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Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus
providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with
methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused
on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal
well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to
enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches
can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected
populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different
indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved
in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the
introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and
usability of prenatal monitoring.

1. Introduction

Monitoring biomedical signals, throughmeasurement, quan-
tification, evaluation, and classification of signal properties,
is one of the primary tools for investigating the evolution
of disease states. The overall architecture of a monitoring
systemhas to combine technological toolswith signal analysis
methods in order to extract useful information to identify
patient’s condition.

Inside these procedures, it is very important to select
processing methods that can enhance pathophysiological
signal properties, thus linking parameters to physiological
events (and maybe to physical quantities).

Traditional monitoring systems received a fundamental
improvement by new technological devices allowing longer

and deeper data collection as well as by advanced clinical
tools for data interpretation.

In recent years, the development of dynamical system
analysis has led to the introduction of a large amount of signal
processing techniques aimed at the extraction of parameters
from experimental time series, thus enhancing new informa-
tion about the characteristics of the system generating the
time series. In most cases, however, an accurate model of the
generating system is unknown or too complex and the output
signal is the main available information about the system
itself.

A typical example is the cardiovascular system, where
the main way to investigate heart function consists of the
analysis of heart rate variability signal (HRV). It has been
shown that HRV signal can be related to the activity of several
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physiological control mechanisms of different nature. Their
interaction produces changes in the beat rate assuring the
system controlling heartbeats reacts efficiently to different
incoming stimuli. HRV variance is related to changed con-
ditions of heart activity. Frequency domain analysis of the
HRV signal provides quantitative and noninvasive measures
of the activity of the autonomic nervous system (ANS) [1].
A linear modeling approach is adopted to quantify both the
sympathetic and parasympathetic control mechanisms and
their balance through the measure of spectral low and high
frequency components (LF and HF). The same approach
can extract parameters related to the heart and to the
cardiovascular control even from systolic and diastolic values
in arterial blood pressure (ABP), on a beat-to-beat basis
[2].

Nevertheless, even if the HRV analysis through classical
linear methods provides the quantification the ANS regu-
lating action in the short period [1], the linear approach
cannot explain the whole information carried by beat-to-
beat variability [3]. Results on HRV signal analysis show that
its dynamic behavior also involves nonlinear components
that contribute to the signal generation and control [3, 4].
Signal structure appears erratic but it presents abrupt changes
and patterns in which a more regular behavior appears. To
investigate the erratic components of the cardiac rhythms and
to assess nonlinear deterministic phenomena affecting HRV
signal, both in short and long temporal windows, nonlinear
signal analysis has demonstrated its usefulness [5].

In the field of fetal heart rate monitoring during preg-
nancy, linear time and frequency techniques were tradition-
ally adopted. Fetal HRmonitoring is a challenging procedure
for people working in the obstetric field, in order to check if
the fetus is and remains in a wellbeing state as the pregnancy
develops.

Themost employed diagnostic examination in the clinical
practice is cardiotocography (CTG). CTG combines fetal
heart rate (FHR) measurement, obtained by means of a
Doppler ultrasound probe and uterine contraction, recorded
through an abdominal pressure transducer. During preg-
nancy, each woman undergoes one or more ambulatory
monitoring tests and, in the last pregnancy trimester and/or
in case of suspect that risky condition can take place,
monitoring frequency can increase to weekly or even daily.
We can certainly state that the total CTG recording amount,
in our country, is about 1 million per year and reaches several
million exams in EU countries.

CTG is universally accepted in the clinical practice
and it is recognized as one of the most information rich
among noninvasive diagnostic tests for prenatal monitoring.
Nevertheless, the FHR signal is usually analysed by detecting
and measuring morphological characteristics whose clinical
relevance is established mainly by eye inspection. This repre-
sents a strong limitation because the application of subjective
and qualitative methods lacks reliability and depends on the
physician experience.

Moreover, the CTG exam needs a hospital context to be
performed both as an expert clinician only can produce the
clinical report and the technology the system requires for
signal recording.

One can state with some confidence that the tech-
niques used in the prenatal diagnosis for FHR analysis did
not experience a growth rate as the knowledge did, con-
cerning physiological mechanisms and the availability of
methodological tools with clearly demonstrated investigation
abilities.

The introduction of quantitative evaluation of both linear
and nonlinear indices increases the diagnostic power and
reliability of antepartum monitoring.

The paper presents results obtained by applying both
linear and nonlinear quantitative analysis to fetal heart rate
(FHR) signals collected in normal and intrauterine growth
restricted (IUGR) fetuses (61 + 61 subjects).

