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Background and purpose: The SCF/c-Kit pathway is often overexpressed in human tumors leading to an
enhanced tumorigenesis, proliferation and migration. It was now tested for NSCLC and prostate cancer
cells growing in 2D and 3D whether the inhibition of this pathway can be used to achieve a significant
radiosensitization and whether a respective biomarker may be identified.
Material and methods: Experiments were performed with different cancer cell lines (NSCLC: H23, H520,
H226, H1975 and PrCa: DU145) growing either under 2D or 3D conditions. Expression of SCF and c-Kit
was determined by RT-PCR and Western blot, SCF was knocked down by siRNA, c-Kit was inhibited by
ISCK03 inhibitor and cell survival was determined by colony formation assay.
Results: There is a profound variation in the expression of both c-Kit and SCF with no association between
each other. Neither levels did correlate with the respective cellular radiosensitivity determined for 2D or
3D with only a trend seen for SCF. Knock-down of SCF was generally found to result in no or only minor
reduction of plating efficiency or cellular radioresistance. A significant reduction was only obtained for
H520 cells characterized by an extreme over-expression of SCF. The inhibition of c-Kit by a specific inhi-
bitor was also found to result only in minor radiosensitization.
Conclusion: Generally, the SCF/c-Kit pathway does not have a dominant effect on both, cell survival and
radioresponse and, as a consequence, knockdown of this pathway does not result in a strong effect on
radioresistance, except when SCF is strongly over-expressed.
� 2017 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society for Radiotherapy and

Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction An active SCF/c-Kit pathway is also often seen in tumors and in
The tyrosine kinase receptor c-Kit and its ligand stem cell factor
(SCF) are important key players promoting fundamental cellular
functions as cell growth, survival, and migration [1]. Especially
during embryonal development, the SCF/cKit axis mediates
important signals for the hematopoiesis, central nervous system,
intestine melanogenesis [2]. In adult tissues c-Kit is normally
down-regulated, except in hematopoietic stem/progenitor cells of
the bone marrow, melanocytes, and mast cells [3,4].
pre-cancerous lesions identifying c-Kit as a proto-oncogene
[1,5–12]. This activity was shown to have an oncogenic potential
by driving tumor cell proliferation, migration and cancer stemness
[7–12]. In line with this, for many tumors high level of SCF/c-Kit
were found to be associated with poor prognosis [11–15].

Due to these findings targeting of SCF/c-Kit pathway was
considered to be an optimal tool for a tumor specific treatment.
Interest in this strategy was further enhanced, after detecting that
SCF/c-Kit pathway is also blocked by imatinib – formerly known as
an optimal inhibitor of the c-Abl tyrosine kinase [16]. Initially ima-
tinib was used to treat leukemia [17,18] and GIST-tumors [19,20]
but in recent years also for other solid tumors. There are now
numerous reports showing that growth of solid tumors and
metastasis are suppressed when SCF/c-Kit pathway is blocked by
imatinib [21–24].
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However, there are increasing data indicating that it is unlikely
that SCF/c-Kit inhibitors alone can lead to tumor cure, because of
the resistance mechanisms initiated during treatment [25]. As a
consequence, treatment with SCF/c-Kit inhibitors need to be com-
bined with other efficient tools such as radiotherapy to achieve
better outcomes. This combination may even have an additional
benefit, when – besides the additive effect of both treatments –
targeting of SCF/c-Kit will interfere with radioresponse and
thereby resulting in an enhanced cellular radiosensitivity.

It is already known that the activation of c-Kit by SCF may lead
to a radioresistance [26–28] considering this as an optimal tool for
radioprotection, when whole body irradiation is required. On the
other hand, data available so far, when SCF/c-Kit pathway is
blocked, are conflicting. In a first report Holdhoff et al. [29] found
that inhibition of cKit by imatinib leads to an enhanced radiosen-
sitivity of human glioblastoma cells RuSi-RS1 but not for the
human breast cancer cell line BT20 or colon cancer cells WiDr. In
other reports with human glioblastoma [30] or astrocytoma cell
lines [31] only a modest radiosensitization was seen after treat-
ment by imatinib. In contrast, for RT112 bladder carcinoma cells
a robust radiosensitization was obtained when treated by imatinib
[32]. Overall, these data demonstrate that the radiosensitization
achieved by the inhibition of SCF/c-Kit strongly varies with the cell
line treated. Obviously there is a strong need to identify a biomar-
ker allowing to identify those cell line and with that the respective
tumors which will respond to this treatment, before this strategy
may be applicable in clinical routine.

