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Abstract: Drought is one of the most important factors affecting plant growth and productivity.
The previous results on drought tolerance (DT) genetic system in soybean indicated a complex
of genes not only few ones were involved in the trait. This study is featured with a relatively
thorough identification of QTL-allele/candidate-gene system using an efficient restricted two-stage
multi-locus multi-allele genome-wide association study, on two comprehensive DT indicators,
membership index values of relative plant weight (MPW) and height (MPH), instead of a single
biological characteristic, in a large sample (564 accessions) of the Chinese cultivated soybean
population (CCSP). Based on 24,694 multi-allele markers, 75 and 64 QTL with 261 and 207 alleles
(2–12/locus) were detected for MPW and MPH, explaining 54.7% and 47.1% of phenotypic variance,
respectively. The detected QTL-alleles were organized into a QTL-allele matrix for each indicator,
indicating DT is a super-trait conferred by two (even more) QTL-allele systems of sub-traits.
Each CCSP matrix was separated into landrace (LR) and released cultivar (RC) sub-matrices,
which showed significant differentiation in QTL-allele constitutions, with 58 LR alleles excluded
and 16 new ones emerged in RC. Using the matrices, optimal crosses with great DT transgressive
recombinants were predicted. From the detected QTL, 177 candidate genes were annotated and
validated with quantitative Real-time PCR, and grouped into nine categories, with ABA and
stress responders as the major parts. The key point of the above results is the establishment
of relatively full QTL-allele matrices composed of numerous gene functions jointly conferring
DT, therefore, demonstrates the complexity of DT genetic system and potential of CCSP in DT breeding.

Int. J. Mol. Sci. 2020, 21, 4830; doi:10.3390/ijms21144830 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/1422-0067/21/14/4830?type=check_update&version=1
http://dx.doi.org/10.3390/ijms21144830
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2020, 21, 4830 2 of 20

Keywords: soybean (Glycine max (L.) Merr.); drought tolerance (DT); membership index value of
relative plant weight (MPW); membership index value of relative plant height (MPH); restricted
two-stage multi-locus multi-allele genome-wide association study (RTM-GWAS); QTL-allele matrix;
quantitative real-time PCR (qRT-PCR)

1. Introduction

Approximately 41% of the world land surface is dryland [1], and even in humid and semi-humid
areas, the abrupt climate changes, including increased droughts, are found throughout much of the
world [2,3]. As such, drought has been, and will continue to be, one of the most important factors affecting
plant growth and productivity [4,5]. For example, Texas in the US experienced a driest and warmest
12-month period of drought in 2010–2011 [6], which resulted in an estimated US7.5 billion dollars in
agricultural losses [3]. According to China’s agricultural statistics, about 70–80 billion kilograms of
food crop are lost due to droughts each year, which accounts for 17% of the total national production [7].

To evaluate the drought tolerance (DT) of plants, different indicators, such as water use
efficiency [8,9], leaf hydraulic conductance [10], leaf water status traits [11], leaf δ13C [12] and so
on, have been used, but each of these indicators may involve only individual biological process,
while in crops, DT related to the final growth (products), should be a comprehensive trait resulted
from a series of biological processes, which are genetically controlled by a series of genes [13]. Thus,
the indicator should represent the overall perspective of DT. The growth traits, such as relative values
of plant weight and plant height, are considered as comprehensive DT indicators because all the
individual DT biological processes will be finally reflected on plant growth and its end products [14–16].

Soybean (Glycine max (L.) Merr.), a miracle crop rich in protein and oil originated in China,
has been cultivated for approximately five thousand years [17,18]. In the long term of domestication
and improvement, there have been accumulated a great number of genetic variations for all kinds of
traits, including DT, in the landraces and therefore released cultivars. These historical materials compose
the current germplasm population, and in fact, a gene reservoir for modern soybean breeding [19,20].

For effective utilization of germplasm in plant breeding, the basic step is to explore the population’s
genetic constitution, including the QTL (quantitative trait loci) or genes with their corresponding
alleles. Linkage mapping has provided a first way to detect the genes and their alleles, but can only
detect QTL/genes polymorphic between the two parents in a cross, therefore, the previous DT QTL
detection was limited to few crosses or parental materials. Genome-wide association study (GWAS)
is a potential way to detect whole-genome QTL in a natural population with the advantages of high
mapping resolution, multiple alleles per locus, a large source population and less time consumption [21].
This approach has been applied to dissect the genetic base of various traits in maize [22], rice [23],
Arabidopsis [24], soybean [25] and other plants. In the previous GWAS using SNPs (single nucleotide
polymorphisms) as markers, only two alleles on each locus could be detected, which did not match the
property of multiple alleles in a natural population. Meanwhile, inbreeding is usually involved in plant
species, especially in the self-pollinated species of soybean, which may cause population structure
bias along with admixture, resulting in a large number of false positives. Different approaches have
been suggested to correct the population bias [26], accompanied with a conservative significance level,
such as a Bonferroni correction. As a result, only a handful of QTL were identified, accounting for only a
relatively small part of the phenotypic variation [27,28]. This result could not match the requirement for
a thorough exploration of the entire QTL-allele system in plant breeding and population genetic studies.

To raise the GWAS power and solve the missing and overflowing heritability problems,
He et al. [29] designed a restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS) procedure
for plant species. Two innovations are involved in RTM-GWAS. One is to organize sequential SNPs into
SNPLDBs (SNP linkage disequilibrium blocks) as genomic markers with multiple alleles, accordingly,
using eigenvectors of the SNPLDB genetic-similarity matrix to match the untraceable comprehensive
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population structure bias. The other is to take a two-stage strategy with a single-locus model
pre-selection of markers followed by a multi-locus multi-allele model stepwise regression for QTL
identification under a reasonable experiment-wise significance level for all QTL (rather than Bonferroni
correction as experiment-wise significance level for single-locus model) to control overflowing or
missing heritability. By using RTM-GWAS in the soybean germplasm populations, the detected QTL
systems could explain 72.2% and even up to 98.2% phenotypic variation for isoflavone content and
100-seed weight by Meng et al. [25] and He et al. [29], respectively. In our group, Khan et al. [30]
reported that the DT QTL system could explain 88.6–95.9% phenotypic variation by using RTM-GWAS
in a nested association mapping population tested under polyethylene-glycol (PEG) treatment using
relative shoot and root lengths as indicators, but only three parental materials were involved. Based on
Khan et al. [30], we supposed to extend the study to the Chinese cultivated soybean population (CCSP).

The present study aimed at to explore the genome-wide QTL conferring DT in the CCSP,
to identify the evolutionary changes of QTL-allele structure from landrace subpopulation (LRS)
to released cultivar subpopulation (RCS), to predict the DT genetic improvement potential in the
CCSP, and to infer the DT candidate gene system through annotation and qRT-PCR (quantitative
real-time polymerase-chain-reaction) verification. The study is featuring using QTL-allele matrices of
comprehensive DT traits, relative plant weight and plant height to show the comprehensive genetic
structure of the CCSP and the population evolutionary changes from LRS to RCS.

