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Abstract: Chronic obstructive pulmonary disease (COPD) is a major risk factor for the development
of lung adenocarcinoma (AC). AC often develops on underlying COPD; thus, the differentiation of
both entities by biomarker is challenging. Although survival of AC patients strongly depends on
early diagnosis, a biomarker panel for AC detection and differentiation from COPD is still missing.
Plasma samples from 176 patients with AC with or without underlying COPD, COPD patients, and
hospital controls were analyzed using mass-spectrometry-based proteomics. We performed univariate
statistics and additionally evaluated machine learning algorithms regarding the differentiation of
AC vs. COPD and AC with COPD vs. COPD. Univariate statistics revealed significantly regulated
proteins that were significantly regulated between the patient groups. Furthermore, random forest
classification yielded the best performance for differentiation of AC vs. COPD (area under the
curve (AUC) 0.935) and AC with COPD vs. COPD (AUC 0.916). The most influential proteins were
identified by permutation feature importance and compared to those identified by univariate testing.
We demonstrate the great potential of machine learning for differentiation of highly similar disease
entities and present a panel of biomarker candidates that should be considered for the development
of a future biomarker panel.

Keywords: lung cancer; plasma proteomics; machine learning; artificial intelligence; random forest;
Ig kappa light chain; SERPINA3; SAA1

1. Introduction

Lung cancer is the leading cause of death in all cancer types and makes up about
18% of cancer-related deaths worldwide while contributing to about 11% of all diagnosed
cancer cases [1,2]. The main cause for lung cancer is smoking [3], which is associated
with more than 90% of all lung cancer cases [2]. Smoking is also a major risk factor in
the development of a plethora of other diseases related to the respiratory tract, especially
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lung cancer and COPD. Chronic obstructive pulmonary disease (COPD) develops in about
50% of smokers over time [4]. Smokers with COPD have a two- to five-times higher
risk of developing lung cancer [5,6] and COPD is found in about 50–90% of lung-cancer
patients [7]. Five-year survival rates for lung cancer are low with about 20%, reflecting the
large number of diagnoses at late stages, when 57% of the patients already show metastatic
progress. For patients presenting with metastatic disease, the 5-year survival rate is only
5% in comparison to 57% for localized stages [8]. Due to the fatality of lung cancer and
the high risk of COPD patients for developing AC, biomarkers for detection of AC and
differentiation from COPD are urgently needed, preferably in body fluids that can be
obtained by minimal-invasive methods. Currently, diagnosis is commonly performed via
invasive biopsy, mostly after observation of visible changes in CT scans or bronchoscopy.

Mass-spectrometry (MS)-based proteomics is a powerful tool for high-throughput
discovery approaches in the area of biomarker research. A wide range of materials can
be used for analysis including serum or plasma, which, in addition to tissue, are major
sources for biomarker discovery. Minimally- or noninvasive biomarkers would improve
cancer assessment as diagnostic or prognostic markers, as well as a tool for monitoring [9].
Numerous proteomics studies analyzing tissue, bronchoalveolar lavage fluid, and blood
have been performed for identifying biomarkers for AC, COPD, and the differentiation
of both [10]. Several candidate biomarkers have been proposed, including AGR2 [11,12],
SAA [11], HER2 [11,13,14], APOE [15], or SCGB3A2 [16] for AC; YKL-40 [17], MFAP4 [18],
GRP78, soluble CD163, IL1AP, and MSPT9 for COPD [11]; CRP, VEGF [13,14,19], IL-8, and
MMP9 [14] for the differentiation of AC and COPD. However, none of those proposed
biomarker candidates have yet taken the step into clinical practice; therefore, reliable
biomarkers for these applications are still highly demanded.

With the rise of a multitude of bioinformatics methods, machine learning approaches
for the separation of disease groups became applicable to a larger life science community
to aid in the identification of protein candidates [20]. Logistic regression and linear dis-
criminant analysis (LDA) are classical modeling statistics. Logistic regression and LDA
are easy to interpret with regard to the influence of the predictor variables, but can only
perform a linear separation of the data. The support vector machines (SVMs) [21] can use
transformation in a higher-dimensional space by the use of a polynomial kernel function to
learn more complex (separation) patterns than logistic regression or LDA. Random forest
is based on tree-building algorithms [22] and is robust against overfitting. All the stated
approaches can be used for large numbers of predictor variables in limited sample sizes
and with heterogeneous data, making them ideal tools for clinical proteomics data analysis.