Finally, as a further contribution, the paper briefly
describes the simultaneous development of a new wearable
monitoring system allowing comfortable collection of fetal
ECG and HRV signals in long periods. This new device
named Telefetalcare is equipped with the analysis tools
developed for the fetal HR analysis and described in this
paper, and can provide further improvements to pre-natal
diagnostic system tools.

2. Materials and Methods

2.1. FHRV Recording. FHRV recordings were collected at the
Azienda Ospedaliera Universitaria Federico II, Napoli, Italy.
Signals were recorded by means of a Hewlett Packard CTG
fetalmonitor, linkedwith a PC computer through aUSB port.

TheHP fetalmonitors use an autocorrelation technique to
compare the demodulated Doppler signal of a heartbeat with
the next one. EachDoppler signal is sampled at 200Hz (5ms).
The time window over which the autocorrelation function is
computed is 1.2 sec, corresponding to a FHR lower bound of
50 bpm. A peak detection software then determines the heart
period (the equivalent of RRperiod) from the autocorrelation
function. With a peak position interpolation algorithm, the
effective resolution is better than 2ms.

Due to historical reasons, almost all commercially avail-
able fetal CTG monitors display only the fetal heart rate
expressed in number of beats per minute (bpm) and do not
offer the series of interbeat intervals, usually employed in
HRV analysis.

The HP monitor produces a FHR value in bpm every
250msec. In the commercially available system, the PC
reads 10 consecutive values from the monitor every 2.5 sec
and determines the actual FHR as the average of the 10
values (corresponding to an equivalent sampling frequency
of 0.4Hz).Wemodified the software in order to read the FHR
at 2Hz (every 0.5 sec). The choice of reading the FHR values
each 0.5 sec represents a reasonable compromise to achieve
an enough large bandwidth (Nyquist Frequency 1Hz) and an
acceptable accuracy of the FHR signal. An example of CTG
recording is shown in Figure 1, where both the FHR and the
uterine contractions are plotted as functions of time.

The whole set of recordings was composed of 122 subjects
(61 healthy and 61 IUGR). Both groups were defined “a
posteriori,” after delivery, on the basis of standard parameters
(Apgar scores, weight, abdominal circumference): IUGR
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Figure 1: Example of CTG graph.The upper trace is fetal heart rate signal obtained by a Doppler ultrasound probe; the baseline is drawn and
the arrows represent the detected accelerations. The lower tracing is the toco signal (uterine contractions). Time units are in minutes.

Table 1: Detailed summary of the two groups of fetuses.

Population details Healthy IUGR
Number 61 61
Mother age (years) 32.34 ± 5.64 29.68 ± 6.21
Gestational age at CTG
recording (days) 34.78 ± 0.53 32.27 ± 2.79

Gestation age at delivery
(days) 39.74 ± 1.15 34.15 ± 2.99

Weight of the baby after
delivery 3275 g ± 518 g 1479 g ± 608 g

Delivery mode 58% spontaneous
42% caesarean

14.8% spontaneous
85.2% caesarean

fetuses were selected by weight below the 10th percentile for
their gestational age and abdominal circumference below the
10th percentile.

Table 1 summarizes population details. All recordings
were made in a controlled clinical environment, with the
pregnant woman lying on a bed. The average length of the
recordings was 2450±724 sec for healthy and 3418±1033 sec
for IUGR group.

2.2. Time and Frequency Domain FHR Analysis

2.2.1. Baseline, Accelerations, and Decelerations. Interpreta-
tion of the heart rate pattern is usually performed by the
physician who analyses the deviations of the signal from an
imaginary line, the baseline.He/she hypothetically constructs
it as a running average of the heart rate. Accelerations and
decelerations are defined as deviations from the baseline,
and more than one quantitative definition is available. In the
construction of an automated system for the evaluation of the
CTG recordings, a reproducible determination of the baseline

is a fundamental starting point. Several attempts in this
direction have been made starting from the work of Dawes et
al. [6]; the approachwe followedwas that suggested byMantel
et al. [7] (an example of baseline is shown in Figure 1). The
algorithm is very complex, and a full description can be found
in the cited reference.

Accelerations and decelerations are deviations of the fetal
heart rate from the baseline lasting a sufficient amount of time
(accelerations are positive deviations, decelerations negative).
They are correlated with the normal activities of the fetus,
who “trains,” moves, and exercises to breathe. Decelerations
are usually correlated with uterine contraction. Unfortu-
nately, different quantifications of the words “deviations”
and “sufficient” led each medical school to develop its own
method to evaluate, by means of a ruler, these quantities on
themonitoring strip.We applied a quantitative procedure not
only fully consistent with the definition of Mantel et al. [8],
but also holding the suggestions of Arduini et al. [9].