2. Results

2.1. Wide Variation of Drought Tolerance in the CCSP

In the CCSP, two DT indicators, MPW and MPH, represented membership index value of relative
plant weight and plant height under water stress to non-stress condition, respectively, showing wide
phenotypic variation with ranges of −0.362–1.411 and −1.323–1.792. The values beyond 1.000 or
below 0.000 means that the materials were more drought-tolerant or more drought-sensitive than the
corresponding checks, respectively (Table 1). The heritability value of MPW was 81.3%, higher than
76.0% of MPH. The value of correlation coefficient between MPW and MPH was 0.55, which was
significant but not high, indicating the genetic systems of the two indicators might be different.
According to the values of MPW and MPH, 12 highly tolerant and 12 highly sensitive accessions were
identified (Table S1), including the five tolerant and five sensitive checks and additional seven highly
tolerant and seven highly sensitive accessions. The broad variation further called our attention to
explore the genetic constitution of DT in the CCSP.

Table 1. Frequency distribution of the two drought tolerance indicators in the CCSP.

Indicator Population The Frequency Distribution Mean Min Max Range h2

MPW Midpoint −0.37 −0.19 −0.01 0.17 0.35 0.53 0.71 0.89 1.07 1.25
CCSP 5 10 26 97 155 166 71 24 7 3 0.419 −0.362 1.411 1.773 81.30%
LRS 2 4 12 49 88 102 43 14 4 1 0.433 −0.362 1.273 1.635
RCS 3 6 14 48 67 64 28 10 3 2 0.402 −0.323 1.411 1.734

MPH Midpoint −1.32 −0.97 −0.62 −0.27 0.08 0.43 0.78 1.13 1.48 1.83
CCSP 3 6 20 128 242 112 31 11 7 4 0.120 −1.323 1.792 3.115 76.00%
LRS 2 3 8 67 143 58 21 11 3 3 0.151 −1.323 1.792 3.115
RCS 1 3 12 61 99 54 10 0 4 1 0.081 −1.214 1.712 2.926

MPW and MPH represent the membership index values of relative plant weight and plant height, respectively.
CCSP is the Chinese cultivated soybean population; LRS and RCS are the landrace subpopulation and released
cultivar subpopulation, respectively. The correlation coefficient of the two indicators was 0.55, significant at p = 0.01
level. h2, heritability value calculated from the ANOVA.

The means and ranges of the two indicators for the whole population and the landrace (LRS)
and released cultivar subpopulations (RCS) showed a similar result. The mean value of DT for RCS
was some less than that of LRS, which indicates that the breeding for DT had not been emphasized in
previous breeding programs although the former was developed from the latter (Table 1).
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2.2. QTL-Allele System of Drought Tolerance in the CCSP

Using the 24,694 SNPLDBs in the RTM-GWAS procedure, at the first stage, 7795 and 7382 SNPLDBs
were preselected for the second stage analysis, and then 75 and 64 QTL were detected for MPW and
MPH, with −Log10

P values ranging in 2.2~33.0 and 2.2~25.9, respectively (Tables 2 and 3, Figure 1).
The genetic contribution (R2) of individual QTL ranged from 0.1% to 3.5%, with Gm13_BLOCK338 and
Gm07_BLOCK25 having the highest significance values (−Log10

P) for respective indicators (Figure 1a,
Tables 2 and 3). Among these loci, 16 and 14 ones were the large-contribution major QTL (LC-major
QTL) with R2 values more than 1.0% (Tables 2 and 3).

Table 2. The QTL conferring drought tolerance in terms of MPW in CCSP.

QTL SNPLDB A.N. −Log10P R2 (%) QTL SNPLDB A.N. −Log10P R2 (%)

MPW1.1 Gm01_149527 2 11.9 1.0 MPW10.2 Gm10_BLOCK96 3 5.1 0.5
MPW1.2 Gm01_3646943 2 3.2 0.2 MPW10.3 Gm10_BLOCK159 7 23.0 2.5
MPW2.1 Gm02_BLOCK81 7 5.9 0.8 MPW10.4 Gm10_BLOCK229 8 21.5 2.4
MPW2.2 Gm02_14594196 2 11.3 1.0 MPW10.5 Gm10_38212261 2 8.1 0.7
MPW2.3 Gm02_29143788 2 6.9 0.6 MPW11.1 Gm11_BLOCK126 4 4.1 0.4
MPW2.4 Gm02_BLOCK579 5 14.4 1.5 MPW11.2 Gm11_17784579 2 3.3 0.3
MPW3.1 Gm03_326463 2 5.3 0.4 MPW11.3 Gm11_BLOCK216 5 6.5 0.7
MPW3.2 Gm03_BLOCK11 2 7.2 0.6 MPW11.4 Gm11_BLOCK241 3 3.6 0.3
MPW3.3 Gm03_993540 2 13.8 1.2 MPW11.5 Gm11_26892595 2 8.4 0.7
MPW3.4 Gm03_BLOCK283 9 12.5 1.6 MPW12.1 Gm12_8508827 2 3.5 0.3
MPW4.1 Gm04_10567695 2 9.5 0.8 MPW12.2 Gm12_BLOCK254 5 3.3 0.4
MPW4.2 Gm04_BLOCK295 5 19.3 2.0 MPW12.3 Gm12_BLOCK402 3 4.9 0.5
MPW5.1 Gm05_18374832 2 3.5 0.3 MPW12.4 Gm12_BLOCK429 3 8.4 0.8
MPW5.2 Gm05_20554448 2 4.6 0.4 MPW13.1 Gm13_2179313 2 2.5 0.2
MPW5.3 Gm05_33077723 2 2.6 0.2 MPW13.2 Gm13_BLOCK338 6 33.0 3.5
MPW6.1 Gm06_BLOCK201 4 14.9 1.5 MPW13.3 Gm13_BLOCK486 4 13.4 1.3
MPW6.2 Gm06_BLOCK264 2 5.0 0.4 MPW14.1 Gm14_39515432 2 4.7 0.4
MPW6.3 Gm06_BLOCK401 6 4.1 0.5 MPW15.1 Gm15_2915560 2 5.1 0.4
MPW6.4 Gm06_BLOCK522 5 7.3 0.8 MPW15.2 Gm15_BLOCK93 3 4.0 0.4
MPW6.5 Gm06_BLOCK576 3 13.3 1.3 MPW15.3 Gm15_30923425 2 2.2 0.2
MPW7.1 Gm07_3177189 2 8.6 0.7 MPW15.4 Gm15_BLOCK409 12 8.2 1.3
MPW7.2 Gm07_BLOCK229 6 7.5 0.8 MPW16.1 Gm16_2912151 2 2.4 0.2
MPW7.3 Gm07_BLOCK302 4 2.8 0.3 MPW16.2 Gm16_7534785 2 2.5 0.2
MPW7.4 Gm07_BLOCK373 3 3.5 0.3 MPW16.3 Gm16_BLOCK365 2 9.2 0.8
MPW8.1 Gm08_BLOCK49 3 2.8 0.2 MPW17.1 Gm17_BLOCK344 7 3.1 0.4
MPW8.2 Gm08_BLOCK71 4 4.7 0.5 MPW17.2 Gm17_BLOCK388 3 6.2 0.6
MPW8.3 Gm08_11056573 2 2.5 0.2 MPW18.1 Gm18_BLOCK736 3 3.7 0.3
MPW8.4 Gm08_BLOCK165 2 6.2 0.5 MPW19.1 Gm19_45043655 2 3.1 0.2
MPW8.5 Gm08_BLOCK209 2 9.1 0.8 MPW19.2 Gm19_BLOCK554 5 8.2 0.9
MPW8.6 Gm08_BLOCK466 9 4.3 0.7 MPW19.3 Gm19_46882319 2 3.4 0.3
MPW8.7 Gm08_BLOCK527 3 7.7 0.7 MPW20.1 Gm20_6329124 2 4.2 0.3
MPW9.1 Gm09_963514 2 9.6 0.8 MPW20.2 Gm20_BLOCK210 4 9.1 0.9
MPW9.2 Gm09_2378279 2 11.4 1.0 MPW20.3 Gm20_BLOCK429 2 11.8 1.0
MPW9.3 Gm09_BLOCK115 7 7.0 0.9 MPW20.4 Gm20_BLOCK468 2 2.3 0.2
MPW9.4 Gm09_BLOCK142 4 7.0 0.7 MPW20.5 Gm20_39658098 2 6.3 0.5
MPW9.5 Gm09_35353845 2 8.5 0.7 MPW20.6 Gm20_41737971 2 2.3 0.2
MPW9.6 Gm09_36608762 2 3.1 0.2 MPW20.7 Gm20_BLOCK531 5 5.3 0.6