The study presented here was performed with ten different
tumor cell lines derived either from NSCLC or prostate cancer. It
was previously already shown by us, that targeting of the
SCF/c-Kit pathway is an optimal tool to inhibit the metastatic
potential as tested for both 2D and 3D conditions [33]. Therefore
we now tested whether the same strategy can also be used to
reduce radioresistance. The cell lines used were extensively char-
acterized in respect to the SCF/c-Kit-pathway and for further
analysis, five of these cell lines were selected covering the broad
range of this pathway activity generally seen in tumors. Down-
regulation of SCF/c-Kit pathway prior to irradiation was
performed either by siRNA targeting of SCF or by the specific inhi-
bitor ISCK03. Again the experiments were performed for cells
grown in 2D and 3D to consider the impact of growth condition
on these treatments.
Material and methods

Cell culture

Experiments were performed with the human NSCLC
adenocarcinoma cell lines H23 (CRL-5800), H1975 (CRL-5908),
H460 (HTB-177), H1299 (CRL-5803), A549 (CCL-185), the human
NSCLC squamous cell lines H226 (CRL-5826), H520 (HTB-182),
the human prostate cancer cell lines DU145 (HTB-81), PC3
(CRL-1435), LnCAP (CRL-1740) obtained from the American Type
Culture Collection (ATCC; Manassas, VA, USA). HUVECs were iso-
lated and used as described previously [8]. Cells were maintained
in RPMI-1640 (E15-840; PAA Laboratories GmbH, Pasching,
Austria) supplemented with 10% fetal bovine serum (FBS, Greiner
BioOne, Frickenhausen, Germany) at 37 �C in humidified atmo-
sphere containing 5% CO2. HUVECS were maintained in endothelial
cell growth medium containing 5% fetal calf serum (PromoCell
GmbH; Heidelberg, Germany).

For three-dimensional (3D) conditions cells were grown in
0.5 mg/ml laminin-rich extracellular matrix (lr-ECM; BD Matrigel
Matrix, BD Bioscience, Bedford, MA) in agarose coated wells as
described previously [33].
X-irradiation

For X-irradiation, a 6-MeV X-ray beam generated by a clinical
linear accelerator was used. Irradiation was delivered at room tem-
perature with dose rate of 4 Gy/min. Cell culture flasks were
arranged between 15 mm water-equivalent plates to generate
doses maximum in the cell layer.

Colony formation assay under 2D and 3D cell culture conditions

For colony formation under 2D-conditions cells were seeded in
6 cm culture dishes 24 h prior to photon-irradiation (0–8 Gy),
incubated for 10–14 days, fixed, stained (0.1% crystal violet) and
colonies >50 cells were counted. For 3D, cells were grown in
0.5 mg/ml lr-ECM for 24 h prior to photon-irradiation. Cell clusters
>50 cells were microscopically counted 10–14 days after seeding.
Plating efficiencies (PE) and survival fractions (SF) were calculated
as published previously [8,34].

RNA interference by synthetic siRNA

For knockdown of SCF commercially available siRNA was used
(Biomers.net GmbH, Ulm, Germany). Transfection was performed
with LipofectamineTM 2000 (final concentration 100 nM;
Invitrogen-Life Technologies GmbH, Darmstadt, Germany). The
forward sequences were as follows: si-SCF, UGAAGAGGAUAAUGA-
GAUA, si-control, UAGCGACUAACAUCAA.

Treatment with the SCF/c-Kit inhibitor ISCK03 (CAS 945526-43-2)

The Stem-Cell Factor/c-Kit Inhibitor ISCK03/CAS 945526-43-
2ISCK03 inhibitor (569615, Merck Millipore, Darmstadt, Germany)
was prepared and diluted 1:1000 with DMSO and again 1:1000
with medium before usage according to manufacturer instructions.
Cells were incubated with 1 ll/ml ISCK03 18 h prior and again just
before irradiation; control group was treated with DMSO only. For
3D the inhibitor was added to the cell and lr-ECM suspension in
the same concentration.

RNA extraction and quantitative RT-PCR

Under 2D conditions RNA extraction with TriFast (peqGOLD Tri-
Fast; PeqLab Biotechnology GmbH, Erlangen, Germany) was per-
formed according to manufacturer instructions. Under 3D
conditions cells from ECM were transferred to a cup, washed with
PBS (2 times) and resuspended with TriFast. RT-PCRs were
performed as described previously [24]. Primer sets (F, forward;
R, reverse) were: SCF, F: 50-GGA TGG ATG TTT TGC CAA GT-30, R:
50-TCT TTC ACG CAC TCC ACA AG-30; C-KIT, F: 50- CCG GTC GAT
TCT AAG TTC TAC-30, R: 50-GAT TGG TGC TCT CTG AAA TCTG-30;
PBGD, F: 50-CAG CTT GCT CGC ATA CAG AC-30, R: 50-GAA TCT TGT
CCC CTG TGG TG-30.

