datasets and 4 methylation profiling datasets.

IQC – internal quality control; EQC – external quality control; CQC – consistency quality control; AQC – accuracy quality control; 
SMR – standardized mean rank score.
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Figure 1.  MetaQC quality control charts of (A) 5 gene expression profiles and (B) 2 gene methylation profiles. The horizontal and 
vertical axes represent the first and second principal components in principal component analysis. The numbers represent 
the corresponding datasets.
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groups, according to median PI. Then the correlation between 
the risk prediction model and prognosis was assessed with con-
struction of a Kaplan-Meier survival curve [28] in the survival 
package of R3.4.1 and validated using the validation dataset.

In addition, following the same method, a risk prediction mod-
el was constructed using the clinical factors and the Cox re-
gression analysis-generated prognosis associated with those 

factors. Similarly, the samples in the training set were divided 
into high- and low-risk groups, and the correlation between 
the risk prediction model and the prognosis was assessed 
through a Kaplan-Meier survival curve.

Finally, a risk prediction model that synthesized clinical fac-
tors and tumor marker genes was constructed based on the 
prognosis correlation coefficients obtained from the 2 models 
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Figure 3.  Correlation analysis of expression levels and methylation levels of 265 genes in (A) TCGA and (B) the GSE62950 dataset. 
The horizontal axis represents the gene expression level, the vertical axis represents the gene methylation level, the oblique 
line represents the trend line synthesized by points, and the red font represents the correlation coefficient (CC) and the 
significant P value.
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Figure 2.  Heatmaps of (A) significant differentially expressed genes and (B) differentially methylated genes obtained based on MetaDE 
screening.

e925833-5
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Ke H. et al.: 
Multiple factors prognostic model of lung adenocarcinoma
© Med Sci Monit, 2020; 26: e925833

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



Category Term Count P value Genes

Biologic 
process

GO: 0032409 ~ regulation of 
transporter activity

6 0.0002 PLCG2, NDFIP1, PKD2, FKBP1B, NKX2-5, SYNGR3

GO: 0009611 ~ response to 
wounding

21 0.0005 PPARA, A2M, ACHE, BMP2, UCN, FOXA2, EFEMP2, ATRN, 
CHST2, HOXB13, SERPING1, CD40, TNFRSF1B, THBD, 
PLSCR4, CTGF, PLA2G7, LTA4H, CFD, PLAU, ACVR1

GO: 0050777 ~ negative 
regulation of immune 
response

5 0.0007 A2M, IL27RA, NDFIP1, CTLA4, SERPING1

GO: 0048585 ~ negative 
regulation of response to 
stimulus

8 0.0013 PPARA, A2M, TNFRSF1B, IL27RA, NDFIP1, CTLA4, 
SERPING1, NT5E

GO: 0015718 ~ 
monocarboxylic acid transport

6 0.0013 SLC16A3, SLC25A20, PPARA, SLC16A1, PLA2G1B, 
SLCO2A1

GO: 0055082 ~ cellular 
chemical homeostasis

16 0.0016 FXYD1, TRPM8, IL6ST, NDFIP1, TP53, FZD2, FKBP1B, 
CKB, GCKR, PLCG2, CLDN1, PKD2, RGN, SV2A, KCNH2, 
KCNQ1

GO: 0050878 ~ regulation of 
body fluid levels

9 0.0023 SCT, UCN, THBD, PLSCR4, FOXA2, EFEMP2, SERPING1, 
CD40, PLAU

GO: 0006869 ~ lipid transport 9 0.0028 SLC25A20, PPARA, OSBPL3, SORL1, LIPG, PLA2G1B, 
VPS4B, VLDLR, SLCO2A1

GO: 0031348 ~ negative 
regulation of defense 
response

5 0.0028 A2M, TNFRSF1B, NDFIP1, SERPING1, NT5E

GO: 0050801 ~ ion 
homeostasis

16 0.0033 FXYD1, TRPM8, IL6ST, NDFIP1, TP53, FZD2, CPS1, 
FKBP1B, CKB, PLCG2, CLDN1, PKD2, RGN, SV2A, 
KCNH2, KCNQ1

GO: 0035295 ~ tube 
development

11 0.0036 BMP2, FOXA2, CTGF, CRISPLD2, TGFBR1, HOXB13, 
PCSK5, NKX2-5, HECA, MYCN, ACVR1

GO: 0006873 ~ cellular ion 
homeostasis

15 0.0037 FXYD1, TRPM8, IL6ST, NDFIP1, TP53, FZD2, FKBP1B, 
CKB, PLCG2, CLDN1, PKD2, RGN, SV2A, KCNH2, KCNQ1

GO: 0010876 ~ lipid 
localization

9 0.0045 SLC25A20, PPARA, OSBPL3, SORL1, LIPG, PLA2G1B, 
VPS4B, VLDLR, SLCO2A1

GO: 0019725 ~ cellular 
homeostasis

17 0.0046 FXYD1, TRPM8, PDIA2, IL6ST, NDFIP1, TP53, FZD2, 
FKBP1B, CKB, GCKR, PLCG2, CLDN1, PKD2, RGN, SV2A, 
KCNH2, KCNQ1