In this study, we used mass spectrometry analysis of plasma samples for the identi-
fication of biomarker candidates using univariate statistics and machine-learning-based
classification algorithms. We analyzed samples of AC patients with or without COPD,
COPD patients, and hospital controls (HCs) with the aim of identifying proteins differenti-
ating AC from COPD (Figure 1). We developed classification models to (A) separate all AC
patients from COPD patients (AC vs. COPD), and (B) specifically differentiate AC patients
with a COPD background from COPD patients (AC with COPD vs. COPD). We optimized
the feature selection and tested several machine learning algorithms for classification. After
choosing the best model, we calculated the permutation feature importance to determine
the most influential proteins. To further validate the results of the model, we repeated
the analysis in 50 random train-test-splits of the dataset for model (A) and compared the
precision on the test sets as well as the most often used features to the model with the full
dataset. This allowed us to compare the results of univariate tests and machine learning. We
demonstrated that plasma proteomics is a powerful technique to distinguish patient groups
that are challenging to discriminate in clinical routine. We identified a set of proteins using
complementary approaches, which might serve as a starting point for the development of a
clinical biomarker panel for diagnosis and differentiation of AC and COPD.
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Figure 1. Schematic representation of the project workflow. Plasma samples from n = 176 patients
were analyzed in two batches using LC–MS/MS. Proteins were quantified label-free and the resulting
intensities were normalized to account for batch effects. Normalized intensities were analyzed by
univariate statistics and machine learning approaches. Five different machine learning algorithms
were compared using the same modeling pipeline.

2. Results
2.1. Successful Normalization of Label-Free Proteomics Data

Due to the reception of clinical samples at different time points, the 176 clinical plasma
samples were analyzed in two separate batches, with two different instruments and dif-
ferent LC gradients. Principal component analysis (PCA) of nonnormalized intensities
showed two major clusters, which, however, did not represent the two analyzed batches
(Figure 2A). The exact technical parameters that were responsible for the clustering of
the data were unfortunately not identified. The applied normalization method keeps
connections to biological effects while reducing systematic and technical errors. After nor-
malization, samples of the two batches were much more congruent, which was highlighted
by the reduced influence of PC1 (67.2% before normalization, 19.5% after normalization).
Normalization was further evaluated using boxplots (Supplementary Figure S1) and MA
plots (Supplementary Figure S2). Boxplots showed a decrease in inter-sample variability
and MA plots showed good agreement between the samples that were doubly measured in
both batches. The normalized protein intensities can be found in Supplementary Table S2.
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Figure 2. Normalization and statistical analysis of proteomics data. (A) Principal component analysis
(PCA) plots of label-free LC–MS/MS data before and after batch normalization. Each data point
corresponds to a sample measured in either batch 1, batch 2, or both batches (colors representing
patient groups). (B) Volcano plots representing the results of statistical analysis using Welch-ANOVA.
Significant proteins highlighted in red (ANOVA pFDR-value ≤ 0.05 (corrected according to Benjamini–
Hochberg); post hoc pFDR-value ≤ 0.05 (corrected according to Bonferroni–Holm); absolute ratio of
means ≥ 1.5) and labeled with gene names (except Igκ Chain).

2.2. Univariate Statistics Reveal Proteins Discriminating AC and COPD

The combination of both analyzed batches led to the quantification of 397 protein
groups in plasma. Of these, 83 protein groups were exclusively measured in batch 1,
whereas 55 protein groups were exclusive for batch 2. At first, we analyzed the univariate
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protein differences between patient groups by means of ANOVA and the post hoc test. The
statistical analysis showed the overall greatest differences for the comparisons between
the diseased patient groups and hospital controls (Figure 2B, lower panel). This illustrates
the need for appropriate control groups in clinical proteomics as the use of an unspecific
control group—in this case, hospital controls—leads to many false findings. A maximum of
39 significantly differentially abundant proteins was observed for AC with COPD vs. Con-
trol (Table 1). In the following, the comparisons between the AC and COPD patient groups
were emphasized, considering their clinical relevance. Here, both comparisons of AC
with or w/o COPD vs. COPD resulted in 11 significantly differentially abundant proteins
of which, however, only three proteins were regulated in both comparisons (Sulfhydryl
oxidase 1 (QSOX1), Serum amyloid A-1 protein (SAA1), and Ig kappa light chain (no gene
name; Supplementary Tables S3 and S4)). The comparison between AC with COPD and
AC w/o COPD resulted in three significantly altered proteins. We performed hierarchical
cluster analysis based on 42 proteins that were found with a significant pFDR value between
both AC groups and COPD by ANOVA. In addition to remarkable sample heterogeneity,
the corresponding heatmap showed two major protein clusters separating COPD and AC
(Figure 3).
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Figure 3. Hierarchical cluster analysis and two-group comparison of proteomics data. Heatmap
illustrating hierarchical cluster analysis (distance based on Pearson’s correlation, complete linkage)
considering 42 proteins, which passed a pFDR-value threshold ≤0.05 calculated using Welch-ANOVA
for comparisons between either AC with or without COPD vs. COPD.
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Table 1. Significantly differentially abundant protein groups.

