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Electrophysiology and Ablation

AF is the most common sustained cardiac rhythm disorder and is 

associated with increased morbidity and mortality. Since the first 

description of AF initiation by triggers from pulmonary veins sleeves, 

pulmonary vein isolation (PVI) has become the standard ablation 

strategy in patients with AF.1 However, freedom from the arrhythmia, 

particularly in non-paroxysmal AF, remains suboptimal, and it is now 

clear that, in these patients, AF is maintained by an atrial substrate 

beyond the pulmonary veins. Although electrical remodelling may be 

reversible with termination of the arrhythmia, the development of atrial 

substrate due to fibrosis contributes to the progression of the AF 

phenotype from paroxysmal to persistent AF, leading to an arrhythmia 

that is more refractory to intervention.2 It is clear from animal and 

human studies that prolonged AF can cause this structural change. 

Moreover, it is also apparent that a range of risk factors associated with 

AF, including age, obesity, heart failure (HF), valvular heart disease, 

hypertension (HT), sleep apnoea and alcohol intake, may also progress 

atrial remodelling. The rise in the prevalence of cardiovascular risk 

factors (particularly driven by ageing populations and the obesity 

epidemic) has been associated with an increase in the prevalence of AF 

and AF-related hospitalisations.3 In this review, we focus on insights 

from electrophysiological mapping studies in cohorts with AF risk 

factors. We discuss substrate mapping and its implications for AF 

management and outcomes, and also focus on potential pitfalls.

The Second Factor: Structural Remodelling 
is Required for AF Maintenance
Early studies of animal models have demonstrated that AF promotes 

acute electrical remodelling, which in turn leads to further AF, thereby 

introducing the seminal concept that ‘AF begets AF’.4–6 In response 

to either induced AF or rapid atrial pacing, a reduction in the atrial 

effective refractory period (ERP) occurs with an increase in the spatial 

heterogeneity of ERP and loss of normal ERP rate adaptation, all 

resulting in progressively longer durations of AF. In this model, 

termination of the arrhythmia results in remodelling reversal, suggesting 

that sinus rhythm may beget sinus rhythm. However, human studies of 

early intervention to re-establish sinus rhythm do not fully support this 

concept; the re-establishment of sinus rhythm has not been found to 

prevent the progression of AF in the majority of patients.7,8 Ongoing 

work has indicated that, beyond acute electrical remodelling, structural 

remodelling also occurs and is not necessarily fully reversible. This so-

called second factor has been shown to occur as a result of longer 

durations of AF. However, the multiple conditions associated with AF 

also appear to promote significant structural remodelling.

Abnormal Atrial Substrates and Structural 
Remodelling in Conditions Predisposing to AF
It is well known that certain cardiac conditions and risk factors (i.e. age, 

obesity, HT, HF, structural heart disease, sleep apnoea and alcohol 

intake) are associated with AF, likely through both different and 

interacting mechanisms. In the next section, we review the evidence 

describing the nature of atrial structural remodelling in these conditions, 

even prior to the development of AF (Figure 1). 

The Role of Atrial Stretch
The impact of acute atrial stretch on electrical remodelling has 

been studied in animal models and in humans. Despite variability in 
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the reported effect on atrial ERP, evidence from these studies 

consistently demonstrates conduction slowing, conduction block and 

increased frequency of AF.9–11 In studies of atrial stretch related to loss 

of atrioventricular (AV) synchrony, Sparks et al. demonstrated evidence 

of both electrical and mechanical remodelling.12,13 Although 

refractoriness showed a variable increase, there was conduction 

slowing, sinus node impairment and a decrease in parameters of atrial 

contractile function. These changes developed over 3 months and were 

fully reversible with the return of AV synchrony.

Valvular and Congenital Heart Disease
The nature of atrial remodelling due to pressure and volume overload 

associated with either valvular heart disease or congenital heart 

defects has been studied for a number of different pathologies. 

Common to these is the development of significant atrial dilatation, 

creating one of the critical determinants for the maintenance of AF and 

structural remodelling.