GO: 0048878 ~ chemical 
homeostasis

18 0.0049 FXYD1, TRPM8, IL6ST, NDFIP1, TP53, FZD2, CPS1, 
FKBP1B, CKB, GCKR, PLCG2, LIPG, CLDN1, PKD2, RGN, 
SV2A, KCNH2, 

KEGG 
pathway

hsa00562: Inositol phosphate 
metabolism

5 0.0017 ISYNA1, PLCG2, SYNJ2, ITPKB, INPP5A

hsa04610: Complement and 
coagulation cascades

5 0.0037 A2M, THBD, SERPING1, CFD, PLAU

hsa04070: 
Phosphatidylinositol signaling 
system

5 0.0046 PLCG2, SYNJ2, ITPKB, CALML5, INPP5A

hsa00532: Chondroitin sulfate 
biosynthesis

3 0.0060 B3GAT1, XYLT1, CHSY1

Table 4. Functional enrichment analysis results for 265 candidate genes.
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previously described. The PI of each sample was recalculat-
ed, the median of which was used to divide the samples in 
training set into high- and low-risk groups. The correlation be-
tween the risk prediction model and prognosis was evaluat-
ed via a Kaplan-Meier survival curve, and validated with the 
validation dataset.

Results

Quality control and differential expression analysis of data 
used in the meta-analysis

After normalization, quality control was performed on the da-
tasets with MetaQC. Five parameter scores were calculated, in-
cluding internal quality control (IQC), external quality control 
(EQC), accuracy quality control (AQCg), consistency quality con-
trol (CQCg), and standardized mean rank score (SMR), as shown 
in Table 3. In addition, results of principal component analysis 

Table 4 comtinued. Functional enrichment analysis results for 265 candidate genes.

Category Term Count P value Genes

KEGG 
pathway
(continued)

hsa05217: Basal cell 
carcinoma

4 0.0393 BMP2, TP53, WNT11, FZD2

hsa00534: Heparan sulfate 
biosynthesis

3 0.0081 B3GAT1, XYLT1, HS3ST1

hsa00590: Arachidonic acid 
metabolism

4 0.0082 AKR1C3, CYP2C18, PLA2G1B, LTA4H

hsa04514: Cell adhesion 
molecules (CAMs)

6 0.0093 NRCAM, CDH15, CLDN1, CTLA4, CD40, SDC2

hsa00340: Histidine 
metabolism

3 0.0098 HDC, LCMT2, MAOB

KEGG – Kyoto Encyclopedia of Genes and Genomes.

Gene Coefficient Hazard ratio Lower.95 Upper.95 P value

EFNB2 0.7121 2.0384 1.5210 2.7317 <0.0001

TSPAN7 –0.5824 0.5586 0.4380 0.7123 <0.0001

INPP5A –1.4730 0.2292 0.1103 0.4762 <0.0001

VAMP2 1.4277 4.1690 2.0004 8.6885 0.0001

CALML5 0.2006 1.2221 1.0996 1.3582 0.0002

SNAI2 0.5449 1.7245 1.2434 2.3916 0.0011

RHOBTB1 0.6348 1.8867 1.2467 2.8552 0.0027

CKB –0.3511 0.7039 0.5578 0.8884 0.0031

ATF7IP2 –0.4666 0.6272 0.4299 0.9149 0.0155

RIMS2 0.1523 1.1645 1.0227 1.3259 0.0215

RCBTB2 –0.6106 0.5430 0.3189 0.9247 0.0246

YBX1 0.7766 2.1740 1.0909 4.3325 0.0273

RAB27B 0.2554 1.2909 1.0276 1.6218 0.0283

NFATC1 –0.5289 0.5892 0.3660 0.9487 0.0295

TCEAL4 –0.6401 0.5272 0.2933 0.9476 0.0324

SLC16A3 –0.4125 0.6620 0.4520 0.9696 0.0341

Table 5. Tumor marker genes significantly associated with prognosis.
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of these datasets are shown in Figure 1A and 1B. After combin-
ing Table 3 and Figure 1, we concluded that the distribution of 6 
expression profiling datasets and 4 methylation profiling datas-
ets was balanced, and all indexes fit the standard of data quali-
ty, so the 10 datasets were included in the subsequent analysis. 
Finally, 1975 significant DEGs and 2095 DMGs were identified 
using MetaDE. A heatmap of these DEGs and DMGs showed that 
that the DEGs and DMGs screened from different datasets were 
consistent in their differential degree and direction (Figure 2).