Comparison
(Condition A vs.

Condition B)

Protein
Groups

Considered
for Statistical

Testing 1

Significantly
Differentially

Abundant
Protein

Groups 2

Higher
Abundance in
Condition A

Higher
Abundance in
Condition B

AC with COPD vs.
COPD 325 11 3 8

AC w/o COPD vs.
COPD 349 11 6 5

AC w/o COPD vs.
AC with COPD 324 3 3 0

AC with COPD vs.
Control 271 39 14 25

AC w/o COPD vs.
Control 278 26 9 17

COPD vs. Control 283 31 14 18
1 Protein groups were filtered for a minimum of five valid quantifications per patient group. 2 Significance filter
criteria: ANOVA pFDR and post hoc pFDR-values ≤ 0.05; absolute RoM ≥ 1.5.

2.3. Machine Learning Yields Highly Predictive Classification Models

Five classification algorithms were assessed for the correct classification of (A) AC
vs. COPD and (B) AC with COPD vs. COPD. For feature selection, increasing p-value
thresholds were tested, resulting in increasing numbers of proteins considered for model
optimization. Accordingly, the numbers of considered proteins were lowest for a p-value
threshold of 0.05 with 24 proteins (A) and 12 proteins (B). Without any cut-off, 194 proteins
were considered for both (A) and (B). For the differentiation of (A) AC vs. COPD, random
forest classification outperformed the other models, achieving the maximum AUC when a
p-value threshold of 0.02 was applied (Figure 3, Supplementary Table S5). The differences
between individual p-value thresholds were small, however, and all models resulted in
AUCs over 0.9. The highest AUC was 0.935 with a sensitivity of 0.848 and a specificity of
0.879 (Figure 4B, Table 2). The other classification models showed AUCs between 0.8 and
0.9 with SVM with the polynomial kernel, which is superior to SVM with the linear kernel
and LDA. Logistic regression was outperformed by all models and showed a constant
decrease in AUCs with increasing p-value threshold.

For the differentiation of (B) AC with COPD vs. COPD, random forest and both SMV
algorithms performed very similarly. Notably, SVM with the linear kernel performed better
than random forest for some tested p-value thresholds (Figure 4A, Supplementary Table S5).
The maximum AUC, however, resulted from random forest classification without feature
selection by a statistical test (AUC = 0.916, sensitivity = 0.57, specificity = 0.965; Figure 4B,
Table 3). Notably, LDA performed significantly poorer than the other models and logistic
regression showed a striking performance decrease with increasing p-value thresholds. The
subsequent feature importance analysis of the best-performing models revealed the greatest
influence for Alpha-1-antichymotrypsin (SERPINA3) in both comparisons (Figure 4C). For
(A), Ig kappa light chain was the second-most informative feature followed by Pigment
epithelium-derived factor (SERPINF1), Apolipoprotein A-IV (APOA4), and the unchar-
acterized protein C16orf46. For (B), the feature importance was generally lower with
SERPINA3 followed by C16orf46, Ig kappa variable 1–27 (IGKV1–27), Haptoglobin-related
protein (HPR), and Transthyretin (TTR). Additional results from train-test-set validation for
analysis (A) supported these results with mean AUC values of 0.823 over 50 repetitions on
the test set and 0.901 in the cross-validation of the trainsets (Table 3, Figure 5). SERPINA3
and Igκ Chain were selected in 49 and 50 repetitions, respectively; SERPINF1 and C16orf46
were used in over 70% of the repetitions supporting the significance of these features. On
the contrary, APOA4 was only used in three repetitions, but AHSG, which was not selected
by the model for the full dataset, was selected in 29 (58%) repetitions.
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Figure 4. Results of machine learning approaches. (A) Five machine learning approaches were
compared for classification of AC vs. COPD (left panel) and AC with COPD vs. COPD (right panel).
Different p-value thresholds were assessed for feature selection and plotted against the respective ten-
times-repeated 10-fold-cross-validated AUCs. (B) Receiver operating characteristic (ROC) curves for
the best-performing random forest classifiers (AC vs. COPD: p-value threshold = 0.2; AC with COPD
vs. COPD: no p-value threshold). (C) Feature importance plots illustrating the relative influence
of individual proteins on multivariate classification models. Proteins represented by gene names
(except Igκ Chain).
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Table 2. Characteristics of random forest classifiers with the highest AUCs *.