Classical FHR linear indices are truly time domain
measures. In the following, interbeat sequences 𝑇(𝑖), 𝑖 =
1, . . . , 𝑁, will be used instead of heart rate sequences 𝑆(𝑖) in
beats perminute, usually employed in cardiotocography: they
are computed as 𝑇(𝑖) = 60000/𝑆(𝑖)ms. Moreover, in order
to be compatible with previous works (Arduini et al. [9]) we
also computed some indices on the basis of the undersampled
time series 𝑇

24
(𝑖) = 60000/𝑆

24
(𝑖)ms, 𝑖 = 1, . . . , 𝑁/5 obtained

by taking 𝑆
24
(𝑖) as the average of five consecutive FHR values

of 𝑆(𝑖).

2.2.2. Long Term Irregularity. Long Term irregularity (LTI)
was the first index ever introduced; it was proposed by De
Haan et al. [10]. It is usually computed on a three-minute
segment of interbeat sequence in milliseconds. We excluded
from the computation large accelerations and decelerations,
as suggested by Arduini et al. [9], to avoid deviations caused
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by spurious measures of variability. The three minutes, after
the removal of the undesired parts, must contain, at least, a
continuous segment of 30 seconds.

Given a signal 𝑇
24
(𝑖) with 𝑖 ∈ [𝑎; 𝑏], LTI is defined as the

interquartile range [1/4; 3/4] of the distribution 𝑚
24
(𝑗) with

𝑗 ∈ [𝑎; 𝑏 − 1] and𝑚
24
(𝑗) = √𝑇

24

2
(𝑗) + 𝑇

24

2
(𝑗 + 1).

2.2.3. Short Term Variability. Short term variability (STV)
quantifies FHR variability over a very short time scale, usually
on a beat-to-beat basis. We refer to the definitions provided
by Dalton et al. [11] (even if we used a scale factor of 12) and
by Arduini et al. [9]. By considering one minute of interbeat
sequence, 𝑇

24
(𝑖) in ms, 𝑖 = 1, . . . , 24, we defined STV as

STV = mean[𝑇24(𝑖 + 1) − 𝑇24(𝑖)

]
𝑖

=

∑
23

𝑖=1


𝑇
24
(𝑖 + 1) − 𝑇

24
(𝑖)


23

,

(1)

where 𝑇
24
(𝑖) is the value of the signal 𝑇(𝑖) taken each 2.5 sec

(i.e., once each five samples).

2.2.4. Interval Index. Historically, Interval Index (II) was
introduced just after LTI and it is certainly one of the most
used variability indices. It was proposed by Yeh et al. [12] as
a long term variability statistic; we adopted the formulation
used by Arduini et al. [9],

II =
std [𝑇

24
(𝑖 + 1) − 𝑇

24
(𝑖)]

STV
, 𝑖 = 1, . . . , 23. (2)

2.2.5. Power Spectral Analysis of Fetal HRV. Considering the
FHRV signal as controlled by the ANS, as it happens in adult
subjects, it could be of primary importance to own a tool
quantifying its development during pregnancy. Literature
reports several examples on this subject. The ANS is still
developing, if not as the anatomic growth as in the regulatory
activity which increases in time with the system maturation.

Estimation of the power spectral density (PSD) in the
FHR signal provides parameters related to the ANS activity.
Frequency domain FHR analysis adopt both the direct
estimation of the periodogram and the autoregressive power
spectrum estimation.

In fetal HR analysis it is customary to consider three
frequency bands, Low Frequency (LF),Movement Frequency
(MF), and High Frequency (HF) power components as well
as the ratio LF/(MF + HF) [13], instead of the bands usually
adopted for standard HRV analysis [1].

Low Frequency contributions (LF: 0.03–0.15Hz) can
be associated with the sympathetic control and vasomotor
activity. HF is basically driven by respiration mediated by
vagal activity (HF: 0.5–1Hz). A third component needs to
be considered: we called it Movement Frequency (MF: 0.15–
0.5Hz). MF should quantify the activity of the fetus and the
mechanical influences of the maternal breathing.

This approach works well on a short time scale (3–5min,
300 points about) as the stationarity of the fetal HRV signal
is an essential requirement. We adopted the autoregressive

power spectrum estimationmethod as described in Signorini
et al. [13].

LF/HF + MF ratio could represent a synthetic index of
the balance between physiological control components and
fetus activity level, representing the equivalent of the so-
called sympathovagal balance in standard HRV analysis.

2.3. Nonstandard Parameters for FHR Analysis. The intro-
duction of nonlinear approaches to signal processing led to
considering a set of methods investigating geometric and
dynamic properties of time series.

Differently from the approach usually adopted to study
a well-known deterministic system, when we deal with
complex nonlinear systems, very often we can only analyze
experimental time series. Nevertheless important indications
can be extracted from the parameters estimating nonlinear
characteristics. Their statistical use can be of great impor-
tance, even in diagnostic field and in clinical knowledge
related to different cardiovascular pathologies [5].