MPW10.1 Gm10_BLOCK71 5 16.8 1.8 Total 75 261 54.7

MPW is one of the two drought tolerance indicators in terms of membership index value of plant weight. QTL: a QTL
in italic boldface means the locus is shared between MPW and MPH. SNPLDB: the SNPLDB with only single SNP is
designated as, for example, “Gm20_6329124” where Gm20 represents Chromosome 20, and “6,329,124” indicates
the locus physical position in bp; while the SNPLDB with multiple SNPs (M.SNPLDB) is designated as, for example,
“Gm20_BLOCK210” where Gm20 means Chromosome 20, and BLOCK210 represents the 210th M.SNPLDB on this
chromosome. The positions of the SNPLDBs are listed in Table S2. A.N.: number of alleles in a SNPLDB in the
CCSP. –Log10

P: the probability value of a SNPLDB in RTM-GWAS; since the accumulated heritability of the selected
QTL was not over the total heritability, such as 81.3% for MPW, we did not use after-stepwise Bonferroni correction
for further QTL selection. R2: genetic contribution to the phenotypic variation of a QTL. The same is true for the
later tables.
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Table 3. The QTL conferring drought tolerance in terms of MPH in CCSP.

QTL SNPLDB A.N. −Log10P R2 (%) QTL SNPLDB A.N. −Log10P R2 (%)

MPH1.1 Gm01_BLOCK493 4 8.3 0.9 MPH9.5 Gm09_41866356 2 2.7 0.2
MPH1.2 Gm01_BLOCK546 3 5.6 0.6 MPH11.1 Gm11_BLOCK74 2 2.5 0.2
MPH2.1 Gm02_161337 2 4.7 0.4 MPH11.2 Gm11_BLOCK135 5 5.0 0.6
MPH2.2 Gm02_BLOCK299 5 12.1 1.4 MPH11.3 Gm11_27967762 2 3.3 0.3
MPH2.3 Gm02_50652770 2 7.0 0.6 MPH11.4 Gm11_BLOCK344 3 9.0 0.9
MPH4.1 Gm04_BLOCK232 8 5.4 0.8 MPH12.1 Gm12_32591630 2 3.9 0.3
MPH4.2 Gm04_BLOCK490 7 5.1 0.8 MPH13.1 Gm13_10222518 2 9.6 0.9
MPH4.3 Gm04_43717074 2 2.2 0.2 MPH13.2 Gm13_BLOCK177 8 19.1 2.4
MPH4.4 Gm04_47582011 2 6.6 0.6 MPH13.3 Gm13_23309035 2 6.4 0.6
MPH5.1 Gm05_10333534 2 4.1 0.3 MPH13.4 Gm13_28457573 2 2.8 0.2
MPH5.2 Gm05_18374832 2 4.2 0.4 MPH13.5 Gm13_BLOCK396 2 5.8 0.5
MPH6.1 Gm06_BLOCK172 3 9.7 1.0 MPH14.1 Gm14_3106285 2 3.0 0.2
MPH6.2 Gm06_BLOCK208 7 8.2 1.1 MPH14.2 Gm14_25589678 2 2.4 0.2
MPH6.3 Gm06_34868214 2 3.3 0.3 MPH14.3 Gm14_BLOCK408 6 12.3 1.5
MPH6.4 Gm06_BLOCK491 12 16.7 2.4 MPH15.1 Gm15_BLOCK240 5 16.3 1.9
MPH6.5 Gm06_BLOCK576 3 13.2 1.4 MPH15.2 Gm15_31242502 2 3.1 0.3
MPH7.1 Gm07_BLOCK25 4 25.9 2.8 MPH15.3 Gm15_BLOCK383 9 22.5 2.9
MPH7.2 Gm07_16348924 2 2.9 0.2 MPH16.1 Gm16_BLOCK67 2 8.7 0.8
MPH7.3 Gm07_BLOCK194 2 9.5 0.9 MPH16.2 Gm16_BLOCK395 3 15.4 1.6
MPH7.4 Gm07_BLOCK272 2 5.6 0.5 MPH18.1 Gm18_4912699 2 2.5 0.2
MPH7.5 Gm07_30175006 2 2.4 0.2 MPH18.2 Gm18_7175261 2 2.4 0.2
MPH7.6 Gm07_32919498 2 5.4 0.5 MPH18.3 Gm18_BLOCK129 3 7.4 0.8
MPH7.7 Gm07_42499533 2 5.6 0.5 MPH18.4 Gm18_26517331 2 4.0 0.3
MPH8.1 Gm08_BLOCK106 6 15.5 1.9 MPH18.5 Gm18_BLOCK434 3 4.0 0.4
MPH8.2 Gm08_BLOCK250 3 3.1 0.3 MPH18.6 Gm18_BLOCK727 3 3.4 0.4
MPH8.3 Gm08_28738663 2 7.8 0.7 MPH18.7 Gm18_BLOCK729 3 2.2 0.2
MPH8.4 Gm08_30916483 2 6.8 0.6 MPH19.1 Gm19_37391411 2 2.4 0.2
MPH8.5 Gm08_BLOCK466 9 9.1 1.3 MPH19.2 Gm19_41440516 2 5.3 0.5
MPH9.1 Gm09_4538598 2 2.3 0.2 MPH19.3 Gm19_42142070 2 8.5 0.8
MPH9.2 Gm09_14134401 2 3.8 0.3 MPH19.4 Gm19_42756453 2 4.8 0.4
MPH9.3 Gm09_20590481 2 2.8 0.2 MPH20.1 Gm20_BLOCK388 4 8.8 1.0
MPH9.4 Gm09_37359880 2 3.3 0.3 MPH20.2 Gm20_39658098 2 6.3 0.6