(1) AC vs. COPD 1 (2) AC with COPD vs. COPD 2

AUC 0.935 AUC 0.916

PRAUC 0.928 PRAUC 0.882

Accuracy 0.865 Accuracy 0.873

Sensitivity 3 0.848 Sensitivity 5 0.570

Specificity 4 0.879 Specificity 4 0.965

* Ten-times-repeated 10-fold cross-validated. 1 For feature selection, a p-value threshold of 0.2 was used. 2 No
p-value threshold was applied for feature selection. 3 Sensitivity corresponds to true classification of AC. 4 Speci-
ficity corresponds to true classification of COPD. 5 Sensitivity corresponds to true classification of AC with COPD.

Table 3. Metrics for train-test-split validation for the comparison AC vs. COPD.

Minimum 1 Mean 1 Maximum 1

AUC
Train set 2 0.85 0.901 0.965

Test set 3 0.667 0.823 0.936

PRAUC
Train set 0.763 0.864 0.968

Test set 0.554 0.766 0.931

Accuracy
Train set 0.76 0.831 0.91

Test set 0.65 0.753 0.85

Sensitivity
Train set 0.726 0.815 0.905

Test set 0.5 0.763 1

Specificity
Train set 0.759 0.844 0.941

Test set 0.455 0.745 1
1 Model metrics represent 50 repetitions of random train-test-splits. 2 Model built on train set with ten-times-
repeated 10-fold cross-validation. 3 Model validated on test set representing 1/3 of the whole dataset.
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Figure 5. Results of intra-set validation for the comparison AC vs. COPD. The dataset was randomly
split into train and test sets for 50 repetitions. The random forest model was developed with a
ten-times-repeated 10-fold-cross-validation on the train set and validated on the test set. (A) Top 10
list of the most frequently selected features (i.e., proteins, represented by gene names (except Igκ
Chain)). (B) Characteristics of the random forest classifier for cross-validation on the train sets (black)
and validation on the test sets (red), respectively, were plotted against the number of repetitions.
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2.4. Univariate Statistics and Machine Learning Reveal Candidates for a Biomarker Panel

The analysis of plasma proteomics data using univariate statistics revealed proteins
that were significantly regulated between the AC subgroups with and without COPD,
and COPD. The overlap between these proteins was small, illustrating the differences
between the AC subgroups and the necessity of their individual consideration. Taken
together, univariate analyses led to a comprehensive picture of protein regulations between
the individual patient (sub-)groups and a list of robustly regulated proteins. The feature
importance analysis of the best performing classification model resulted in complementary
lists of candidates. Here, the most informative feature for both comparisons was Alpha-1-
antichymotrypsin (SERPINA3), which was also significantly regulated in AC with COPD
vs. COPD. Igκ Chain, which was regulated in both comparisons of AC subgroups vs.
COPD, was also found to be highly informative using machine learning. These two features
were also selected in 49 and 50 repetitions of the intra-set validation for AC vs. COPD.
Further highly influential candidates were C7 and QSOX1, which were also identified by
univariate testing. For univariate testing, a RoM threshold was applied to select candidates
with distinct changes in intensities. For machine learning, no such filter was applied and,
without considering the RoM threshold, additional proteins overlapped between both lists
(i.e., SERPINF1, TTR, TUB1C, APOA4, and APOC1; Supplementary Table S3). Interestingly,
C16orf46 and HPR, which were included in both random forest models, were not found
to be significantly regulated in any univariate comparison. C16orf46 was selected in 41 of
50 repetitions during intra-set validation for AC vs. COPD.