Various techniques exist aimed at quantifying the degree
of similarity and/or complexity in time series which can be
computed directly on the sequence of interbeat intervals [14,
15].

2.3.1. Regularity Properties: Entropy Estimators (ApEn, Sam-
pEn). ApEn index quantifies regularity and complexity of
a time series. The index was proposed in [16] and further
improvements and corrections were proposed by the intro-
duction of the SampEn index.

The idea is to quantify the degree of regularity or loss of
regularity in a time series without a priori information on
its structure. ApEn works on short (<100 samples) and noisy
time series.

ApEn estimator depends on a parameter 𝑚 (length of
runs compared in the time series) and on a parameter 𝑟 (per-
centage of signal std., working as a filter). The ApEn(𝑚, 𝑟,𝑁)
evaluates, within a tolerance 𝑟, the signal regularity, by
assessing the frequency of patterns similar to a given pattern
of window length 𝑚 (𝑚 = 1, 2, 𝑟 : 0.1 − 0.25 std of the input
data [16]).

Once values of the two parameters 𝑚 and 𝑟 are fixed
and given𝑁 data points, the procedure constructs sequences
𝑥
𝑚
(𝑖) and computes, for each 𝑖 ≤ 𝑁 − 𝑚 + 1,

𝐶
𝑚

𝑖
(𝑟) = (𝑁 − 𝑚 + 1)

−1
{number of 𝑗 ≤ 𝑁 − 𝑚 + 1
such that 𝑑[𝑥

𝑚
(𝑖) , 𝑥
𝑚
(𝑗)] ≤ 𝑟} .

(3)

Regularity parameter is defined as
ApEn(𝑚, 𝑟,𝑁) = lim

𝑁→∞
[Φ
𝑚
−Φ
𝑚
+1], whereΦ𝑚(𝑟) =

(𝑁 − 𝑚 + 1)
−1
∑
𝑁−𝑚+1

𝑖=1
ln𝐶𝑚
𝑖
(𝑟).

The estimator of this parameter for an experimental time
series of a fixed length𝑁 is given by ApEn(𝑚, 𝑟,𝑁) = [Φ

𝑚
−

Φ
𝑚
+ 1].
Other methods estimate entropy-like indexes in time

series. Among them, Sample Entropy (SampEn) has been
largely employed in biomedical signal processing over
time, as it improves the estimation performed by ApEn (i.e.,



Computational and Mathematical Methods in Medicine 5

removes the bias introduced by self-counts). SampEn is also
the basis for a multiscale approach: entropy parameters are
calculated at different scales in coarse-grained time series
[17, 18].

ApEn and SampEnwere estimated in the same time series
by using the same parameter set: 𝑚 = 1 and 𝑟 = 0.1, 𝑚 = 2
and 𝑟 = 0.15 and 0.2.

2.3.2. Lempel Ziv Complexity. Lempel Ziv complexity (LZC)
was originally proposed in the information field to assess
the complexity of data series [19]. Its measure is associated
with the number of different substrings and to the rate of
their recurrence. Namely, LZC reflects the gradual increase
of new patterns along the given sequence. The measure of
complexity introduced by Lempel and Ziv assesses the so-
called algorithmic complexity, which is defined according to
InformationTheory as theminimumquantity of information
needed to define a binary string. In case of random strings,
the algorithmic complexity is the length of the string itself. In
fact any compression effort will produce an information loss.
In order to estimate the LZC in a time series, it is necessary
to transform the signal (the FHR in or case) into symbolic
sequences.

Calculation of the Lempel Ziv complexity 𝑐(𝑛) needs
to define an alphabet A, that is, the set of symbols which
compose the sequence 𝑆 (for a binary string, A is simply
{0, 1}).

Suppose the number of symbols in the alphabet A is𝛼 and
the length of sequence is 𝑙(𝑆) = 𝑛. The upper bound of 𝑐(𝑛) is
given by:

𝑐 (𝑛) <
𝑛

(1 − 𝜀
𝑛
) log (𝑛)

, (4)

where 𝜀
𝑛
= 2(1 + log log(𝛼𝑛))/ log(𝑛) [6]. When 𝑛 is large

enough (𝑛 → ∞), 𝜀
𝑛
→ 0 and we have that

lim
𝑛→∞
𝑐 (𝑛) = 𝑏 (𝑛) =

𝑛

log
𝛼
(𝑛)

. (5)

The quantity 𝑏(𝑛) is the asymptotic behaviour of 𝑐(𝑛) for
a random string. The normalized complexity is thus defined
as 𝐶(𝑛) = 𝑐(𝑛)/𝑏(𝑛).