Correlation analysis between gene expression level and 
methylation level

By comparing the 1975 DEGs and 2095 DMGs, 265 intersect-
ing genes (candidate genes) were identified. An analysis of the 
correlation between the expression and methylation levels of 
the 265 candidate genes then was performed, based on the 
methylation and expression profiles that matched the sam-
ples in TCGA and GSE62950 datasets. As shown in Figure 3, 
the expression values and methylation levels of 265 gene were 
negatively correlated in the TCGA and GSE62950 datasets, 
and the correlation coefficients were –0.5108 (P=0.0114) and 
–0.4216 (P=0.0003), respectively. Functional enrichment anal-
ysis of 265 candidate genes identified 15 significant GO bio-
logical processes and 9 KEGG pathways, as shown in Table 4.

Screening of prognosis-related tumor marker genes and 
clinical factors

From an initial pool of 256 candidate genes and based on the 
clinical factors in the samples, 16 prognosis-related genes 

(EFNB2, TSPAN7, INPP5A, VAMP2, CALML5, SNAI2, RHOBTB1, 
CKB, ATF7IP2, RIMS2, RCBTB2, YBX1, RAB27B, NFATC1, TCEAL4, 
and SLC16A3) (Table 5) were screened using univariate and 
multivariate Cox regression analyses. An analysis then was per-
formed of the correlation between the expression and meth-
ylation levels in 16 prognostic genes in TCGA and GSE62950 
datasets (Supplementary Figure 1). Five clinical factors were 
identified: pathologic N (nodes), pathologic T (tumor), patho-
logic stage, new tumor, and radiation therapy. As shown in 
Table 6, pathologic N, pathologic T, pathologic stage, and new 
tumor were significantly correlated with prognosis. The Kaplan-
Meier curves for the correlations between the 4 clinical fac-
tors and overall survival (OS) are shown in Supplementary 
Figure 2. A cluster analysis of the expression and methyla-
tion levels of the 16 prognosis-related genes and the 4 clini-
cal factors revealed that the samples could be divided into 2 
clusters. There were 160 and 175 samples in clusters 1 and 2, 
respectively (Figure 4). In addition, a chi-square test of sample 
clinical information in the 2 clusters revealed that pathologic 
N was significantly correlated with both clusters (P=0.0467) 
(Supplementary Table 1).

Construction and validation of the risk prediction model

A risk prediction model was constructed using the 16 progno-
sis-associated tumor marker genes identified by the Cox regres-
sion analysis. A Kaplan-Meier survival curve was used on the 
TCGA training set to assess the correlation between the risk 
groups and the prognosis for OS and recurrence. In OS prog-
nosis, low-risk patients (167 samples) had a longer OS time 
compared with high-risk patients (168 samples) (Table 7). The 

Clinical characteristics
Univariate Cox regression Multivariate Cox regression

P value HR (95%CI) P value HR (95%CI)

Age (above/below median, 65 years) 0.4370 1.155 (0.804~1.659) – –

Sex (Male/Female) 0.7450 1.062 (0.741~1.52) – –

Pathologic M (M0/M1) 0.1310 1.692 (0.848~3.378) – –

Targeted molecular therapy (yes/no) 0.1601 1.366 (0.883~ 2.114) – v

Tobacco smoking history 
(current/reformed/never)

0.9900 1.002 (0.737~1.362) – –

Radiation therapy (yes/no) 0.0035 2.033 (1.25~3.307) 0.5924 1.163 (0.669~2.019)

Pathologic N (N0/N1/N2) <0.0001 1.85 (1.494~2.29) 0.0471 1.439 (1.005~2.060)

Pathologic T (T1/T2/T3/T4) 0.0002 1.537 (1.223~1.932) 0.0169 1.236 (0.914~1.672)

Pathologic stage (I/II/III/IV) <0.0001 1.671 (1.413~1.976) 0.0103 1.279 (0.952~1.718)

New tumor (yes/no) <0.0001 2.362 (1.535~3.634) 0.0001 2.395 (1.533~3.742) 

Table 6. Univariate and multivariate Cox regression analyses of clinical factors.

HR – hazard ratio.
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Figure 4.  Bidirectional hierarchical cluster heatmaps based on 16 gene expression and methylation levels. The first line under the 
cluster tree represents pathologic N information, and the change from light orange to deep orange represents N0 to N2. 
The second line represents the pathologic T information, and the change from light blue to dark blue represents T1 to T4. 
The third line represents pathologic stage information, and the change from light green to dark green represents stages I to 
IV. The fourth line represents new tumor information, and the blue and gold represent the samples without and with new 
tumor, respectively.