3. Discussion

Identification of diagnostic biomarkers, especially in easily accessible body fluids such
as blood, is the ultimate aim of clinical biomarker research. While the idealized concept of
a single biomarker promises to be easily applicable, biomarker panels might realistically
achieve higher precision, also taking into account the heterogeneity of the disease. On the
pre-clinical level, mass spectrometry offers multiplex analysis of several hundred (in the
case of plasma) to thousands (in the case of tissue) of proteins per sample [23,24]. State-of-
the-art instrumentation and analytical strategies allow for sufficient sample throughput and
accurate quantification, rendering LC–MS/MS a powerful technique for clinical biomarker
discovery [25–27]. Discovery approaches are often based on tissue analysis and the subse-
quent transfer of candidates to other assays and easily accessible samples such as plasma.
Naturally, many candidates are lost during this attempt and never successfully measured in
blood. The analysis of plasma samples circumvents this step, allowing for direct analysis of
the sample that is used in routine diagnostics. In addition to this advantage, the enormous
dynamic range of the plasma proteome still makes it a challenging kind of sample [28].
Consequently, plasma proteomics studies mostly cover typical plasma proteins, which, nev-
ertheless, might contain valuable information for diagnostics, especially when combined in
a multi-biomarker panel [29,30].

We performed a mass-spectrometry-based analysis of plasma and a combined data
analysis using univariate statistics and machine learning. We addressed the problem
of minimal-invasive differentiation of AC and COPD with the aim of identifying novel
biomarker candidates to be implemented in a biomarker panel. To this end, samples from
AC patients with and without COPD, COPD patients, and hospital controls (HC) without
the target disease were analyzed. COPD and lung cancer are closely linked diseases with a
common etiology and similarities in their molecular pathogenesis [31], with COPD being
an independent risk factor of lung cancer [7,32]. The effect of inflammatory signaling, for
example, has already been shown in COPD [33], but in lung adenocarcinoma, there are also
always sites of inflammation [34]. As a consequence, the comparison between AC and HC
might result in regulated proteins that might be associated with, e.g., inflammation, but not
be specific for AC. In our study, the respective univariate comparisons between diseased
groups and HC lead to most significantly differentially abundant proteins, supporting the
assumption that many of these are not specific for AC. This highlights the need for the
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direct comparison of clinically relevant AC and COPD patients to identify proteins that
are specific for the respective differentiation. Hence, we focused on the discrimination of
AC vs. COPD and the more challenging differentiation of AC with COPD vs. COPD using
machine learning.

We constructed the pipeline for model optimization with respect to avoiding overfit-
ting of the trained models. The selected classification algorithms were capable of handling
low numbers of observations, and artificial neural networks were not considered, due
to their known tendency toward overfitting when used with small datasets. In addition,
we selected proteins for model development based on their univariate relevance on the
target variable and removed redundant proteins to reduce the overall number of features.
Finally, the algorithms were optimized for only ten features and the ten-times-repeated
10-fold cross-validation approach was applied to prevent overoptimistic evaluation of the
model’s precision. The comparison of machine learning approaches led to the best results
for random forest classification; however, for the comparison of AC with COPD vs. COPD,
support vector machines performed comparably well. Both best-performing classifiers
yielded cross-validated AUCs over 0.9. To further evaluate our results, we repeated the
development of the random forest model for (A) AC vs. COPD on 50 randomly selected
train-test-set splits with one third of the dataset used for testing. We compared the model
characteristics on the test sets to the results on the complete dataset to ensure that the
models are not overoptimistic. As expected, the mean AUC of 0.823 in intra-set validation
was slightly lower than on the complete dataset but still showed a very good precision.
In addition, we compared the most frequently selected features to the results from the
complete dataset. Here, four of the five most important features were selected in over 70%
of the train-test-splits. For (B) AC with COPD vs. COPD, we did not perform the same
analysis, because of the limited group size of AC with COPD (n = 21) and the unbalanced
nature of the dataset. Although our machine learning approach addressed the problem of
overfitting consequently, we must assume that the classifiers are still over-optimistic and
should be evaluated with an independent patient cohort before considering them in clinical
application. However, the excellent differentiation of clinically very similar patient groups
clearly illustrates the great potential of plasma proteomics for biomarker discovery and
diagnostics. In addition, the feature importance suggests several proteins to be considered
for biomarker panel development.