Total 64 207 47.1

MPH is the one of the two drought tolerance indicators in terms of membership index value of relative plant height.
Please see the notes in Table 2 for other items.
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Figure 1. The detected QTL conferring two drought tolerance indicators. (a) The detected drought
tolerance QTL for the two indicators located on chromosomes over the whole genome. The probability
−Log10

P value indicates the significance level of the corresponding QTL. The vertical green bars spanning
multiple graphs denote the four shared QTL/markers between the two indicators. (b) The allele effects
of the DT QTL for MPW and MPH; the red and green bars indicate the positive and negative
alleles, respectively. (c) and (d), the Venn-Diagrams of the whole and LC-major QTL for the two
indicators, respectively.
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On the 75 and 64 loci for MPW and MPH, 261 and 207 alleles were detected with 2~12 ones per
locus, and among these alleles, 127 and 106 had positive effects, and 134 and 101 had negative effects,
respectively (Figure 1b, Table 4).

Table 4. The detected QTL-allele system that confers drought tolerance in the CCSP.

QTL System MPW MPH Total

QTL

Whole 54.7 (75, 0.2~3.5, 67.0) 47.1 (64, 0.2~2.9, 62.0) 135
LC-major QTL 25.9 (16, 1.0~3.5, 47.3) 24.6 (14, 1.0~2.9, 52.2) 29
SC-major QTL 28.8 (59, 0.2~0.9, 52.7) 22.5 (50, 0.2~ 0.9, 47.8) 106

Unmapped minor QTL 26.6 28.9
Total contribution (h2) 81.3 76.0
Shared QTL/marker 2.8 (4, 0.3~1.3, 3.4) 3.7 (4, 0.4~1.4, 4.9) 4

Allele
Whole 261 (3.4, 2~12) 207 (3.2, 2~12) 452

Shared allele 16 16 16
Positive allele 127 (0.003~0.817) 106 (0.001~1.125) 229

Negative allele 134 (−0.668~0.001) 101 (−1.516~−0.013) 230

MPW and MPH represent the membership index values of relative plant weight and plant height, respectively.
In the QTL system column, “Whole” is the total QTL; LC-major QTL, large-contribution major QTL with genetic
contribution (R2) of more than 1.0%; SC-major QTL, small-contribution major QTL with R2 less than 1.0%; and Shared
QTL/marker, a QTL/marker shared with the two indicators. In the columns of the two indicators for “QTL”, the
number outside the parentheses is the total R2 of the corresponding QTL, the first in parentheses is the number
of QTL, the second is a range of R2 for the individual QTL and the third is the portion of QTL contribution to h2

(the total genetic contribution). In the columns of the two indicators for “Allele”, the number outside the parentheses
is the total alleles, the first number in parentheses for “Whole” is the average number of alleles per locus followed
by a range of allele numbers per locus, and the number in parentheses for “Positive allele” and “Negative allele” are
ranges of corresponding allele effects. The R2 of the unmapped minor QTL is calculated from the total contribution
(h2) - the contribution of whole detected QTL. In the total column, the number is the total detected number of
QTL/markers or alleles with the duplicated ones not in the counts.

Based on the RTM-GWAS results, the composition of DT QTL system in CCSP was explored
(Table 4). For MPW, 81.3% (heritability value) of the phenotypic variation was explained by genetic
variation, in which the total R2 of 16 LC-major QTL and 59 SC-major QTL were 25.9% and 28.8%,
respectively, in a total of 75 detected QTL explaining 54.7% of phenotypic variation, and the remained
26.6% phenotypic variation might be explained by the collective unmapped minor QTL. The genetic
structure of MPH was similar to that of MPW. In a total, 135 QTL/markers were detected for the two
DT indicators, among which only 4 QTL/markers were shared between the two indicators (Figure 1a,c).
The shared QTL only explained a small part of phenotypic variation with values of 2.8% and 3.4%,
respectively, not very much, but contained two LC-major QTL/SNPLDBs, Gm06_BLOCK576 and
Gm08_BLOCK466, which might be the most important QTL for DT in soybean. The above results
make us understand that DT is a complex trait, different indicators have their own genetic systems, and
all the detected 135 QTL/markers are members of the DT genetic system. Therefore, in the following
text, they will be considered as a joint genetic system conferring a super-DT-trait.

2.3. MPW and MPH QTL-ALLELE MATRICES as a Compact Genetic DT Structure of CCSP

All the detected QTL-alleles with their effects of the 564 accessions for each indicator were
organized into a QTL-allele matrix, which was a compact form of the genetic structure of CCSP as well
as that of each accession.

Figure 2a,c show the QTL-allele matrices in colors for the two indicators. The matrices showed that
all the accessions contained both positive and negative alleles, indicating a great recombination potential
for breakthrough segregants in the population. The number of positive alleles were increased with the
increase of indicator value, which explained why an accession performed well in DT. For example,
444 positive alleles were contained in the 12 highly tolerant accessions (MPW > 0.545) with an average of
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37 positive alleles per accession (ranging in 35~41), but only 400 positive alleles in the 12 highly sensitive
accessions (MPW < 0.016) with an average of 33.3 per accession (ranging in 30~37). The difference
between the two groups was essentially due to the difference in allele effects (Figure 2b). It was a
novel way in population genetics to use QTL-allele matrix based on a relatively thorough QTL-allele
identification to represent the germplasm population structure.
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Figure 2. The DT QTL-allele matrices of CCSP and their application in population differentiation,
optimal cross design. (a) and (c), The QTL-allele matrices of MPW and MPH, with the vertical axis
for accessions in an increasing tendency from bottom to top, and the horizontal axis for QTL with
the number of positive alleles increasing from right to left. The warm color indicates a positive allele
and the cool color indicates a negative allele with the depth of color indicating the degrees of allele
effect. (b) The MPW QTL-allele matrix of the 12 high-DT accessions (red letters) and 12 low-DT checks
(black letters). The data at the right side of the matrix is the total number of positive alleles (outside
of the parentheses) and the average number of positive alleles followed by a range (in parentheses).
The elite accessions have more positive alleles. (d) Changes of the genetic diversity from the landrace
subpopulation (LRS) to the released cultivar subpopulation (RCS). The colored dots represent different
DT alleles, including the retained alleles in blue color from LRS to RCS, lost alleles in red color during
the processes of improvement, and newly emerged alleles in green in RCS. The number in parentheses
represents the number of positive alleles. The shaded areas indicate bottleneck effect had happened.
(e) The distribution of predicted MPW and MPH of progenies from possible crosses. On the horizontal
axis, the crosses are arranged according to the predicted means in ascending order from the left to
the right. The vertical axis represents the predicted phenotypic values of the predicted progenies.
The scattered dots in different colors represent the different quantiles of 10,000 progenies. The black
horizontal line indicates the maximum value of MPW (1.411), and MPH (1.792) in the CCSP. (f) The
phenotype value and genetic structure of the two crosses along with their parents. WAV means the
weighted average value over the two indicators.
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2.4. Population Genetic Differentiation from Landraces to Released Cultivars