Western blot analysis

Cells were rinsed with ice-cold PBS prior to adding modified
RIPA buffer for protein isolation. After SDS–PAGE and transfer of
proteins onto a polyvinyl difluoride (PVDF) membrane; nonspecific
sites were saturated with 5% milk. Incubation was performed over-
night (4 �C) with the following primary antibodies: anti-c-KIT puri-
fied rabbit anti-human (3074), anti-phospho-c-Kit (Tyr719)
purified rabbit anti-human (3391), dilution 1:1000 (Cell Signaling
Technologies, Danvers, USA). Immunodetection was performed
by incubation (1 h) with peroxidase-conjugated secondary
antibodies: goat anti-rabbit IgG (H + L) cross adsorbed secondary
antibody (31462), dilution 1:2000 (Pierce-ThermoFisher Scientific,
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Rockford, IL, USA), with a self-made ECL system. Western blot sig-
nals were quantified by densitometric scanning (Bio Rad ChemiDoc
XRS+, Bio-Rad Laboratories, Inc., Hercules, USA).
ELISA for SCF

SCF protein levels were measured in 2D cell culture super-
natants with a commercial ELISA kit (R&D Systems, Wiesbaden,
Germany) according to the manufacturer’s instruction. Biotiny-
lated secondary antibody and streptavidin conjugated horseradish
peroxidase were used for detection of captured SCF by measuring
absorbance at 450 nm, using a 96-well plate spectrophotometer
(BioTek, VT, USA). SCF protein is expressed in pg/ml.
Calculation and statistical analyses

Data shown are mean values ±standard errors of the mean
(SEM) for at least 3 independent experiments. The level of signifi-
cance was evaluated by Student’s t-test. Differences at p values of
<0.05 were considered statistically significant and are indicated in
the figures by an asterisk.
Fig. 1. Characterization of SCF/c-Kit pathway in NSCLC (H460, H1299, A549, H23, H226, H
2D or 3D conditions. (A and B) Variation of mRNA expression for either SCF or c-Kit as de
2D as a reference. (C) Association between the expression of SCF and c-Kit. D) Variation
western blotting with ß-actin used as loading control. Values are means + SEM, n � 3.
Results

Huge differences of c-Kit and SCF in NSCLC and prostate cancer cell
lines

Initially, we assessed the status of the c-Kit pathway of eight
different human non small cell lung cancer cell lines (H23, H226,
H1975, H460, H1299, H520, A549) and three human prostate can-
cer cell lines (DU145, PC3, LnCAP) by measuring the expression of
the stem cell factor (SCF), which is the natural ligand of the c-Kit
pathway (Fig. 1A), and of c-Kit (Fig. 1B) for both 2D and 3D cultures
using RT-PCR. Expression is plotted as DDCt-values relative to the
expression of the human umbilical vein endothelial cell line
HUVEC. For both genes, marked variations are seen with, however,
no obvious differences between 2D and 3D cultures. For SCF an
extreme over-expression was only seen for H520 cells, which
was by a factor of 25–32 higher than measured for the other cell
lines. For four cell lines we also measured the SCF protein expres-
sion using ELISA (Supplement Fig. S1). Although, there was a clear
correlation between both parameters, it was noted that the scatter
was much larger for the protein level, especially when the level
was low. Therefore, in case of SCF the measurement of mRNA
was considered to be more robust when compared to the protein
expression as determined by ELISA.
520, H1975) and prostate cancer cell lines (DU145, PC3, LnCAP) grown either under
termined by RT-PCR, which is expressed as �ΔCT values using HUVEC cells grown in
of c-Kit and its phosphorylated isoform phospho-c-Kit (p-c-Kit) as determined by
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Fig. 2. Variation in the cellular radiosensitivity of NSCLC and prostate cancer cell lines grown either in 2D or 3D conditions. Cells were irradiated with increasing photon doses
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Fig. 3. Association between the cellular radioresistance and the expression of SCF for NSCLC and prostate cancer cell lines grown either in 2D or 3D conditions. Cellular
radioresistance is expressed as X-ray dose, D10%, required to reduce survival to 10% as determined from data presented in Fig. 2; expression of SCF was taken from Fig. 1A. (A)
2D; (B) 3D condition. Data were analysed by linear regression analysis.
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Overall, the data shown in Fig. 1 indicate that the expression of
both SCF and c-Kit strongly varies with the cell line tested but does
not depend on growth condition. For these two levels there was
also no association between each other (Fig. 1C) indicating that
the activity of the SCF/c-Kit pathway is regulated separately by
both, SCF and c-Kit.