In mitral stenosis, John et al. demonstrated the presence of abnormal 

atrial structural and electrical substrate in patients with symptomatic 

mitral stenosis referred for balloon valvuloplasty when compared to a 

control cohort.14 Biatrial mapping demonstrated significantly reduced 

biatrial voltage, reduced conduction velocity and prolonged ERPs. As 

expected, patients with mitral stenosis were more susceptible to AF 

induction with programmed extra stimuli. Such remodelling was found to 

be more profound in the left atrium (LA) than the right atrium (RA). Balloon 

valvuloplasty resulted in significant improvements in conduction and in 

bipolar voltage, either acutely or by 3 months of follow-up, indicating that 

even chronic remodelling may be, in part, reversible.15

Roberts-Thompson et al. studied patients with symptomatic mitral 

regurgitation referred for valve repair using epicardial plaque mapping 

in the operating room.16 Their high-density mapping study demonstrated 

the presence of conduction slowing, conduction heterogeneity with 

regions of conduction slowing and lines of block particularly in the 

posterior left atrium. Patients with mitral regurgitation had more 

advanced remodelling than a comparison group with normal mitral 

valves undergoing coronary bypass surgery. 

Morton et al. performed right atrial mapping in patients with atrial 

septal defect (ASD) before and late after surgical closure.17 

Electroanatomic maps of the RA demonstrated the presence of atrial 

conduction abnormalities, both generally and at the crista terminalis, 

sinus node dysfunction and atrial dilation, when compared to controls. 

In their study, closure of the ASD, while associated with significant 

reduction in atrial size, did not lead to recovery of conduction 

abnormalities, indicating partial reverse remodelling in this population. 

In a subsequent study, Roberts-Thomson et al. demonstrated similar 

atrial remodelling in the LA of ASD patients, indicating that the 

remodelling process is not confined to the RA in an ASD population.18

Congestive Heart Failure
The interaction between HF and AF has been studied in both animals 

and humans. Li et al. described remodelling ‘of a different sort’ in a 

Figure 1: Electroanatomical Maps and Electrophysiological Parameters in Different AF Substrates
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canine model of ventricular tachypacing.19 This was characterised by 

an increase in conduction heterogeneity associated with interstitial 

fibrosis that resulted in an increase in AF inducibility. Other studies 

have demonstrated similar findings.20 Five weeks after HF reversal, 

neither fibrosis nor AF inducibility were found to demonstrate 

significant resolution.21

Sanders et al. demonstrated slowing of atrial conduction, low-voltage 

areas (LVAs), a greater number of fractionated electrograms and abnormal 

sinus node function in patients with congestive HF (CHF) when compared 

to a control population.22 Patients with CHF demonstrated increased AF 

inducibility. More recently, Prahbu et al. performed high-density 

electroanatomic mapping of both atria in two cohorts of patients: 

persistent AF with normal left ventricular systolic function (left ventricular 

ejection fraction [LVEF] >55%) and persistent AF with idiopathic 

cardiomyopathy (LVEF <45%).23 HF was associated with significantly 

reduced biatrial bipolar tissue voltages, greater voltage heterogeneity and 

significantly more biatrial electrogram fractionation compared to no HF, 

suggesting the impact of HF on structural remodelling above and beyond 

the effect of AF itself. When patients were restudied 2 years after catheter 

ablation with maintenance of sinus rhythm and significant improvement 

or normalisation of LV function, remodelling reversal was found to be 

incomplete.24 There was a reduction in complex signals and patchy 

regional increases in voltage, but no improvement in atrial conduction, 

again indicating that advanced remodelling is unlikely to reverse (Figure 2).

Systemic Hypertension
Medi et al. performed RA electroanatomic mapping in patients with HT 

(but no AF) and in controls.25 HT was associated with extensive 

conduction abnormalities, particularly in the posterior RA at the crista 

terminalis. In addition, an increased number of LVAs and AF inducibility 

were noted, despite prolonged ERPs compared to controls. To the best 

of our knowledge, no studies have evaluated the impact of HT on LA 

remodelling; however, studies in patients with HF and preserved 

ejection fraction are ongoing.