The CCSP QTL-allele matrix was separated into its components, LRS and RCS. The independence
of the allele frequency distribution of detected QTL between LRS and RCS was tested with Chi-square
criterion, and 87 of the 135 QTL showed significant differentiation at p = 0.05 with an average of
4.4 QTL per chromosome, ranging from 1 on Gm05 and Gm17 to 8 on Gm08 (Table S3). The genetic
differentiation performed mainly as different frequency distribution between LRS and RCS, especially
on the 43 loci listed in Table 5. For MPW, 27 out of 75 loci (36.0%) were with allele changes, and out of
261 (134 negative plus 127 positive) alleles, 34 (19 negative, 15 positive) LRS alleles were excluded but
12 (7 negative, 5 positive) alleles were newly emerged in RCS, and in a total, 46 (26 negative, 20 positive)
alleles were changed on the 27 loci (Figure 2d, Table 5). For MPH, 19 out of 64 loci (29.7%) were with
allele changes, and out of 207 (101, 106) alleles, 26 (14, 12) LRS alleles were excluded but 6 (4, 2) alleles
emerged in RCS, and in a total, 32 (18, 14) alleles were changed. Among the 43 loci with allele changes,
Gm06_BLOCK576, Gm08_BLOCK466 and GM20_39658089 were joint ones shared between MPW
and MPH (Table 5). Altogether, for the supper-DT-trait composed of MPW and MPH, there were 436
(217 negative, 219 positive) alleles on 135 DT QTL in the LRS, from which 378 (186, 192) alleles on 135
DT loci passed to RCS, but 58 (31 negative, 27 positive) alleles on 36 loci did not appear in RCS or
excluded during the breeding processes (Figure 2d, Table 5). However, 16 (10 negative, 6 positive) new
alleles on 13 loci were emerged during the breeding processes in the RCS. Among the 58 disappeared
alleles and the 16 emerged alleles, both positive and negative effect alleles were involved, with 27
negative alleles vs. 31 positive alleles in excluded ones and 10 negative alleles vs. 6 positive alleles in
emerged ones, in a total of 41 negative vs. 33 positive in a total of 74 changed alleles. Thus, in the
excluded and emerged alleles, the number of negative alleles and number of positive alleles were
roughly about similar, the allele changes from LRS to RCS was not obviously orientation-directed.
The significant genetic differentiation between the LRS and RCS at the subpopulation and individual
locus level caused the DT reduction from LRS to RCS, from 0.434 to 0.401 for MPW and from 0.150 to
0.082 for MPH, which suggested that the QTL-allele structure changes from LRS to RCS caused the
subpopulation mean DT values changed. However, both the facts of the small phenotypic DT reduction
and non-orientation-directed genetic differentiation from LRS to RCS implied that DT breeding did
not receive enough attention in previous cultivar development, therefore, should be enhanced in the
future in China.

In addition, among the 43 loci with allele changing, there appeared very active loci,
Gm06_ BLOCK491for MPH with five alleles excluded in RCS; Gm15_BLOCK409 for MPW with
three alleles emerged and one allele excluded in RCS; and Gm17_BLOCK344 for MPW with 4 alleles
excluded in RCS. Among the newly emerged alleles in RCS, the allele (a3) on Gm06_BLOCK576 was
associated with high positive effects for both MPW and MPH, while among the specific alleles in LRS
(absented in RCS), the alleles a1 and a2 on Gm08_BLOCK466 were with negative effects for both MPW
and MPH (Figure 2d, Table 5). These specific loci-alleles should be potential in their gene functions.
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Table 5. Alleles changed from landrace subpopulation to released cultivar subpopulation.

QTL Trait a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
Gm01_BLOCK493 MPH N

Gm02_BLOCK299 MPH X X

Gm02_BLOCK579 MPW X X

Gm03_BLOCK283 MPW X X

Gm04_BLOCK232 MPH N X X

Gm04_BLOCK490 MPH N

Gm06_BLOCK208 MPH X X X

Gm06_BLOCK491 MPH X X X X X

Gm06_BLOCK522 MPW N

Gm06_BLOCK576 MPW MPH N

Gm07_BLOCK229 MPW X X

Gm07_BLOCK302 MPW N N

Gm08_BLOCK71 MPW X X X

Gm08_BLOCK106 MPH X

Gm08_11056573 MPW X

Gm08_BLOCK250 MPH X

Gm08_BLOCK466 MPW MPH X X

Gm08_BLOCK49 MPW X

Gm08_BLOCK527 MPW X

Gm09_BLOCK115 MPW X

Gm09_BLOCK142 MPW N

Gm10_BLOCK96 MPW X

Gm10_BLOCK159 MPW X

Gm10_BLOCK229 MPW X X X

Gm11_BLOCK135 MPH X

Gm11_BLOCK216 MPW N X

Gm12_BLOCK254 MPW X X

Gm13_BLOCK177 MPH X

Gm13_BLOCK486 MPW X

Gm14_BLOCK408 MPH X X X

Gm15_BLOCK93 MPW X

Gm15_BLOCK240 MPH X

Gm15_30923425 MPW N

Gm15_BLOCK383 MPH X X

Gm15_BLOCK409 MPW X N N N

Gm17_BLOCK344 MPW X X X X

Gm18_BLOCK727 MPH X

Gm19_37391411 MPH X

Gm19_42142070 MPH N

Gm19_BLOCK554 MPW N X

Gm20_BLOCK210 MPW X X

Gm20_39658098 MPW MPH N

Gm20_BLOCK531 MPW X

a1–a12 are the alleles of each QTL, arranged in a rising order according to their effect value. The cells marked with
white (negative effect) and gray (positive effect) are all alleles in CCSP. The cells with X are alleles excluded in
released cultivar subpopulation. The cells with N are alleles newly emerged in released cultivar subpopulation
(but not existed in landrace subpopulation). The QTL shared by MPW and MPH is in italic boldface.