The proteins that were found to be significantly regulated using univariate statis-
tics or included in the multivariate algorithms were classical plasma proteins. Thus, a
pathomechanistic interpretation of the observed differences in abundance is difficult and
mostly speculative. Obviously, this was the case for Ig kappa light chain, which was more
abundant in AC with or without COPD vs. COPD and found to be a highly informative
feature in the classifier for AC vs. COPD. Bottom-up mass spectrometry approaches do
not allow routine sequencing of antibody binding sites and the specificity of the regulated
Ig chains remains unknown. Free light chains, however, which are synthetized in excess
during antibody production, were also shown to be highly bioactive molecules modulating
the immune response, e.g., in COPD [35,36]. Although the exact nature of the Ig kappa
light chain cannot be clarified based on our data, our findings suggest a robust difference
between AC and COPD patients, suggesting its consideration for a biomarker panel. Alpha-
1-antichymotrypsin (SERPINA3) belongs to a superfamily of serine proteinase inhibitors.
Although its exact biological function is not known, it has been described in association
with diverse pathologies, such as acute kidney injury, cardiovascular disease, and (lung)
cancer [37–40]. It was described to promote metastasis and the epithelial–mesenchymal
transition in breast cancer [41] and was found to be upregulated in lung cancer in compari-
son to control patients [42]. In our study, the highest SERPINA3 abundance was found in
COPD patients (Supplementary Figure S3), again demonstrating the need for the direct
comparison of clinically relevant patient groups. Although SERPINA3 was less abundant
compared to COPD, it might be included in a biomarker panel. Its value for differentiation
of AC and COPD has been underlined by both univariate statistics and random forest
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classification. In addition, several other protein candidates should be taken into consid-
eration for the development of a biomarker panel. Apolipoprotein A-IV (APOA4) and
Transthyretin (TTR), which were included in random forest classifiers, were both described
to be dysregulated in adenocarcinoma before [43]. While APOA4 was less abundant in
comparison to nontumorous tissue, TTR was upregulated, which is in concordance with
our observations (Supplementary Figure S3). SAA1, which was one of the significantly
regulated proteins overlapping between both comparisons of AC with and without COPD
vs. COPD, was reported as a biomarker for lung cancer before [44–46]. Contrary to most
previous reports, SAA1 was significantly downregulated in AC compared to COPD and
hospital controls. Notably, most studies reported in the literature used healthy donors
as controls, which is not fully comparable with our control group of subjects that were
hospitalized under suspicion of lung cancer. Thus, plasma levels of SAA1 should be further
studied in clinically relevant patient groups to investigate its true value as a biomarker for
lung adenocarcinoma. Notably, intra-set validation supported the value of Ig kappa light
chain, SERPINA3, and others, but also highlighted the relevance of the uncharacterized
protein C16orf46, which might be further studied in the context of AC and COPD.

4. Materials and Methods
4.1. Patient Plasma Samples and Clinical Data

Samples and data were collected at the Johanniter-Clinics Bonn and the Malteser
Krankenhaus Seliger Gerhard Bonn/Rhein-Sieg. The local ethics committees at the Ruhr-
University Bochum, Ärztekammer Nordrhein, and Cologne University approved the study
(approval numbers 17-5970, 2017133, 17-162). Written, informed consent was obtained
from each patient, and the study protocol conformed to the ethical guidelines of the
1975 Declaration of Helsinki. Peripheral blood was collected in 9 mL S-Monovette EDTA
gel tubes (Sarstedt, Nümbrecht, Germany). Within 30 min after blood collection, samples
were centrifuged at 2000× g for ten minutes at room temperature. Plasma was separated
subsequently and frozen immediately at −80 ◦C until analyses. Samples were measured
separately in two batches (n = 63 and n = 133), which were subsequently combined for
analysis. In total, plasma samples from 43 AC patients without COPD, 21 AC patients with
COPD, 77 COPD patients, and 35 hospital controls (HCs) were analyzed (n = 176, Table 4,
Supplementary Table S1). Control subjects were patients with suspicious malignant disease,
which was not confirmed subsequently.

Table 4. Composition of the analyzed patient cohorts.

Group Description Mean Age (Years) Sex Smoking Behavior

AC *
(n = 64)

AC w/o COPD
(n = 43)

AC-patients
without diagnosed

COPD

67.17 ± 9.43,
min. 41,
max. 85

25 female,
18 male

20 smokers,
10 ex-smokers,

13 never-smokers

AC with COPD
(n = 21)

AC-patients with
diagnosed COPD

64.48 ± 8.89,
min. 52,
max. 84

12 female,
9 male

11 smokers,
8 ex-smokers,

2 never-smokers

COPD §

(n = 77)
COPD-patients

without AC

68.61 ± 10.43,
min. 38,
max. 87

36 female,
41 male

36 smokers,
33 ex-smokers,

6 never-smokers,
2 NA

HC
(n = 35) Hospital controls

65.34 ± 12.40
min. 41,
max. 82

16 female,
19 male

14 smokers,
13 ex-smokers,

8 never-smokers

* Lung adenocarcinoma. § Chronic obstructive pulmonary disease.
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4.2. Sample Preparation for LC–MS/MS Analysis