In order to estimate the complexity measure for the HRV
time series, we have transformed the signals in symbolic
sequences. As a coding procedure we adopted both a binary
and a ternary code. From an HRV series {𝑥

𝑛
}, we construct a

new sequence by mapping the original one through a binary
alphabet. We symbolize with 1 a signal increase (𝑥

𝑛+1
>

𝑥
𝑛
), and with 0 a decrease (𝑥

𝑛+1
≤ 𝑥
𝑛
). In case of ternary

alphabet, 1 denotes the signal increase (𝑥
𝑛+1
> 𝑥
𝑛
), 0 the

decrease (𝑥
𝑛+1
< 𝑥
𝑛
) and 2 the signal invariance (𝑥

𝑛+1
=

𝑥
𝑛
). To avoid the possible dependence of the encoded string

on quantization procedure adopted to record the signal, a 𝑝
factor is introduced representing the minimum quantization
level for a symbol change in the coded string. We considered
the encoding parameter 𝑝 = 0, 0.005, 0.01, 0.02%. The
LZC index was computed 360 point-long FHR sequences
(3min).
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Figure 2: Phase Rectified Signal Average (PRSA) curve computed
on a FHR recording. The computation of the Acceleration Phase
Rectified Slope is shown: APRS is defined as the slope of the PRSA
curve in the anchor point (red dot).

2.3.3. Phase Rectified Signal Average (PRSA). Phase rectified
signal average (PRSA) is a technique introduced by Bauer et
al. in 2006 [20]. It allows the detection and quantification of
quasiperiodic oscillations in nonstationary signals affected by
noise and artifacts, by synchronizing the phase of all periodic
components. This method demonstrated its usefulness in
FHR signal analysis, when episodes of increasing and/or
decreasing FHR appear [21]. In fact, occurrence or absence of
such periods can be related to the healthy status of the fetus.
For this reason, we introduced the PRSA method to quantify
fetal well-being states.

The PRSA curve is obtained from the HRV series. The
procedure that can be followed to construct the curve is
detailed and described in [20]. The great advantage given
by the PRSA curve is the fact that a 30–40-minute HRV
signal can be condensed in a single waveform, showing the
average dynamic pattern of the recording under analysis. An
example of PRSA curve is shown in Figure 2, where the red
dot represents the anchor point and the dashed red line is the
slope of the curve in the anchor point.

In order to construct the curve, we employed 200 sec
windows (total number of 400 samples) obtained from the
FHR signal, which were selected if the right average of the
window was bigger than the left average. Then, the windows
were synchronized in their anchor point (the middle point of
the curve) and averaged.

Starting from the PRSA curve, it is possible to compute
several parameters that describe its shape and, indirectly,
quantify the overall dynamics in the HRV series. Thus, those
parameters can be employed to provide a clue about fetal
behavior and well-being.

In [22], we proposed the Acceleration Phase Rectified
Slope (APRS) and the Deceleration Phase Rectified Slope
(DPRS), as useful indices computed on the PRSA curve in
order to verify fetal well-being. For a detailed description of
how these parameters are computed, please refer to [22].

Table 2 summarizes all the parameters we have con-
sidered in fetal HR analysis. Parameters have been grouped
as Frequency domain (autoregressive power spectrum
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Table 2: Methods, extracted parameters, sequence lengths, and hypotheses for using the relevant parameter.

Method Parameters Sequence length Hypothesis
Frequency domain analysis:
periodogram and
autoregressive model
Measurement of spectral
components in defined
frequency bands

% of spectral power (msec2) in frequency bands:
Low frequency 0.03–0.15Hz
Movement (activity) frequency 0.15–0.5Hz
High frequency 0.5–1Hz
LF/(MF + HF)

3min
360 values

Quantification of the
activity of the autonomic

nervous system

Time domain analysis:
morphological HR
modification and variability

STV (msec)
II

1min
120 values

Variability in the short
period

FHR avg (msec)
LTI (msec)

3 min
360 values

Variability in the long
period

Approximate entropy ApEn(𝑚, 𝑟)𝑚 = 1, 2; 𝑟 = 0.1, 0.15, 0.2 3min
𝑁 = 360 values Recurrent patterns

Sample entropy SampEn(𝑚, 𝑟)𝑚 = 1, 2; 𝑟 = 0.1, 0.15, 0.2 3 min
𝑁 = 360 values

Recurrent patterns
Basis for investigating
repetitive patterns at
different time scales

Lempel Ziv complexity
(LZC)

LZC binary or ternary coding
LZC (2 or 3, 𝑃 = 0, 0.005, 0, 01, 0.2) Whole recording

Rate of new patterns arising
with signal evolution in

time
PRSA Acceleration/Deceleration Phase Rectified Slope Whole recording Quasiperiodic oscillations

estimation—LF-power, MF-power, HF power, and LF/(MF
+ HF)); time domain (short term variability (STV), long
term irregularity (LTI), Interval Index (II)); and regularity
and complexity parameters (approximate entropy (ApEn),
sample entropy (SampEn), Lempel Ziv complexity (LZC), and
finally PRSA parameters). All parameters are listed in Table 2
according to the time windows, which are suggested on the
basis of our results.