2.5. Prediction of Optimal Cross for Drought Tolerance Improvement

Based on the QTL-allele matrices, the optimal crosses of DT were predicted. Figure 2e showed the
distributions of predicted MPW and MPH values for the simulated progenies. There were 3319 and



Int. J. Mol. Sci. 2020, 21, 4830 10 of 20

3214 crosses with the predicted 95th percentile values exceeding the maximum phenotypic value in the
CCSP for the respective indicators, among them, 745 crosses were jointly superior for the two indicators.
The best top 10 predicted crosses were listed in Table 6, among which the parental phenotypic values of
MPW and MPH ranged in 0.645~1.411 and 0.059~1.712, respectively, while the predicted 95th percentile
values of progenies ranged as 2.107~2.392 and 2.244~3.135, indicating that a great transgression might
be obtained from these crosses. As shown in Table 6, the two parents of Cross 1 (N25340 ×N25258)
both had high values for the two indicators, and the two parents of Cross 8 (N24359 ×N25340) had
medium and high values for the two indicators. However, both crosses could produce elite progenies
with 95th percentile values up to 2.392 and 2.140, 2.552 and 2.417, 2.460 and 2.274 for MPW, MPH and
WAV (weighted average value of the two indicators), respectively. The high ×medium crosses (Cross
2 and 3) even can provide better segregants than the high × high cross (Cross 1), because more elite
alleles could be converged in the former cases (Figure 2f and Table 6).

Table 6. The predicted optimal crosses for drought tolerance according to the 95th percentile values
of progenies.

Code Cross Eco-region MPW MPH WAV

1 P1 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327
P2 N25258 * I 1.411 (41, 34) 1.712 (37, 27) 1.556

Progeny (95th percentile) 2.392 2.552 2.469

2 P1 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327
P2 N23640 IV 1.273 (36, 39) 0.808 (37, 27) 1.048

Progeny (95th percentile) 2.385 2.664 2.520

3 P1 N07686 IV 1.131 (34,41) 0.561 (36, 28) 0.856
P2 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327

Progeny (95th percentile) 2.330 2.762 2.539

4 P1 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327
P2 N21175 * III 1.071 (36, 22) 1.168 (35, 29) 1.118

Progeny (95th percentile) 2.194 2.715 2.446

5 P1 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327
P2 N04650 * IV 0.988 (36, 39) 0.110 (34, 30) 0.564

Progeny (95th percentile) 2.164 2.244 2.203

6 P1 N25148 II 0.708 (35, 39) 0.084 (33, 31) 0.407
P2 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327

Progeny (95th percentile) 2.146 2.339 2.239

7 P1 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327
P2 N25321 I 0.645 (40, 35) 0.059 (36, 28) 0.362

Progeny (95th percentile) 2.143 2.347 2.242

8 P1 N24359 VI 0.716 (34, 41) 0.477 (35, 29) 0.601
P2 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327

Progeny (95th percentile) 2.140 2.417 2.274

9 P1 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327
P2 N24595 I 0.818 (37, 38) 0.321 (33, 31) 0.578

Progeny (95th percentile) 2.126 2.272 2.197

10 P1 N25340 * II 1.223 (35, 40) 1.439 (35, 29) 1.327
P2 N24614 * III 1.005 (36, 39) 1.668 (37, 27) 1.325

Progeny (95th percentile) 2.107 3.135 2.604

In the column of cross, * represents the accessions made among the top 12 selections with high drought tolerance;
the predicted 95th percentile is obtained from a simulation with 10, 000 progenies per cross. Eco-region: I: Northern
single cropping, spring planting eco-region; II: Huanghuaihai double cropping, spring and summer planting
eco-region; III: Middle and lower Changjiang valley double cropping, spring and summer planting eco-region;
IV: Central south multiple cropping, spring, summer and autumn planting eco-region; and VI: South China tropical
multiple cropping, all-season planting eco-region. In the columns of the two indicators, the numbers in parentheses
are the numbers of positive and negative alleles in a parent. In the WAV column is the weighted average value of
membership indices with their heritability values as the weights.
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In conventional breeding, breeders usually used high × high strategy for designing crosses,
while the present results implied that in marker-assisted breeding, the parental selection may extend to
a broader range, which makes the breeders have more freedom in breeding by design. In summary,
the marker-assisted cross design based on the QTL-allele matrix can take the advantage of converging the
best alleles and therefore provide a way to create innovative materials with the desired genetic structure.

2.6. The Candidate Gene System of Drought Tolerance Inferred from Detected QTL

Based on the soybean reference genome of Glyma.Wm82.a1.v1.1 (http://www.soybase.org), a total
of 354 candidate genes within or neighboring to the 135 SNPLDBs were annotated for MPW and MPH
(Table 7). To verify the candidate genes, qRT-PCR was carried out by using two genotypes from the
CCSP, drought tolerant N23644 (T) and drought-sensitive N00710 (S). A total of 177 annotated genes
displayed differential expressions at more than five-folds in at least one of the four pairs of comparisons,
which were the combinations of leaf (L) and root (R) of N23644 (T) and N00710 (S), i.e., TL, TR, SL and
SR categories (Table S4). There showed 6, 5, 4 and 2 down-regulated genes (with expression ranging in
0.11~0.20, 0.02~0.20, 0.09~0.16 and 0.06~0.11, respectively) and 19, 75, 44 and 121 up-regulated genes
(with expression ranging in 5.05~32.79, 5.06~108.38, 5.17~96.00 and 5.19~211.57) in TL, TR, SL and
SR categories, respectively, with some shared among the categories (Figure 3A, Table S4). In a total,
177 candidate genes were validated, in which, 92 and 92 (with overlapped ones) drought-responsive
candidate genes were located in or close to the 52 and 44 (92 in total) SNPLDBs that were associated
with MPW and MPH, respectively (Table 7). Among the 177 candidate genes, 69 ones were from 24
LC-major QTL, 108 from 68 SC-major QTL and 7 from 4 shared QTL (Table 7, Figure 3B,C).

Table 7. The annotated and verified gene systems that confer drought tolerance in the CCSP.

Gene System MPW MPH Total

Annotated genes in detected QTL 193 (75) 181 (64) 354 (135)
qRT-PCR-verified genes 92 (52) 92 (44) 177 (92)

Verified genes in LC-major QTL 30 (13) 40 (12) 69 (24)
Verified genes in SC-major QTL 62 (39) 52 (32) 108 (68)

Verified genes in shared QTL 7 (4) 7 (4) 7 (4)

A total of 354 genes were annotated within or neighboring the detected SNPLDBs. Their relative expressions
were analyzed using qRT-PCR under PEG treatment vs. non-treatment conditions, from which 177 candidate
genes were verified for the two indicators. The number in parentheses is the number of detected QTL hosting the
candidate genes.