Obesity
Emerging data have indicated that obesity and increased pericardial fat 

are associated with a more advanced atrial substrate. A number of 

animal studies have demonstrated the impact of progressive weight 

gain on the atrial substrate and inducibility of AF.26,27 Abed et al. 

demonstrated the progressive change in electrical and structural 

remodelling in a group of 30 sheep fed a high-calorie diet over an 

8-month period.26 Increasing weight was associated with increasing LA 

volume, fibrosis, upregulation of inflammatory markers, decreased 

conduction velocity and an increase in conduction heterogeneity. Such 

changes were found to be associated with an increase in both inducible 

and spontaneous AF. In a subsequent study, the same group 

demonstrated that these changes were most marked in the posterior 

left atrium and were associated with fat infiltration and fibrosis. Other 

animal studies noted that a high-fat diet could increase AF duration due 

to slow atrial conduction and reduced pulmonary vein refractoriness 

without necessarily accompanying obesity.28,29 Mahajan et al. compared 

atrial electroanatomic maps and epicardial adipose tissue in obese 

patients with the same data from a non-obese cohort.30 Obesity was 

found to be associated with an increase in all measures of epicardial 

adipose tissue (EAT), with a predominant distribution adjacent to the 

posterior left atrium and the atrioventricular groove. Obese patients 

had reduced global conduction velocity, increased fractionation and 

increased LVAs. LVAs were predominantly seen in the posterior and/or 

inferior LA, matching the location of EAT on cardiac magnetic resonance 

(CMR) imaging. Another study of the impact of obesity on atrial 

remodelling also found significant conduction slowing at the pulmonary 

vein-to-LA junction.31

Obstructive Sleep Apnoea
Obstructive sleep apnoea (OSA) is known to be associated with AF.32 

Dimitri et al. characterised the atrial substrate among a cohort of 

patients undergoing AF ablation who either had OSA (apnoea hypopnea 

index >15) or no OSA.33 Patients with OSA had lower atrial voltage, 

prolonged conduction times and greater percentage of complex 

fractionated electrograms, but there was no difference in atrial ERP. 

Similar findings were recently described by Anter et al. in their cohort 

of 86 patients (n=43 with OSA and n=43 without OSA) undergoing PVI 

for paroxysmal AF.34 However, they also reported a higher prevalence of 

non-pulmonary vein triggers in OSA compared to controls, indicating 

that the development of AF in this population may be due to 

autonomically mediated triggers interacting with chronic substrate.

Alcohol
Alcohol has recently emerged as an important modifiable risk factor in 

AF, and both binge and habitual drinking seem to increase the 

vulnerability to AF through its impact on atrial remodelling. Qiao et al. 

performed voltage mapping in 122 patients undergoing PVI for 

paroxysmal AF, and classified them according to their daily alcohol 

consumption history.35 Heavy drinkers had more LVAs and more AF 

recurrences compared to moderate drinkers and alcohol abstainers. 

Importantly, both heavy alcohol consumption and LVAs were 

independent predictors of AF recurrence. Similar findings were recently 

found in Voskoboinik et al.’s study of the atrial substrate among alcohol 

consumers.36 The authors performed high-density electroanatomic 

mapping of the LA in 75 patients undergoing PVI for AF. Patients were 

classified as lifelong non-drinkers, mild drinkers (2–7 drinks/week) and 

Figure 2: Electroanatomic Maps of the Right Atrium at 
Baseline and 2 years Follow-up Post-AF Ablation
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moderate drinkers (8–21 drinks/week). When compared to alcohol 