P value for the correlation between the risk groups and OS 
prognosis was 3.961e-08. The Kaplan-Meier curve is shown 
on the left side of Figure 5A.

Based on the PI values, a receiver operating characteristic 
(ROC) curve was constructed. The area under the ROC curve 
(AUROC) for prognosis was 0.997 (Figure 5C; green curve). In 
the analysis of recurrence prognosis (260 samples), low-risk 
patients (130 samples) also had a longer time to relapse rela-
tive to the high-risk patients (130 samples) (Table 7). The P val-
ue for the correlation between the risk groups and prognosis 

for recurrence-free survival (RFS) was 3.961e-08 (Figure 5A; 
right) and the AUROC of the ROC curve was 0.985 (Figure 5C; 
blue curve).

The risk prediction model was validated in GSE37745 and 
the results were consistent with that in the training set. As 
shown in Figure 5B, the P value for the correlation between 
the risk groups and the prognosis for OS was 0.0091 (left) 
and between the risk groups and prognosis for recurrence 
was 0.0260 (right). The AUROC of ROC curve for OS and re-
lapse prognoses were 0.979 (black curve) and 0.953 (red 
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curve), respectively (Figure 5C). Using the same methods, a 
risk prediction mode was constructed using the clinical fac-
tors (Figure 5D–5F) and both the tumor marker genes and the 
clinical factors (Figure 5G–5I). The OS and RFS for high- and 
low-risk groups are shown in Table 7.

Discussion

The present study integrated multiple LACC gene expression 
and methylation profile datasets and used meta-analysis to 
preliminarily screen out 265 genes whose expression levels 
were significantly influenced by methylation. Then 16 prog-
nosis-related genes (EFNB2, TSPAN7, INPP5A, VAMP2, CALML5, 
SNAI2, RHOBTB1, CKB, ATF7IP2, RIMS2, RCBTB2, YBX1, RAB27B, 

Overall survival time 
(months, mean±SD)

Recurrence-free survival time 
(months, mean±SD)

Low-risk High-risk Low-risk High-risk

TCGA Gene expression model 33.64±37.17 21.41±17.71 28.18±35.04 15.79±13.97

Clinic factor model 29.03±35.46 27.01±27.76 25.74±32.68 19.32±22.79

Combined model 33.55±40.09 22.33±17.78 28.33±35.87 16.31±14.57

GSE37745 Gene expression model 68.66±47.08 53.69±52.46 70.53±57.47 37.06±43.82

Clinic factor model 84.51±62.38 54.51±50.67 62.53±55.77 30.66±39.29

Combined model 84.50±62.38 54.51±50.69 62.53±55.77 30.66±39.29

Table 7. Prognostic time for different risk classification models of the TCGA and GSE37745 dataset.

TCGA – The Cancer Genome Atlas.

NFATC1, TCEAL4, and SLC16A3) were elected using Cox regres-
sion analysis, which was then used successfully to construct a 
prognostic risk prediction model. In addition, we constructed a 
risk prediction model based on 4 clinical factors: pathologic N, 
pathologic T, pathologic stage, and new tumor. Finally, a com-
prehensive prognostic risk model that combined tumor mark-
er genes and clinical factors was constructed and validated.

Of the 16 tumor marker genes, both calmodulin like 5 (CALML5) 
and inositol polyphosphate-5-phosphatase a (INPP5A) were in-
volved in the hsa04070: phosphatidylinositol signaling system. 
Signaling by phosphorylated species of phosphatidylinositol 
regulates various cellular processes, such as cytoskeletal re-
organization, membrane trafficking, and sex-dependent syn-
aptic patterning [29,30]. Phosphatidylinositol 3-kinase (PI3K) 
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Figure 5.  (A) The Kaplan-Meier curves for the risk prediction model based on tumor marker genes and OS prognosis (left) and 
recurrence prognosis (right) in TCGA training set. (B) The Kaplan-Meier curves for the risk prediction model based on tumor 
marker genes and OS prognosis (left) and recurrence prognosis (right) in the GSE37745 validation set. (C) AUROC curves 
for the prognosis prediction model and OS prognosis and recurrence prognosis in TCGA training set and the GSE37745 
verification set. (D) The Kaplan-Meier curves for the risk prediction model based on clinical factors and OS prognosis (left) 
and recurrence prognosis (right) in TCGA training set. (E) The Kaplan-Meier curves for the risk prediction model based on 
clinical factors and OS prognosis (left) and recurrence prognosis (right) in the GSE37745 validation set. (F) The AUROC curves 
for the prognosis prediction model and OS prognosis and recurrence prognosis in TCGA training set and the GSE37745 
verification set. (G) The Kaplan-Meier curves for the risk prediction model based on tumor marker genes combined with 
clinical factors and OS prognosis (left) and recurrence prognosis (right) in TCGA training set. (H) The Kaplan-Meier curves 
for the risk prediction model based on tumor marker genes combined with clinical factors and OS prognosis (left) and 
recurrence prognosis (right) in the GSE37745 validation set. (I) The AUROC curves for the prognosis prediction model and 
OS prognosis and recurrence prognosis in TCGA training set and the GSE37745 verification set. The green and blue curves 
in (C, F, I) represent the AUROC curves for OS prognosis and recurrence prognosis in TCGA and the black and red curves 
represent the AUROC curves of OS prognosis and recurrence prognosis in the GSE37745 verification set.