Among the 177 candidate genes, there were 30 most likely confident candidate genes that should
be particularly studied further, including 22 highly expressed candidate genes and 10 candidate genes
with their allele phenotypes significantly different at p = 0.05 (Table 8, with two shared). According to
the results of qRT-PCR, 1, 6, 4 and 11 (22 in total) supper candidates were identified in TL, TR, SL and SR
categories (Figure 3A, Table 8, Table S4), respectively, with relative expression values more than 1.5 times
of the inter-quartile range based on boxplot. Among them, the most sensitive gene was Glyma07g18280,
which expressed similar patterns in the leaf of T and in the leaf and root of S, with relative expression
values of 16.62 and 1.46, 75.58 and 211.57, respectively. Glyma07g18280 belonging to iron/ascorbate
family oxidoreductases, was involved in multiple biological processes including jasmonic acid
stimulus, oxidation-reduction, response to karrikin and so on. Glyma02g08115 coding Pip1 protein, is a
drought-induced water channel protein, which was predicted to be responsible for water deprivation,
salt stress and ABA stimulus (https://www.ncbi.nlm.nih.gov/nucleotide/U27347.1). Glyma02g26160,
coding lipoxygenase, and Glyma11g16750, in aldehyde dehydrogenase family, were both predicted
involving in the biological processes of response to water deprivation (Table 8). As for the 10 candidate
genes with their allele phenotypes significantly different at p = 0.05 (included in the 177 candidate
gens), these should be also the confident candidate genes, in which, Glyma02g08115 and Glyma03g01262
were also identified from high expression level of qRT-PCR (Table 8) and Glyma16g27350 was predicted

http://www.soybase.org
https://www.ncbi.nlm.nih.gov/nucleotide/U27347.1
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to be a Sucrose transport protein (Table 8), whose homologous genes were required for abiotic stress
tolerance in an ABA-dependent pathway in Arabidopsis thaliana [31]. However, the above potential
major candidate genes-alleles are only a small part of the 177 ones, the others are to be explored further.
In addition, among the 177 candidate genes, 45 ones contain SNP(s) in the CCSP, including 25 ones
with single SNP and 20 ones with multiple SNPs (Table S5). On the 45 candidate genes each with
2–6 alleles, 117 alleles were recognized totally, where 24 alleles from the 10 genes with different allele
phenotypes were significantly associated with DT.

Table 8. The 30 most likely candidate DT genes identified from high expressions in qRT-PCR or
significant difference among candidate gene-alleles in ANOVA (two ones identified from both criteria).

Gene SNPLDB Trait Putative Function

The 22 candidate genes with high expression under PEG condition
1 Glyma05g16373 Gm05_18374832 MPW, MPH Ubiquitin Carboxyl-Terminal Hydrolase
2 Glyma03g01262 Gm03_993540 MPW Kelch Motif; F-Box Domain
3 Glyma13g40260 Gm13_BLOCK486 MPW SNARE Domain
4 Glyma02g08115 Gm02_BLOCK81 MPW Major Intrinsic Protein
5 Glyma02g08130 Gm02_BLOCK81 MPW Transferase Family
6 Glyma05g17470 Gm05_20554448 MPW Leucine Rich Repeat; NB-ARC Domain
7 Glyma14g32430 Gm14_39515432 MPW Protein Phosphatase 2C
8 Glyma15g13420 Gm15_BLOCK93 MPW Unknown Function

9 Glyma15g13430 Gm15_BLOCK93 MPW Pyridoxal-Dependent Decarboxylase
Conserved Domain

10 Glyma02g26160 Gm02_BLOCK299 MPH PLAT/LH2 Domain
11 Glyma06g19220 Gm06_BLOCK172 MPH Unknown Function
12 Glyma06g21570 Gm06_BLOCK208 MPH Unknown Function
13 Glyma06g21584 Gm06_BLOCK208 MPH Metalloprotease
14 Glyma06g40170 Gm06_BLOCK491 MPH Protein Tyrosine Kinase
15 Glyma14g26830 Gm14_BLOCK408 MPH Unknown Function
16 Glyma14g26960 Gm14_BLOCK408 MPH Protein Tyrosine Kinase
17 Glyma04g33540 Gm04_BLOCK490 MPH Unknown Function
18 Glyma07g16651 Gm07_16348924 MPH Unknown Function
19 Glyma07g18280 Gm07_BLOCK194 MPH 2OG-Fe(II) OxygenaseSuperfamily
20 Glyma11g16750 Gm11_BLOCK135 MPH Aldehyde Dehydrogenase Family
21 Glyma16g06770 Gm16_BLOCK67 MPH Ankyrin Repeat
22 Glyma18g52470 Gm18_BLOCK729 MPH Unknown Function

The ten genes with significantly different allele phenotypes at p = 0.05
4 Glyma02g08115 Gm02_BLOCK81 MPW Major Intrinsic Protein
2 Glyma03g01262 Gm03_993540 MPW Kelch Motif; F-Box Domain
23 Glyma10g29340 Gm10_38212261 MPW Rangap1-Interacting Protein-Related
24 Glyma12g32950 Gm12_BLOCK429 MPW Unknown Function
25 Glyma16g27350 Gm16_BLOCK365 MPW Sugar Transporter
26 Glyma06g40240 Gm06_BLOCK491 MPH S-Locus Glycoprotein Family
27 Glyma07g03770 Gm07_BLOCK25 MPH Unknown Function
28 Glyma07g37440 Gm07_42499533 MPH Glycosyl Hydrolases Family 28
29 Glyma08g14200 Gm08_BLOCK106 MPH PPR Repeat
30 Glyma16g32180 Gm16_BLOCK395 MPH Putative Methyltransferase

The candidate gene and corresponding QTL in boldface represent the QTL is a large-contribution major QTL.
The ten genes with allele/haplotype phenotypes significantly different at p = 0.05 are also chosen from the
177 candidate genes through F-test for their significant different allele phenotypes among the 564 accessions. See the
text for details.

In gene ontology enrichment analysis, all the above 177 predicted candidate genes were grouped
into nine categories, i.e., ABA responders (51), stress responders (41), transports (41), development
factors (38), protein metabolism (26), transcription factors (21), protein kinases (15), unknown function
(35) and others (22) (Figure 3D, Table S6). The proportions of the candidate genes over the nine
categories were similar for MPW, MPH and shared ones (Figure 3D and Table S6), which indicated that
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each indicator included all the nine gene categories or a similar set of functional genes. Furthermore, the
genes related to the 58 excluded and 16 emerged QTL-alleles changed from LRS to RCS were located on
37 DT QTL, in which 95 verified candidate genes were included, which indicated that more candidate
genes were related to the evolutionarily changed loci. Among the 95 verified candidate genes, 25, 25,
18, 27, 14, 12, 16, 14 and 10 ones were involved in the nine GO groups, where ABA responders, stress
responders and development factors were also the major categories (Tables S4 and S6). Thus, the five
sets of gene ontology enrichment analysis in Table S6 showed a similar functional classification results,
indicating that DT in fact is the resulted performance contributed from a series of functional genes,
and that the DT gene network composed of the nine category functions determines the DT performance.
As we understand, to know the DT genetic mechanism we have to know the whole picture of the genes,
and therefore the whole set of the QTL-alleles, rather than the individual QTL-allele or gene-allele.
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Figure 3. qRT-PCR-verified candidate genes that confer drought tolerance in the CCSP. (A) Boxplots,
quantitative Real-time PCR (qRT-PCR) was performed after one h PEG-treatment. The Boxplots of 25, 80,
48 and 123 significantly differential-expressed genes (more than five-folds) in the leaf and root of drought
tolerance accession (TL, TR) and drought sensitive accession (SL, SR). The red dots in the up-grated
graph are outliers with a relative expression value of more than 1.5 times the interquartile range.
(B) The Venn-Diagram of 108 qRT-PCR-verified genes between MPW-SC-QTL and MPH-SC-QTL.
(C) The Venn-Diagram of 69 qRT-PCR-verified genes between MPW-LC-QTL and MPH-LC-QTL.
(D) GO functional classification of the verified drought tolerance candidate genes.