abstinence or mild alcohol consumption, moderate alcohol 

consumption was associated with significantly lower global atrial 

voltage, slower conduction velocities and an increased proportion of 

both complex atrial potentials and LVAs. Moderate drinking, together 

with age and female sex, were found to be independent predictors for 

low voltage. Ongoing studies are addressing the question of whether 

atrial remodelling may reverse with abstinence, and a recent 

randomised study indicated that abstinence reduces AF recurrence.37

Age
It is well known that the prevalence of AF increases with age. A number 

of animal and human studies have demonstrated the presence of an 

abnormal electrical substrate in older cohorts, independent of changes 

in the atrial ERP.38–40 Kistler et al. performed high-density electroanatomic 

mapping of the RA in 41 patients with no history of AF.38 Patients were 

stratified into three groups according to age: <30 years, 30–60 years 

and >60 years. Ageing was associated with regional conduction 

slowing, anatomically determined conduction delay at the crista 

terminalis, areas of low voltage, impaired sinus node function, and an 

increase in atrial ERP.

Lone AF and Fibrotic Cardiomyopathy
The term ‘lone AF’ has been variably defined over decades of use, but 

broadly, can be taken to imply AF in the absence of structural heart 

disease or HT. In a detailed mapping study, Stiles et al. demonstrated 

the presence of abnormal atrial substrate in patients with paroxysmal 

lone AF compared to a control group, even when studied distant to an 

AF episode.41 Paroxysmal AF patients were found to have atrial 

dilatation, lower mean voltage, prolonged atrial conduction times, 

impaired sinus node function and increased atrial ERP compared to the 

control group. However, in their study, more contemporary causes of 

atrial remodelling, such as obesity, sleep apnoea and alcohol intake, 

were not clearly excluded, and it is possible that the observed 

remodelling reflected the high prevalence of these conditions in an 

apparent lone AF population. An alternate hypothesis is that AF is 

secondary to a primary underlying fibrotic cardiomyopathy, as proposed 

by Kottkamp et al.42 Human histological and imaging studies evaluating 

fibrosis in lone and non-lone AF populations have found comparable 

fibrosis distribution between the two groups,43,44 supporting the idea of 

a primary fibrotic cardiomyopathy. However, a detailed exclusion of the 

above causes of remodelling was not performed.

How Best to Define Abnormal Atrial 
Substrate: Pitfalls
On electroanatomic mapping, the assumption inherent in the findings 

of low voltage, slowed conduction and complex signals is that structural 

change is present, the hallmark of which is fibrosis.45 Human histological 

studies have confirmed the presence of atrial fibrosis in patients with 

AF, and the fibrosis extent correlated with AF duration.43,46,47

However, to date, there is no direct correlation confirming the relationship 

between atrial substrate on mapping and histological fibrosis. The widely 

applied definition of abnormal atrial bipolar voltage (<0.5 mV representing 

LVAs and <0.05 mV representing scar) derives from mapping with an 

ablation catheter bipole and has never been fully validated in humans.22 

The indices have been used to successfully predict outcomes when used 

to define LVA in patients with paroxysmal or persistent AF.48–50 Furthermore, 

complex fractionated electrograms and abnormal conduction during 

sinus rhythm tend to correspond to LVAs, suggesting that they may 

represent areas of histological fibrosis.51,52 However, multiple potential 

pitfalls exist when simply using voltage as a marker of atrial remodelling 

and fibrosis. For example, atrial wall thickness varies markedly between 

different atrial regions (e.g. trabeculated compared with smooth-walled 

atrium), and also from patient to patient. It is highly probable that normal 

voltage also varies considerably and may defy a simple cut-point 

definition. Moreover, these values were described when using an ablation 

bipole for mapping. The start of the century has witnessed the introduction 

of multielectrode mapping catheters for electroanatomic mapping.53 

Compared with linear, single-point conventional mapping catheters, 

multielectrode mapping catheters have the combination of smaller 

electrode size, smaller interelectrode distance and multiple splines. This 

allows for recording electrograms from a significantly smaller underlying 

tissue diameter with multiple orientations. This translates to higher 

mapping resolution that can identify heterogeneity within the area of low 

voltage, localising channels of surviving bundles. Moreover, the smaller 

electrode and closer interelectrode spacing means less signal averages 

and cancellation effects, which may translate to higher recorded bipolar 

voltage amplitude with shorter electrogram duration.53,54 However, the 

criteria for bipolar low voltage using multielectrode mapping catheters 

has not been systematically revisited. 