For c-Kit we determined the protein expression as well as its
phosphorylated isoform phospho-c-Kit (p-c-Kit) for cells grown
in 2D and without SCF stimulation (Fig. 1D). The status of c-Kit
positive cell line HUVEC stimulated by SCF was used as reference.
Again, there are marked differences in both levels with most cell
lines showing a low level of c-Kit and with a strong auto-
phosphorylation only seen for H1975. In general, these are similar
to those detected for gene expression (Fig. 1A and B). But there are
also some clear outliers as seen for H23 and H520 both showing a
high RNA expression for c-Kit but a low protein level. These data
indicate that the level of c-Kit is not solely determined by tran-
scription but also by post-translational processes. For further anal-
ysis five cell lines were selected (H23, H226, H520, H1975 and
DU145) to cover the broad range of activity seen for the c-Kit path-
way in human tumor cells.
No strong association between c-Kit pathway and cellular
radiosensitivity

Fig. 2A shows the range of cellular radiosensitivity as deter-
mined for the five tumor cell lines when irradiated either in 2D
or 3D. For all tumor cell lines 3D growth results in a clear increase
in radioresistance as previously observed by others [35,36]. It was
tested, whether this variation in cellular radiosensitivity may in
part be determined by the different expression measured for SCF
or c-Kit. However, for both genes no significant association was
seen with only a moderate trend for SCF (Fig. 3, Supplement
Fig. S1). These data indicate that the c-Kit pathway does not
strongly regulate the cellular radiosensitivity of human tumor cells
for both 2D as well as 3D with probably a minor impact of SCF.
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Knock-down of SCF only moderately affects PE and cellular
radiosensitivity

Next, we tested the effect of SCF knock-down as achieved by
siRNA allowing a strong down-regulation on protein level for both
2D as well as 3D cultures (Fig. 4A). For the plating efficiency, PE, no
or only marginal reduction was seen (Fig. 4B). Also for the cellular
radiosensitivity only moderate effects are observed with no or only
minor decrease in cell survival when SCF was knocked down
(Fig. 4C). These effects appear to be slightly stronger, when cells
were grown under 3D conditions. Solely for H520 cells a stringent
significant radiosensitization was obtained, when SCF was knocked
down for both 2D and 3D conditions. This is considered to result
from the extreme over-expression of SCF as only found for this cell
line (Supplement Fig. S2A). No such trend was seen when enhance-
ment factor (EF) determined at a survival fraction of 10% was plot-
ted vs. the protein or mRNA expression of c-Kit (Fig. S2B and C).

As expected no effect of SCF knock-down on PE or radiosensitiv-
ity was obtained for H1975 cells (Fig. 4D), since this cell line is
characterized by a pronounced c-Kit auto-phosphorylation. For this
cell line we also tested the effect of the specific inhibitor ISCK03
(CAS 945526-43-2), which blocks the c-Kit (auto)-
phosphorylation [37]. Again, only a moderate effect on both PE
and radiosensitivity was obtained (Fig. 4D).
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Overall these data indicate that generally in NSCLC and PrCa cell
lines proliferation and cellular radiosensitivity are not strongly
determined by the SCF/c-Kit pathway and, as a consequence,
blockage of either SCF or c-Kit has no or only a minor effect on
these parameters, except for an extreme over-expression of SCF
as found for H520 cells.
Discussion

So far data about radiosensitization when targeting SCF/c-Kit
pathway are diverse ranging from no up to very strong effects with,
so far, no parameter available to predict this response.