For each group of them the pathophysiological meaning
or the most reliable hypothesis is presented.

By this approach to the study of FHR we performed
classification of different fetal states and we obtained diag-
nostic indications in pathologies such as intrauterine growth
restriction (IUGR) and fetal distress [23, 24].

3. Results

Results are reported for the two groups of fetuses concerning
the parameters illustrated in Sections: among the timeparam-
eters, STV, II, and LTI were selected; all frequency domains
indices were computed by using the autoregressive power
estimation (LF, MF, HF, and the ratio LF/(HF +MF)); among
non-linear parameters, ApEn and SampEn were selected and
compared to quantify non-linear complexity characteristics
of FHR series; LZC parameters add information about com-
plexity and predictability of FHR time series; finally, for the
PRSA based parameters, APRS and DPRS were considered.

The target of the study was to identify which parameter or
parameter set is most efficient in the discrimination between
healthy and IUGR fetuses. Analysis of the FHR that consider
more than one parameter at time has the objective to early
identify signs of fetal distress that could bring interventions
against possible life-threatening events.

In order to verify the ability of the selected parameters
to discriminate between healthy and IUGR fetuses, we first
verified that the two populations showed Gaussian distribu-
tions for all parameters using the Kolmogorov-Smirnov test,
in order to further apply the 𝑡-test for the discrimination.

Table 3 summarizes the results concerning the healthy
and IUGR groups of fetuses. Among the time parameters,
both STV and LTI show great performance in the discrimi-
nation task (STV: 𝑃-value = 1.22𝑒−9; LTI: value = 1.5𝑒−11),
while Interval Index does not.

Results in frequency domain parameters show a weak
capability to differentiate normal versus IUGR fetuses. Nev-
ertheless, many results reported in the literature demonstrate
their ability in assessing the cardiovascular well-being in
adults. So they still remain important candidates to monitor
cardiovascular regulation dynamics in FHR time series,
although in this case they do not seem able to discriminate
IUGR fetuses. As a matter of fact, the frequency parameters
are related to physiological mechanisms acting on the heart
control. So, measuring the HF component of the PSD is
a way to measure respiratory fetal activity providing a
parameter directly related to hypoxia or to a respiratory stress
state.

The analysis of non-linear parameters shows that all
considered parameters allow the rejection of the null hypoth-
esis: ApEn(1, 0.1) with 𝑃-value 5.14𝑒 − 07, confirming to be
highly sensitive to the IUGR condition, LZC(2, 0) with 𝑃-
value 7.8𝑒 − 4, and SampEn(1, 0.1) with 𝑃-value 2.08𝑒 − 7,
demonstrating a very high discriminant ability between the
two groups.

Moreover, even similar analysis we did in a different
population of normal and IUGR fetuses by using multiscale
entropy approach [23] also provided satisfying levels of
discrimination power of the entropy indices, thus confirming
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Table 3: Results of fetal HRV analysis by parameters in time domain, in frequency domain, by nonlinear indices and PRSA derived indices.
Usefulness in separating populations is confirmed by 𝑡-test results.

Parameter Healthy IUGR
𝑡-test 𝑃 value

(mean ± std) (mean ± std)
Time parameters

STV (ms) 6.7 ± 2.24 4.29 ± 1.62 ∗ ∗ ∗ 1.22𝑒 − 09

Interval index 0.87 ± 0.07 0.86 ± 0.06 0.37
LTI (ms) 21.46 ± 6.53 17.17 ± 5.37 ∗ ∗ ∗ 1.5𝑒 − 11

Frequency domain
LF (Low Frequency power) 82.92 ± 5.29 81.39 ± 6.13 0.17
MF (Movement Frequency power) 6.7 ± 2.24 11.61 ± 3.50 0.63
HF (High Frequency power) 5.45 ± 3.18 6.65 ± 3.97 0.08
LF/HF + MF 5.36 ± 1.78 4.89 ± 1.76 0.16

Nonlinear parameters
ApEn(1, 0.1) 1.33 ± 0.13 1.21 ± 0.11 ∗∗ 5.14𝑒 − 7

Lempel Ziv complexity(2, 0) 1.00 ± 0.08 0.94 ± 0.09 ∗ 0.00078
SampEn(1, 0.1) 1.3 ± 0.19 1.13 ± 0.15 ∗∗ 2.08𝑒 − 7

PRSA parameters
APRS 0.17 ± 0.041 0.12 ± 0.042 ∗ ∗ ∗ 7.76𝑒 − 12

DPRS −0.18 ± 0.046 −0.12 ± 0.042 ∗ ∗ ∗ 1.08𝑒 − 13

the diagnostic and clinical usefulness of this family of
parameters.