signaling is the most common phosphatidylinositol signaling 
in cancers, including those of the lung [31,32]. Specifically, 
INPP5A recently has been reported to be a prognostic mark-
er for cutaneous squamous cell carcinoma [33]. In addition to 
CALML5 and INPP5A, creatine kinase B (CKB) and solute car-
rier family 16 member 3 (SLC16A3) were also identified in 

function enrichment analysis. CKB was enriched in ion ho-
meostasis-associated functions and SLC16A3 was enriched in 
function associated with monocarboxylic acid transport. CKB 
is an enzyme involved in energy transduction pathways, and 
levels of it are low in colorectal cancer [34]. A recent study re-
vealed that quantification of DNA methylation of specific CpG 
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sites in the SLC16A3 promoter had clinical potential for diag-
nosing and predicting prognosis of clear cell renal cell carci-
noma [35]. Those findings, taken together with our results, 
lead us to speculate that CALML5, INPP5A, CKB and SLC16A3 
may be involved in the progression of LACC through different 
pathways, and they may serve as important markers of diag-
nosis and prognosis in LACC.

Among the 16 marker genes, ephrin B2 (EFNB2), tetraspanin 
7 (TSPAN7), INPP5A, vesicle-associated membrane protein 2 
(VAMP2), and CALML5 had the lowest P values. EFNB2 is a 
member of the ephrin family. The ephrin system is implicated 
in many cellular processes, such as cell proliferation, differen-
tiation, and migration, as well as physiological or pathologi-
cal angiogenesis [36]. It is also implicated in human cancers 
through autocrine or juxtacrine activation [37]. Coexpression 
of EFNB2 and its receptor, Ephrin type-B receptor 4, has been 
reported in papillary thyroid carcinoma, glioblastoma, and uter-
ine cervical and ovarian cancers [38–41]. Recently, Oweida et 
al. [42] suggested that overexpression of EFNB2 can serve as 
a biomarker for patient prognosis. TSPAN7, a member of the 
transmembrane 4 superfamily, has been implicated in the de-
velopment and progression of several cancers. It was first found 
to be strongly expressed in T-cell acute lymphoblastic leuke-
mia [43]. Subsequent microarray analyses have demonstrat-
ed overexpression of TSPAN7 in several solid tumors [44,45]. 
Research on the role of TSPAN7 in LACC is rare. VAMP2 is a 
member of the vesicle-associated membrane protein. The 
VAMP2-NRG1 fusion gene promotes anchorage-independent 
colony formation of LACC cells, serving as a novel oncogenic 
driver of LACC [46]. Recently, Wang et al. demonstrated that 
miR-493-5p overexpression promotes cell apoptosis and in-
hibits the proliferation and migration of liver cancer cells by 
negatively regulating the expression of VAMP2 [47], which in-
directly indicates the important role that VAMP2 plays in can-
cer. Taken together, all of these studies suggest that EFNB2, 
TSPAN7 and VAMP2, may serve as prognostic makers in LACC.

Most of the other tumor marker genes we identified have 
been reported to be implicated in lung cancer or other hu-
man cancers. For instance, Sail family transcriptional repres-
sor 2 (SNAI2) encodes a zinc-finger protein from the SNAI 
family of transcription factors [48]. SNAI2 is amplified or in-
teracts with specific oncogenes in many human cancers, in-
cluding lung cancer [49,50]. SNAI2 expression by cancer-asso-
ciated fibroblasts is correlated with worse OS in NSCLC [51]. 
Rho-related BTB domain containing 1 (RHOBTB1), which be-
longs to the RhoBTB subfamily, has been proposed as a tumor 
suppressor [52]. Y-box binding protein-1 (YBX1) is upregulat-
ed in various cancers, including lung cancer, and serves as a 
new marker of lung cancer progression [53]. Hendrix et al. [54] 
found that RAB27B, a member of RAS oncogene family, regu-
lates invasive tumor growth and metastasis of several breast 
cancer cell lines. Nuclear factor of activated T cells 1 (NFATC1) 
regulates many cancer-related functions, such as cell prolif-
eration, migration, and angiogenesis. It also acts as an onco-
gene involved in some functions in cancer and induces a tu-
morigenic microenvironment [55]. Transcription elongation 
factor A (SII)-like 4 (TCEAL4) is downregulated in anaplastic 
thyroid cancer [56]. Therefore, these genes may have roles as 
key biomarkers in LACC.