It is also important to note that both the distribution and extent of LVAs 

on electroanatomic mapping is critically dependent on the directionally 

and rate of wavefront prorogation. Wong et al. demonstrated that a 

change in pacing site or cycle length could change the region defined 

as low voltage by up to 30% (Figure 3).55

The nature of the rhythm is also of critical importance. Several early 

studies demonstrated that regions of low bipolar voltage and complex 

fractionated electrograms recorded during AF frequently correspond 

with areas of normal atrial bipolar voltages in sinus rhythm.52,56 

However, recent studies using omnipolar mapping, indicating that 

electrode orientation is a key determinant of recorded bipolar voltage, 

Figure 3: Rate- and Direction-dependent 
Variation in Mapped Substrate
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have raised the possibility that mapping during AF may provide an 

improved evaluation of underlying substrate. In an elegant study using 

omnipolar mapping with a grid catheter, Haldar et al. showed that 

bipole orientation has a significant impact on bipolar electrogram 

(EGM) voltages obtained during sinus rhythm (SR) and AF.57 In that study, 

omnipolar EGMs were able to extract maximal voltages from AF signals 

not influenced by directional factors, wavefront collision or fractionation. 

Other techniques to identify substrate have focused on signal 

characteristics. Approaches beyond the traditional identification of 

complex fractionated electrograms have included targeting spatio-

temporal dispersion of electrograms; targeting regions of prolonged 

and continuous fractionation; various approaches to determine the site 

of highest activation frequency, such as dominant frequency; or using 

activation gradients, such as in the stochastic trajectory analysis of 

ranked signals mapping approach.58–61

In addition to mapping techniques, multimodality imaging can provide 

a non-invasive assessment of the abnormal atrial substrate in patients 

with AF.62 In addition to atrial size and morphology, mechanical and 

structural remodelling parameters can be obtained via strain imaging 

and late gadolinium enhancement CMR imaging (LGE-MRI). LGE-MRI 

has been proposed as a more effective way in which to identify regions 

of atrial fibrosis, and a considerable body of work indicates that this 

may be feasible. However, not many departments have been able to 

replicate these data, particularly for the reliable identification of more 

subtle interstitial fibrosis.62 A key problem is how to accurately define 

the number of standard deviations (SD) from the mean reference signal 

intensity, which most closely describes accurate scar volume. In an 

animal ablation study, the point at which CMR imaging and histological 

scar volume were equal was in the steepest portion of the graph, which 

meant any small change in SD (chosen by definition) would create a 

corresponding large difference between CMR imaging and histological 

measured volumes.63 Chen et al. studied the correlation between 

delayed enhancement on CMR imaging and LVAs on electroanatomic 

mapping in 16 patients with persistent AF.64 There was a mismatch 

between delayed enhancement areas and LVAs; delayed enhancement 

was present in 61% of LVAs, whereas low voltage was present in 28% of 

delayed enhancement areas. In another recent multimodal examination 

of AF substrate, Zghaib et al. demonstrated that LGE-MRI, high-density 

mapping and point-by-point mapping with the ablation catheter 

demonstrated good correlation in delineating electroanatomical AF 

substrate, providing some enthusiasm for the routine use of CMR 

imaging.65 Given the current challenges in technique and reproducibility, 

and the lack of prospective studies, the current role for LGE-MRI in the 

management of patients with non-paroxysmal AF remains limited to a 

relatively small number of centres with extensive experience in the 

technique. Data from the prospective Delayed-Enhancement MRI 

Determinant of Successful Radiofrequency Catheter Ablation of Atrial 

Fibrillation-II (DECAAF-II) study are eagerly awaited.62

Implications of Accurately Identifying 
the Atrial Substrate
Numerous studies have indicated that advanced atrial substrate is a 