Among PRSA parameters, both APRS and DPRS, were
demonstrated to be highly selective for the separation of
the two groups. The APRS allows the rejection of the null
hypothesis with a 𝑃-value of 7.76𝑒 − 12. The DPRS behaves
even better, with a 𝑃-value of 1.08𝑒 − 13. The DPRS is the
parameter in the analyses which exhibits the smallest 𝑃-value
in the discrimination between healthy and IUGRpatients. On
the contrary other PRSAparameters reported in the literature
byHuhn et al. [21], when applied to our population of fetuses,
are not efficient in the discrimination as already reported in
[22].

Figure 3 shows the boxplots of the subset of parameters
which show significant 𝑃-values (𝑃 < 0.05) computed in the
analysis of the two groups of fetuses.

A further improvement of the diagnostic ability of our set
of parameters could be obtained by a multivariate analysis, in
which two ormore parameters are considered together for the
discrimination task. We did not perform a multiparametric
analysis in depth for the many combinations of indices we
computed, but we can support the previous claim by some
preliminary results. Figure 4 shows as an example of what can
be obtained by combining the discrimination power of two
parameters: plot of ApEn(1, 0.1) versus LTI values shows how
healthy and IUGR populations can be separated, with very
few errors, in different subspaces.

4. The Future: Wearable Technology for
Fetal Monitoring

Monitoring fetal states can also be performed by measuring
fetal ECG through electrodes placed over the maternal
abdomen after the 26th week of pregnancy [25], which

directly provide a measure of the FECG. Unfortunately, it
is very difficult to reliably reveal this FECG both for the
low SNR, due to noise superimposed and maternal ECG
interference, and for the position of the fetus that almost
continuously changes his position inside the uterus. The
recording can be made only at the hospital and requires the
presence of expert personnel. Even in that case, measurement
of FECG remains a difficult task.

Nevertheless, recording the FECG could provide infor-
mation on the beat structure (long QT, T wave morphology
and slope), which is related to heart diseases and to hypoxic
fetal states. Moreover, FECG recordings allow longer periods
of HRV measurements with respect to CTG which employs
ultrasounds (being the ECG completely noninvasive). The
idea is to design a “Fetal Holter” for very long FHRV signal
acquisitions.

With this focus, recent evolution in wearable technol-
ogy has started to produce effects even in the biomedi-
cal devices field. As a matter of fact, these new wearable
devices allow measuring several physiological parameters
continuously in normal life conditions for long periods.
Thus, interesting perspectives are now open toward the
development of new systems, even in the field of fetal
monitoring.With this focus, our research group has designed
a new monitoring system, namely, the Telefetalcare sys-
tem, that makes use of wearable technologies to measure
FECG [26] through textile electrodes embedded in everyday
garments.

A first example of what we can obtain by a wearable pre-
natal garment sensorized with 8 ECG textile electrodes and
a miniaturized acquisition system is illustrated in Figure 5,
where one lead of the fetal-maternal ECG is reported together
with the QRS detection. Till now, the Telefetalcare has
been used on a limited number of patients, showing good
performances in both terms of quality of the acquired signals
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Figure 3: Boxplots of the significant parameters (the height of each box represents the distance between quartile 1 (25%) and quartile 3 (75%));
the triangular marker is the median; x denotes the maximum; and - marker is the minimum. (a) Diagram contains time domain indices, (b)
diagram non linear indices and (c) diagram PRSA indices.
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Figure 4: Individual data ofApEn(1, 0.1) versus LTI.The two groups
of IUGRs and healthy fetuses occupy different subspaces in the
diagram and can be separated quite easily with very few errors.

and in terms of fetal QRSs detection. At the moment both the
separation of fetal-maternal ECGs and the digital processing
are performed offline on a notebook computer, using a
graphical user interface implemented inMatlab environment.

The final goal of this novel approach is to produce a
system that every pregnant woman can use at home, able to
collect FECG signal, for long periods, in a comfortable way,
and to send data to the hospital for evaluation, through a
wireless link.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

Figure 5: Example of ECG recording taken from the Telefetalcare
system. The identification of maternal (gray dots, down) and fetal
(red dots, up) heart beats is computed off-line by a novel algorithm
implemented in Matlab.