Conclusions

In the present study, we identified 16 tumor marker genes for 
LACC, based on analysis of multiple gene expression and meth-
ylation profiling datasets, and constructed an integrated risk 
prediction model that combined those tumor markers with 
clinical factors. The 16 genes we identified, such as EFNB2, 
TSPAN7, INPP5A, VAMP2, and CALML5, may serve as novel bio-
markers in early diagnosis and prediction of prognosis of LACC.
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Supplementary Figure 1.  Analysis of the correlation between expression and methylation levels for 16 prognostic genes in TCGA and 
the GSE62950 dataset.
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Clinical characteristics Cluster 1 Cluster 2 X-squared P value

Pathologic N (N0/N1/N2) 93 36 28 – 121 24 27 – 5.4091 0.0467

Pathologic T (T1/T2/T3/T4) 48 93 14 5 63 87 15 9 2.8225 0.4198

Pathologic stage (I/II/III/IV) 82 42 31 5 98 39 30 8 1.5735 0.6654

New tumor (yes/no) 47 84 – – 57 92 – – 0.0823 0.7742

Supplementary Table 1. Clinical and chi-square test information for samples in clusters 1 and 2.
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Supplementary Figure 2.  The Kaplan-Meier curves for the correlations between the 4 clinical factors (pathologic N, pathologic T, 
pathologic stage, and new tumor) and overall survival.

e925833-14
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Ke H. et al.: 
Multiple factors prognostic model of lung adenocarcinoma

© Med Sci Monit, 2020; 26: e925833

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



References:

 1. Siegel R, Desantis C, Jemal A: Colorectal cancer statistics, 2014. Cancer J 
Clin, 2014; 64: 104–17

 2. Zhou C: Lung cancer molecular epidemiology in China: Recent trends. Transl 
Lung Cancer Res, 2014; 3: 270–79

 3. Imielinski M, Berger AH, Hammerman PS et al: Mapping the hallmarks of 
lung adenocarcinoma with massively parallel sequencing. Cell, 2012; 150: 
1107–20

 4. Goodgame B, Viswanathan A, Miller CR et al: A clinical model to estimate 
recurrence risk in resected stage I non-small cell lung cancer. Am J Clin 
Oncol, 2008; 31: 22–28

 5. Vari S, Pilotto S, Maugeri-Saccà M et al: Advances towards the design and 
development of personalized non-small-cell lung cancer drug therapy. Expert 
Opin Drug Discov, 2013; 8: 1381–97

 6. Somaiah N, Simon NG, Simon GR: A tabulated summary of targeted and 
biologic therapies for non-small-cell lung cancer. J Thorac Oncol, 2012; 7: 
S342–68

 7. Wigle D, Jurisica I, Radulovich N et al: Molecular profiling of non-small cell 
lung cancer and correlation with disease-free survival. Cancer Res, 2002; 
62: 3005–8

 8. Powell CA, Spira A, Derti A et al: Gene expression in lung adenocarcinomas 
of smokers and nonsmokers. Am J Respir Cell Mol Biol, 2003; 29: 157–62

 9. Jiang H, Deng Y, Chen H et al: Joint analysis of two microarray gene-ex-
pression data sets to select lung adenocarcinoma marker genes. BMC 
Bioinformatics, 2004; 5: 81

 10. Beer D, Kardia S, Huang C et al: Gene-expression profiles predict survival 
of patients with lung adenocarcinoma. Nat Med, 2002; 8: 816–24

 11. Herbst RS, Yano S, Kuniyasu H et al: Differential expression of E-cadherin 
and type IV collagenase genes predicts outcome in patients with stage I 
non-small cell lung carcinoma. Clin Cancer Res, 2000; 6: 790–97

 12. Schneider P, Praeuer H, Stoeltzing O et al: Multiple molecular marker test-
ing (p53, C-Ki-ras, c-erbB-2) improves estimation of prognosis in potentially 
curative resected non-small cell lung cancer. Br J Cancer, 2000; 83: 473–79

 13. Lu Y, Lemon W, Liu PY et al: A gene expression signature predicts surviv-
al of patients with stage I non-small cell lung cancer. PLoS Med, 2006; 3: 
e467

 14. Chen HY, Yu SL, Chen CH et al: A five-gene signature and clinical outcome 
in non-small-cell lung cancer. N Engl J Med, 2007; 356: 11–20