In our study 10 different tumor cell lines derived from NSCLC or
prostate cancer were used in order to identify a biomarker allow-
ing such a prediction. For these 10 cell lines a detailed characteri-
zation of the SCF/c-Kit pathway was performed revealing that
there is a broad variation in the mRNA expression of SCF and c-
Kit as well as the protein level of c-Kit and p-c-Kit (Fig. 1). Similar
observations were previously made by others for pancreatic [11],
NSCLC [38] or prostate cancer cells [39]. Beside this variation we
observed that there were always one or two cell lines with extreme
values, as for instance for H520 cells characterized by an extreme
over-expression of SCF, and H23 and LnCap both showing a very
low expression when compared to the other cell lines (Fig. 1A).
And also for c-Kit a substantial variation was measured with H23
and H1975 cells having high levels of c-Kit and H1975 even a
strong auto-phosphorylation (Fig. 1B and D). We also describe that
there is no association between these two mRNA expression levels
(Fig. 1C) as previously also observed for tumor samples taken from
adenoid cystic carcinoma [45]. This is in line with recent histolog-
ical data obtained for 72 NSCLC tumor biopsies showing that
immunopositivity for both KIT and SCF (KITLG) in the same tumor
was rare [46]. Overall these data indicate that in human tumors
there appears to be no stringent pattern indicating an aberrant
SCF/c-Kit activity but rather a very heterogeneous picture as previ-
ously suggested by others [40].

The five cell lines selected for further analysis were found to
show a broad range in radiosensitivity for both 2D and 3D condi-
tions (Fig. 2) with cells grown in 3D being more resistant as previ-
ously reported by others [29]. This radiosensitivity was obviously
not correlated with the respective expression of c-Kit (Fig. 1S).
For SCF there appears to be a trend with cell lines being more
radioresistant when expressing high levels of SCF. This result is
in line with previous data showing that cellular radioresistance is
generally enhanced when adding SCF [26,28,41].

The effect of SCF knock-down by siRNA on radiosensitivity was
measured to be quite diverse ranging from no up to a significant
sensitization (Fig. 4C). This is in line with data observed by others
[26–32]. A significant sensitization was only found for H520 cells
(Fig. 4C). This cell line is characterized by a strong over-
expression of SCF (Fig. 1C) suggesting again a possible correlation
between SCF and radioresistance as already mentioned above. In
line with this, after SCF knockdown no distinct radiosensitization
was seen for cell lines with low or only moderate level of SCF
(Figs. 3C and S2). Overall these data suggest that a strong over-
expression of SCF may be a potential biomarker for a significant
radiosensitization achievable when targeting the SCF/c-Kit path-
way. This criteria, however, was only met in one out of the ten
tumor cell lines tested. An even lower frequency was seen in a
study with adenoid cystic carcinoma, where SCF expression was
also determined with RT-PCR, with only 1 out of 27 samples show-
ing a strong over-expression of SCF [45]. In other studies with
tumor samples expression of SCF was generally determined via
immunohistochemistry, which only allows a semi-quantitative
estimation but not to identify tumors with an extreme over-
expression [46,13,38]. Clearly more data is needed on this subject.

Previously Oertel et al. [30] suggested that the extent of
radiosensitization obtained when targeting SCF/c-Kit pathway by
imatinib depends on the protein level of c-Kit. However, in our
study no obvious association between level of c-Kit and increase
in radiosensitivity was seen when targeting SCF/c-Kit pathway
(Fig. 2SB and C). The identical observation was made by Holdhoff
et al. [29] and Moura et al. both [42] using imatinib to block the
SCF/c-Kit pathway. The strong need for such a biomarker was
recently also highlighted by the first prospective study testing
the combination of radiotherapy and imatinib due to the very
infrequent response reported [20].

The mechanisms by which targeting of SCF/c-Kit pathway may
lead to enhanced radioresponse are still unclear. Previous data sug-
gest that reduced phosphorylation of PDGFR [43] as well as of Akt
[21,44] is of relevance but also the down-regulation of the homol-
ogous recombination protein RAD51 [32].

For tumor therapy targeting of SCF/c-Kit was also considered to
be of great relevance due to its negative effect on metastasis [21–
24]. However, also for this endpoint a robust biomarker is not
known so far.

Overall, the relevance of SCF/c-Kit targeting either by imatinib
or other inhibitors for radiotherapy would be strongly enhanced
when knowing the biomarkers for both radiosensitization and pre-
vention of metastasis. Data shown here indicate that a strong over-
expression of SCF may be a biomarker for a potential radiosensiti-
zation. It should, however, be kept in mind, that the frequency of
tumors matching to these criteria appears to be rather low as indi-
cated above. Data presented here does also not recommend target-
ing of SCF/c-Kit by the specific inhibitor ISCK03 as a reasonable
alternative, because even for a cell line with a strong auto-
phosphorylation only a fairly moderate radiosensitization was
obtained (Fig. 4D).

Conclusion

Our study indicates that generally targeting of the SCF/c-Kit
pathway will only have a minor effect on radiosensitivity, except
when SCF is strongly over-expressed.
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