risk factor for recurrence following AF ablation.48,49,66,67 In addition, 

preliminary and observational studies suggest that isolation or 

homogenisation of these abnormal regions significantly improves post-

ablation arrhythmia-free survival.59,69,70 Schreiber et al. implemented 

the concept box isolation of fibrotic areas and studied its impact when 

added to traditional PVI on AF-free survival among 92 patients with 

fibrotic atrial cardiomyopathy, as defined by voltage mapping.71 This 

approach was associated with a 69% arrhythmia-free survival at 16 ± 8 

months. In a single-centre randomised study, Kircher et al. examined 

whether targeting LVAs in addition to PVI was more effective than PVI 

plus linear ablation in patients with paroxysmal and persistent AF.72 At 

Figure 4: Recurrence of AF 13 Years Following Successful Pulmonary Vein Isolation
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12 months, the LVA ablation group had better arrhythmia-free survival 

compared to the PVI plus linear ablation group (68% versus 42%, 

p=0.003). More recently, Yang et al. randomised 229 patients with non-

paroxysmal AF to either low-voltage, zone-guided ablation or standard 

stepwise ablation (including linear ablation), but did not show a 

significant improvement in arrhythmia-free survival at 18 months (74% 

versus 71%, p=0.32).73 However, procedure times, total ablation time 

and fluoroscopy times were significant shorter using the LVA-guided 

approach. Further multicentre studies are needed to better define the 

role of LVA-guided substrate ablation in the management of patients 

with persistent AF. A prospective multicentre randomised study is 

currently ongoing to examine the efficacy of atrial fibrosis (based on 

MRI-LGE)-guided ablation intervention in the treatment of patients with 

persistent AF (DECAAF-II, NCT02529319).

Progression and Regression of 
the Atrial Substrate
In many patients with AF, there is gradual progression from short-

lasting paroxysmal AF to more frequent and persistent AF (Figure 4).74,75 

This progression is, at least in part, driven by the evolution of the atrial 

substrate as a result of underlying risk factors and the arrhythmia itself. 

As such, the hypothesis emerged that both risk factor management 

and rhythm control might arrest the progression and perhaps reverse 

the remodelling of the atrial substrate in AF (Figure 5).76,77 The data are 

mixed. Animal studies of structural remodelling reversal have shown 

variable results, but established replacement fibrosis has not resolved.78 

In humans, AF ablation did not result in reverse remodelling at 6 

months, with some evidence of further progression.79 Studies of risk 

factor management have indicated a significant propensity for reverse 

remodelling in animal studies. In humans, risk factor management has 

resulted in fewer recurrences of AF after ablation, and reversal of AF 

progression.37,76,80 Patients with weight loss frequently regress from a 

persistent to paroxysmal phenotype and progress in the opposite 

direction much less frequently.82

Conclusion
The abnormal atrial substrate plays a key role in the perpetuation of AF. 

While developing an ablation strategy targeting the atrial substrate 

seems logical, the current mixed results may reflect uncertainties as to 

how best to identify the critical arrhythmogenic substrate. Future 

improvements in mapping and imaging technology will certainly 

improve our understanding of the atrial substrate, and potentially pave 

the way for the development of tailored ablation therapies to improve 

arrhythmia outcomes. 

Figure 5: Time-dependent Atrial Remodelling 
and Development of AF
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Hypothetic construct over time indicating the interrelationship between time, risk factors 
for AF, atrial remodelling, detection of risk factors for atrial remodelling and progression 
from sinus rhythm through paroxysmal and persistent to permanent AF. ECV = electrical 
cardioversion; SR = sinus rhythm. Source: Wyse et al. 2014.81 Reproduced with permission 
from Elsevier.

Clinical Perspective
• Structural remodelling plays an important role in the development 

and clinical progression of AF.

• Beyond the impact of AF itself on structural remodelling, multiple 

associated conditions contribute to the development of 

abnormal atrial substrate.

• Further improvements in current atrial substrate imaging and 

mapping modalities are required to improve our understanding 

of structural remodelling to better guide substrate-based 

ablation strategies.

• Promising emerging work suggests an important role for risk 

factor management in arresting or reversing atrial remodelling 

and in improving AF outcomes. Further work is required to 

define the broader efficacy of this approach.
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