 15. Potti A, Mukherjee S, Petersen R et al: A genomic strategy to refine prog-
nosis in early-stage non-small-cell lung cancer. N Engl J Med, 2006; 355: 
570–80

 16. Slebos R, Kibbelaar R, Dalesio O et al: K-ras oncogene activation as a prog-
nostic marker in adenocarcinoma of the lung. N Engl J Med, 1990; 323: 
561–65

 17. Horio Y, Takahashi T, Kuroishi T et al: Prognostic significance of p53 mu-
tations and 3p deletions in primary resected non-small cell lung cancer. 
Cancer Res, 1993; 53: 1–4

 18. Beer DG, Kardia SL, Huang C-C et al: Gene-expression profiles predict sur-
vival of patients with lung adenocarcinoma. Nat Med, 2002; 8: 816

 19. Botling J, Edlund K, Lohr M et al: Biomarker discovery in non-small cell lung 
cancer: integrating gene expression profiling, meta-analysis, and tissue mi-
croarray validation. Clin Cancer Res, 2013; 19: 194–204

 20. Parrish R, Spencer H: Effect of normalization on significance testing for oli-
gonucleotide microarrays. J Biopharm Stat, 2004; 14: 575–89

 21. Ritchie M, Phipson B, Wu D et al: limma powers differential expression anal-
yses for RNA-sequencing and microarray studies. Nucleic Acids Res, 2015; 
43: e47

 22. Turan N, Ghalwash M, Katari S et al: DNA methylation differences at growth 
related genes correlate with birth weight: A molecular signature linked to 
developmental origins of adult disease? BMC Med Genomics, 2012; 5: 10

 23. Kang D, Sibille E, Kaminski N, Tseng G: MetaQC: Objective quality control 
and inclusion/exclusion criteria for genomic meta-analysis. Nucleic Acids 
Res, 2012; 40: e15

 24. Chang L, Lin H, Sibille E, Tseng G: Meta-analysis methods for combining 
multiple expression profiles: comparisons, statistical characterization and 
an application guideline. BMC Bioinformatics, 2013; 14: 368

 25. Huang dW, Sherman B, Lempicki R: Bioinformatics enrichment tools: Paths 
toward the comprehensive functional analysis of large gene lists. Nucleic 
Acids Res, 2009; 37: 1–13

 26. Huang dW, Sherman B, Lempicki R: Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009; 
4: 44–57

 27. Wang P, Wang Y, Hang B et al: A novel gene expression-based prognostic 
scoring system to predict survival in gastric cancer. Oncotarget, 2016; 7: 
55343–51

 28. Goel M, Khanna P, Kishore J: Understanding survival analysis: Kaplan-Meier 
estimate. Int J Ayurveda Res, 2010; 1: 274–78

 29. Toker A, Cantley LC: Signalling through the lipid products of phosphoinosit-
ide-3-OH kinase. Nature, 1997; 387: 673–76

 30. Schwarz JM, Liang S-L, Thompson SM, McCarthy MM: Estradiol induces hy-
pothalamic dendritic spines by enhancing glutamate release: A mechanism 
for organizational sex differences. Neuron, 2008; 58: 584–98

 31. Krystal GW, Sulanke G, Litz J: Inhibition of phosphatidylinositol 3-kinase-
Akt signaling blocks growth, promotes apoptosis, and enhances sensitivi-
ty of small cell lung cancer cells to chemotherapy. Mol Cancer Ther, 2002; 
1: 913–22

 32. Yip PY: Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin 
(PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer. Transl 
Lung Cancer Res, 2015; 4: 165

 33. Liang HJ, DiCaudo DJ, Schmidt JE et al: INPP5a expression as a prognostic 
marker in cutaneous squamous cell carcinoma (cSCC). J Clin Oncl, 2018; 
36(15): e21567

 34. Friedman DB, Hill S, Keller JW et al: Proteome analysis of human colon can-
cer by two-dimensional difference gel electrophoresis and mass spectrom-
etry. Proteomics, 2004; 4: 793–811

 35. Fisel P, Kruck S, Winter S et al: DNA Methylation of the SLC16A3 promot-
er regulates expression of the human lactate transporter MCT4 in renal 
cancer with consequences for clinical outcome. Clin Cancer Res, 2013; 19: 
5170–81

 36. Li X, Song C, Huang G et al: The coexpression of EphB4 and EphrinB2 is as-
sociated with poor prognosis in HER2-positive breast cancer. Oncotargets 
Ther, 2017; 10: 1735

 37. Tang XX, Brodeur GM, Campling BG, Ikegaki N: Coexpression of transcripts 
encoding EPHB receptor protein tyrosine kinases and their ephrin-B ligands 
in human small cell lung carcinoma. Clin Cancer Res, 1999; 5: 455–60