Briefly, 1 µL of plasma per sample was mixed with 24 µL of buffer (1% sodium
deoxycholate, 10 mM tris (2-carboxyethyl) phosphine, 40 mM chloroacetamide, and 100 mM
Tris; pH 8.5) and incubated at 95 ◦C for 10 min. After cooling down to room temperature,
10 µL of 50 mM ammonium bicarbonate and 10 µL of paramagnetic beads were added
according to the SP3 protocol [47]. For protein binding, 140 µL of acetonitrile was added
and samples were incubated at room temperature for 10 min. Afterward, the beads were
washed twice with 200 µL of 70% ethanol and once with 200 µL of acetonitrile using a
magnetic rack. After a short airdrying process, 70 µL of 50 mM ammonium bicarbonate
containing trypsin (1:50, w/w, SERVA Electrophoresis, Heidelberg, Germany) was added
to digest the protein overnight at 37 ◦C. The supernatant was transferred to a glass vial and
dried in a vacuum centrifuge. An amount of 100 µL of 0.1% TFA was used to dissolve the
peptides and the resulting peptide concentration was about 1 µg/µL.

4.3. LC–MS/MS Analysis

The LC–MS/MS analysis was carried out using an Ultimate 3000 RSLCnano liquid
chromatography system coupled online to a Q Exactive HF (batch 1) or Q Exactive (batch
2) mass spectrometer (all Thermo Fisher Scientific). Next, 100 ng of plasma peptides per
sample were injected for analysis. The peptides were pre-concentrated for 7 min on a trap
column (Acclaim® PepMap 100, 75 µm × 2 cm, C18, 5 µm, 100 Å) using 30 µL/min of
0.1% TFA as the loading solvent. Subsequent separation on an analytical column (Acclaim®

PepMap RSLC, 75 µm × 50 cm, nano Viper, C18, 5 µm, 100 Å) was carried out using
a gradient from 5 to 40% solvent B in solvent A over 98 min (batch 1) or 38 min (batch
2) (solvent A: 0.1% formic acid; solvent B: 0.1% formic acid, 84% acetonitrile). A flow
rate of 400 nL/min was used with a column oven temperature of 60 ◦C. Data-dependent
acquisition mode was used. Full scans were acquired in the Orbitrap analyzer (mass range:
350–1400 m/z, resolution: 60,000). The Fourier Transform Mass Spectrometry full-scan
Automatic Gain Control target was set to 3 × 106 with a maximum injection time of 80 ms.
The number of micro-scans was set to 1. The 10 most abundant ions of a spectrum acquired
at the MS1 level were fragmented using HCD (higher-energy collisional dissociation) with
a normalized collision energy of 30% and an isolation width of 2 m/z. Fragment mass
spectra were acquired in the orbitrap with a maximum injection time of 100 ms. Samples
were measured in a random sequence. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD035120 and 10.6019/PXD035120”.

4.4. Protein Identification and Quantification

Protein identification and label-free quantification were performed using MaxQuant
(version 2.0.1.0; MPI of Biochemistry, Martinsried, Germany) separately for both analyzed
batches. Unless specifically mentioned, the MaxQuant default parameters were used.
Spectra were searched against the Uniprot/Swissprot database version 2021_03 restricted
to Homo sapiens (20.362 entries) and Biognosys iRT peptides (1 entry). Variable modifications
of methionine (oxidation) and protein N-termini (acetylation) were considered as well as
fixed modification of cysteine (carbamidomethyl). Modified peptides were considered for
quantification and the match between runs function was enabled. The false discovery rate
(FDR) was set to 0.01 for peptide-spectrum matches (PSMs) and proteins. Protein groups
were used for further processing and reverse hits, proteins were identified by site, and
identified iRT peptides were omitted. Potential contaminants were manually reviewed to
avoid exclusion of typical plasma proteins.

4.5. Batch Normalization

LFQ intensities were normalized to reduce technical variation and the batch effects
between the two batches to allow analyzing them together. First, each batch was normal-
ized separately using the LOESS normalization method [48] using the R package limma
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(version 3.44.3) [49] on the log-transformed protein intensities. For each protein, a linear
regression model was calculated by using the batch number as a categorical independent
variable. The obtained coefficients were an estimation of the underlying batch effect,
which were subsequently subtracted from the protein intensities. This normalization pro-
cedure reduces the batch differences for better comparability of the samples. As the LC
gradient was adapted for the second batch due to the higher sample amount and a dif-
ferent instrument, 20 samples of the first batch were also measured in the second batch
and taken as a quality control for normalization. The quality of the normalization was
evaluated using boxplots, PCA (principal component analysis), and MA plots (Figure 2,
Supplementary Figures S1 and S2).