Figure 6 illustrates the functional architecture of the
whole system. Acquisition of the cardiac electric signals
takes place through a dedicated hardware device which is
wireless connected to the patient through the sensorized
garment. To reduce the costs connected with the hardware
manufacturing, the device has no display for user interface
and only consists of an 8-channel differential amplifier,
paired with a BluetoothTMwireless communicationmodule.
Smartphones or tablets available nowadays are endowed
with high resolution color screens whose capabilities outpace
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Figure 6: Actual architecture of the Telefetalcare system.

those of any other rendering device and computers available
in the past decade.

Our objective is to obtain a high quality fetal ECG signal,
for long periods, in an unsupervised environment (mother
normal life) to extract fetal HRV in order to use it as an
indicator of fetal well-being and/or stress conditions.

Of course, the analysismethods, previously presented and
adopted for the fetal HRV signal from CTG recordings, will
be used in the system postprocessing step. As a matter of fact,
a significant improvement in the quality of fetal well-being
assessment could be obtained by more frequent and accurate
signalmeasurements and analysis, as costs in fetalmonitoring
will be drastically reduced.

5. Discussion

The paper presents results obtained from the application of
several analysis tools to fetal heart rate variability signals.
FHR signals were recorded through CTG in normal and
IUGR fetuses, with the goal of demonstrating that fetal mon-
itoring can be strongly improved by new analysis techniques
and parameters related to pathophysiological fetal states.

The work evidenced some important points.
First, FHRV signal carries a lot of information about

fetal condition during pregnancy and CTG, being the most
employed technique supporting the diagnostic process along
the final part of the pregnancy, and allows extracting this
information through an accurate analysis. We considered a
population including 61 normal and 61 IUGR subjects and we
checked different approaches to find out reliable indices for
separating the two groups.We tested time domain, frequency
domain, and nonlinear approaches and results showed that
time domain and nonlinear indices significantly separate
the two groups allowing a clear classification. This is very
important as early identification of IUGR condition allows
proper intervention reducing life-threatening events.

However, not all parameters are equally sensitive to
evolving fetal conditions. Entropy parameters, Lempel Ziv
complexity indices, variability parameters in time domain,
and PRSA derived indices exhibit excellent performance in
classification of normal and IUGR population. Nevertheless

it is necessary to stress the importance of considering a
quite large set of parameters to investigate the complex
regulation of the fetal cardiovascular system. The interaction
with the placenta, thus with the mother circulation, and the
development of the controlling systems in the fetus are all
factors influencing and acting on the fetal state.

Results and examples shown in the paper clearly sug-
gest that monitoring systems could be improved by adding
diagnostic and classification power through advanced signal
processing techniques.

In particular, we want to stress the importance of
adopting a multiparameter analysis to better identify fetal
states for the sake of preventing disease insurgence. Our
preliminary analysis (ApEn/LTI in Figure 4) shows how the
simple combination of two parameters can improves the
identification of IUGR subjects from healthy ones. These
aspects deserve future investigations through a multivariate
analysis.

Another important point relies on the general use the
proposed approach could have in the fetal HR analysis as
CTG data are routinely measured during pregnancy. As a
matter of fact, analysis tools can complement the clinical
routine steps, providing further indications to physicians and
nurses.

Our experience has shown that implementing advanced
signal processing techniques can provide better classification
results of the fetal states either in a normal development of the
pregnancy (activity-quiet) [13] (vibroacoustic stimulation)
[23] or in pathological conditions (distressed fetuses) [24]
(IUGRs) [27, 28].

Moreover, the intrinsic complexity which characterizes
fetal life and the possible associated diseases complicates the
prediction and control of fetal development. To face this
problem we need to develop more personalized monitoring
system allowing an almost continuous noninvasive evalua-
tion of the fetal state and in which knowledge based systems
contribute to the care improvement.

As a further contribution to a knowledge based fetal
monitoring approach, supported by an advanced technology,
we have briefly presented a fetal ECG monitoring system,
Telefetalcare, based on wearable technology and designed to
permit an accurate and continuing assessment of fetal well-
being. Advantages are in the signal quality with the direct
measurement of fetal HRV and the long-term monitoring
that can be easily performed. A wearable garment equipped
with textile electrodes will allow pregnant women to monitor
fetus health state without moving to the hospital, always
having the clinician remote support.

The system can contribute to reducing costs of fetal
monitoring still maintaining a significant quality or even
improving the fetal wellbeing assessment.

These novel approaches can open a new window on
the continuous monitoring of fetal development: further
information can be extracted by introducing novel analysis
tools, more sensitive to fetal states both in healthy and stress
conditions, by increasing length, frequency, and quality of
monitoring session. Methods and technological advance-
ments both have a key role contributing to reaching this
important scientific and social objective.
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