 38. Sharma GK, Dhillon VK, Masood R, Maceri DR: Overexpression of EphB4, 
EphrinB2, and epidermal growth factor receptor in papillary thyroid carci-
noma: A pilot study. Head Neck, 2015; 37: 964–69

 39. Alam SM, Fujimoto J, Jahan I et al: Overexpression of ephrinB2 and EphB4 
in tumor advancement of uterine endometrial cancers. Ann Oncol, 2006; 
18: 485–90

 40. Tu Y, He S, Fu J et al: Expression of EphrinB2 and EphB4 in glioma tissues 
correlated to the progression of glioma and the prognosis of glioblastoma 
patients. Clin Translational Oncol, 2012; 14: 214–20

 41. Alam SM, Fujimoto J, Jahan I et al: Coexpression of EphB4 and ephrinB2 in 
tumor advancement of uterine cervical cancers. Gynecol Oncol, 2009; 114: 
84–88

 42. Oweida A, Bhatia S, Hirsch K et al: Ephrin-B2 overexpression predicts for 
poor prognosis and response to therapy in solid tumors. Mol Carcinog, 
2017; 56: 1189–96

 43. Takagi S, Fujikawa K, Imai T et al: Identification of a highly specific sur-
face marker of T-cell acute lymphoblastic leukemia and neuroblastoma as 
a new member of the transmembrane 4 superfamily. Int J Cancer, 1995; 
61: 706–15

 44. Chakraborty S: In silico analysis identifies genes common between five pri-
mary gastrointestinal cancer sites with potential clinical applications. Ann 
Gastroenterol, 2014; 27: 231–36

 45. Wuttig D, Zastrow S, Füssel S et al: CD31, EDNRB and TSPAN7 are prom-
ising prognostic markers in clear-cell renal cell carcinoma revealed by ge-
nome-wide expression analyses of primary tumors and metastases. Int J 
Cancer, 2012; 131: E693–704

 46. Jung Y, Yong S, Kim P et al: VAMP2–NRG1 fusion gene is a novel oncogen-
ic driver of non-small-cell lung adenocarcinoma. J Thorac Oncol, 2015; 10: 
1107–11

e925833-15
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Ke H. et al.: 
Multiple factors prognostic model of lung adenocarcinoma
© Med Sci Monit, 2020; 26: e925833

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS



 47. Wang G, Fang X, Han M et al: MicroRNA-493-5p promotes apoptosis and 
suppresses proliferation and invasion in liver cancer cells by targeting 
VAMP2. Int J Mol Med, 2018; 41: 1740–48

 48. Casas E, Kim J, Bendesky A et al: Snail2 is an essential mediator of Twist1-
induced epithelial mesenchymal transition and metastasis. Cancer Res, 
2011; 71: 245–54

 49. Hemavathy K, Ashraf SI, Ip YT: Snail/slug family of repressors: Slowly go-
ing into the fast lane of development and cancer. Gene, 2000; 257: 1–12

 50. Atmaca A, Wirtz RW, Werner D et al: SNAI2/SLUG and estrogen receptor 
mRNA expression are inversely correlated and prognostic of patient out-
come in metastatic non-small cell lung cancer. BMC Cancer, 2015; 15: 1–7

 51. Andriani F, Leone G, Landoni E et al: SNAI2 expression by cancer-associat-
ed fibroblasts is a negative prognostic factor in non-small cell lung cancer. 
Cancer Res, 2014; 74: 2852

 52. Xu RS, Wu XD, Zhang SQ et al: The tumor suppressor gene RhoBTB1 is a 
novel target of miR-31 in human colon cancer. Int J Oncol, 2013; 42: 676–82

 53. Gessner C, Woischwill C, Schumacher A et al: Nuclear YB-1 expression as a 
negative prognostic marker in nonsmall cell lung cancer. Eur Respir J, 2004; 
23: 14

 54. Hendrix A, Maynard D, Pauwels P et al: Effect of the secretory small GTPase 
Rab27B on Breast cancer growth, invasion, and metastasis. J Natl Cancer 
Inst, 2010; 102: 866

 55. Tripathi P, Wang Y, Coussens M et al: Activation of NFAT signaling estab-
lishes a tumorigenic microenvironment through cell autonomous and non-
cell autonomous mechanisms. Oncogene, 2014; 33: 1840–49

 56. Akaishi J, Onda M, Okamoto J et al: Down-regulation of transcription eloga-
tion factor A (SII) like 4 (TCEAL4) in anaplastic thyroid cancer. BMC Cancer, 
2006; 6: 260

e925833-16
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Ke H. et al.: 
Multiple factors prognostic model of lung adenocarcinoma

© Med Sci Monit, 2020; 26: e925833

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

DATABASE ANALYSIS