4.6. Statistical Analysis

The statistical analysis was conducted using R version 4.0.3 (R Core Team 2020, Vienna,
Austria). For this, the intensities of the doubly measured samples were averaged after
the batch normalization. Protein groups quantified in a minimum of five patients in the
compared patient groups were considered for testing. In order to identify significantly
different protein groups between the experimental groups, normalized intensities were
analyzed by application of a Welch-ANOVA (R package car version 3.0-10). This was
followed by single Welch tests for each protein as a post hoc method in all possible pairwise
group comparisons. Ratios of means (RoMs) between groups were determined on the
delogarithmized intensities. The FDR was controlled by adjusting ANOVA p-values using
the method of Benjamini and Hochberg [50]. Post hoc p-values were adjusted by the method
of Bonferroni–Holm [51] for each protein separately. Proteins were considered significant
with pFDR-values ≤ 0.05 (from ANOVA and post hoc test) and an absolute RoM ≥ 1.5. For
the comparison of AC vs. COPD, a separate Welch test was used and corrected according
to Benjamini–Hochberg.

4.7. Machine Learning

The normalized protein intensities were used to develop classification models. For
the two research questions, separation of (1) AC vs. COPD and (2) AC with COPD vs.
COPD, the same pipeline for model optimization, consisting of feature selection and model
optimization, was used (Figure 1). Proteins with more than 30% missing values or a
variance near zero across all samples were omitted. In addition, redundant proteins were
identified according to Spearman’s rank correlation coefficient >0.7 and removed from
analysis. For feature selection, proteins were selected according to their influence on the
respective target variable. Therefore, Kruskal–Wallis and Levene tests were calculated. p-
value thresholds of 0.05, 0.1, 0.2, 0.3, and 0.5 were applied to optimize this feature selection.
In addition, the performance without feature selection by statistical tests was assessed. For
model optimization, logistic regression, linear discriminant analysis (LDA), and support
vector machines (SVMs) with linear as well as polynomial kernel and random forest were
applied and compared. We optimized the random forest and SVM models for the best
subset of ten proteins from the selected features to reduce overfitting. For LDA and logistic
regression, the best subset was determined by the recursive feature selection procedure.
The models were trained with the ten-times-repeated 10-fold cross-validation approach
using the area under the precision recall curve (PRAUC) as the optimization criterion,
which was chosen to cope with the unbalanced datasets. The models with the highest
AUC (area under the ROC curve) and PRAUC were analyzed according to permutation
feature importance (https://doi.org/10.48550/arXiv.2006.04628 (accessed on 9 February
2022)). Permutation feature importance calculates the increase in the root-mean-square
error (RSME) of the prediction model when a single feature value is randomly shuffled. The
increase in RSME is indicative of how much the model depends on the feature. In addition,
we repeated the development of the final model on 50 randomly selected train-test-splits
with 2/3 of the dataset selected for model development and 1/3 as the test set for validation.

https://doi.org/10.48550/arXiv.2006.04628
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We compared the model characteristics on the test sets to the results on the complete dataset
and evaluated the number of repetitions in which a feature was selected by the final model.

5. Conclusions

A realistic protein biomarker panel in clinical use needs to be limited to a manageable
number of proteins, which, at least in the nearer future, will be measured by multiplex
ELISA or comparable techniques. These requirements limit the variety of biomarker candi-
dates for assay development. Therefore, the considered proteins need to address a specific
clinical problem, which was analyzed by use of the appropriate clinical groups. Here,
we describe a panel of proteins that were differentially abundant between patients with
AC and COPD, while taking into consideration that many AC patients also suffer from
underlying COPD. Addressing this problem represents the first and urgently necessary
step in discovery of reliable markers that distinguish between early AC, COPD, and their
overlaps. The combination of univariate statistics and machine learning adds comple-
mentary information and, thus, provides insights that would not be available with either
approach alone: Classification algorithms strive for the highest diagnostic precision while
permutation feature importance or univariate statistics allow identification of the most
influential proteins. Those proteins that were identified in this study might serve as starting
points for development of a biomarker panel, which addresses the heterogeneity of AC and
COPD, ideally in an early detection setting.
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