3. Discussion

3.1. The Progress of Present Mapping Results in Comparison to Those in the Literature

In the present study, a large germplasm population of 564 accessions from various eco-regions and
provinces with wide variation in DT fitted well in the detection of genome-wide DT QTL-alleles through
RTM-GWAS. Comparing with the linkage mapping results of DT in SoyBase (www.soybase.org), there
were 40 QTL close to (within 1 Mbp) or in a same region as the 39 QTL detected in the present study (Table
S7) among all the reported 134 QTL in six RIL (recombinant inbred line) populations [9,10,23,32]. Among
the 40 linkage-mapped QTL, eight ones were included in the seven LC-major QTL (with phenotypic
contribution ranging from 1.0% to 2.5%) and 32 ones included in the present SC-major QTL. Therefore,

www.soybase.org
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these linkage-mapped QTL are only a small part of the 135 QTL detected from RTM-GWAS in the
CCSP. Obviously, the RTM-GWAS for a wide-variation population was much more powerful than the
linkage mapping on the six RIL populations for detecting DT QTL.

Among the 135 detected QTL, there were some specific ones worthy for further study (Table S8).
For example, Gm06_BLOCK576 and Gm08_BLOCK466 were two shared LC-major QTL with high
phenotypic contribution; Gm11_BLOCK241 and Gm13_BLOCK338 were strongly differentiated QTL
between LRS and RCS; the 16 emerged new DT alleles in RCS located on nine DT loci. These specific
QTL involved with the candidate genes related to all the substantial biological processes, might be the
most important QTL with most important candidate genes among the 135 QTL and 177 candidate genes.

In addition to the mapped QTL-alleles, candidate genes-alleles were explored further based on
high expression of qRT-PCR and gene-allele/haplotype analysis. In the latter, due to low coverage of
SNP in the present study, only 117 alleles on 45 genes were detected from the 177 DT candidate genes
(Table S5). Among them, 24 alleles from 10 genes were significantly associated with DT indicators,
MPW or MPH, but only two genes shared with those from the high expression of qRT-PCR. It can
be expected that more gene-alleles can be identified if the sequencing depth increased. Anyway,
the present genes-alleles should be the most likely DT candidate genes, which might be used for
gene-cloning and marker-assisted selection.

3.2. The Efficiency and Usefulness of Genome-Wide QTL Detection through RTM-GWAS

As described by He et al. [29], the major advantage of the innovative RTM-GWAS procedure was
powerful in relatively full detection of the genome-wide QTL-allele system with the total phenotypic
contribution (R2) asymptotic to the overall heritability value through marker pre-selection followed
with multi-locus multi-allele stepwise regression. It was especially important for population geneticists
and breeders to know the complete set of QTL-allele system. Another basic feature of the RTM-GWAS
was that a new type of genomic marker SNPLDB with multiple haplotypes per locus can fit the
multiple-allele property of germplasm population with the LD decay distance reduced for a better
GWAS efficiency. Lu et al. [22] also indicated that the efficiency and the accumulative contribution
to the total variation would be substantially improved when using markers with multiple alleles.
In RTM-GWAS, the multiple allele effects could be estimated from the stepwise regression, and therefore
the QTL-allele matrix could be established for further population genetic study. The previous GWAS
procedures primarily focused on detecting few major QTL with total R2 only accounting for a small
part of the phenotypic variation [27]. In the present study, total 135 QTL were detected with a total R2

of approximately 50.9% for the indicators, while in some cases, such as seed weight, the R2 was more
than 90% when heritability reached 98% [29]. If a regular GWAS procedure was used, the detected
QTL was equivalent to only the LC-major QTL part in this study, with the SC-major QTL part not
included. According to the qRT-PCR validation results, 177 DT candidate genes were verified in the
present study, while under a regular GWAS procedure, among the 177 candidate DT genes, 69 located
in 24 LC-major QTL can be detected but the other 108 located in 68 SC-major QTL will be missed.
Correspondingly, 135 − 29 = 106 SC-major QTL, 4 − 1 = 3 shared QTL and 454 − 159 = 295 alleles
will be also missed (Table S9). The differences in QTL/gene detection power strongly supported the
RTM-GWAS strategy for a relatively thorough genome-wide QTL detection.

Furthermore, there might be more DT QTL/genes to be explored because the collective unmapped
part of the phenotypic variation (26.6% and 28.9%) has not been further dissected at present (Table 4).
In the detected DT QTL system, the individual QTL R2 ranged from 0.1% to 3.5%, indicating that there
was no very large-contribution QTL. This phenomenon was also found in maize through a large-scale
drought stress QTL mapping program (over 1000 QTL) [33]. In fact, a complex trait is usually conferred
with a large number of QTL, each one contributing a small part because the total contribution is limited
to the heritability value.

The present study has demonstrated the potential utilization of the DT QTL-allele matrix obtained
from RTM-GWAS procedure. One is to represent the DT genetic structure of the whole population,
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which may help for comparisons among multiple sub-populations which can serve the population
genetic study. The other is to predict the optimal crosses for best recombinants. Another is to annotate
and detect the responsive genes from which the target genes may be cloned and the GO enrichment
analysis can be made for understanding the gene network involving with the biological processes.
As for the utilization of QTL-allele matrix in candidate gene finding and cloning, we have provided a
detailed example in DT gene system. However, to understand the genetic system that confers DT in
soybeans, further studies should focus on each of the gene categories, each of the component indicators
and their intersection points.

3.3. Understanding the Super-DT-Trait and Its Genetic Constitution

After the establishment of QTL-allele matrices, we realized that the genetic systems of the two
indicators MPW and MPH were quite different even for a same DT trait. However, the DT genetic
system should be a uniform QTL-allele set or 135 QTL with 454 alleles in the present study, thus,
we put the two indicators together as a super-DT-trait for finding DT gene system with its components,
MPW and MPH, as its sub-DT-traits. Interestingly, the different indicators conferred by a similar but
different set of candidate genes were involved with a similar set of biological processes, including ABA
responders, stress responders, transports, developmental factors, etc.. Therefore, all the 177 candidate
genes should be the members of the DT genetic system. However, our two indicators are not necessarily
a complete set of the super-DT, so is for the detected QTL-allele system and the candidate gene
system. Some additional possible indicators, as well as their QTL-alleles and candidate genes, might
be involved, but the present results should be the major parts and the similar set of biological processes
might be involved in the super-DT-trait. A number of morphological, physiological and biochemical
characters such as root depth, osmotic adjustment, ABA content and others have been identified as DT
indicators [34,35], but each reflects only a particular case of DT. Thus, their QTL/genes might have been
included in those of the plant growth (including yield as the final growth) indicators and might be a
part of the QTL/gene network related to DT. As we suppose, our further work should be on exploring
the knowledge of the super-DT-trait gene network, especially the interrelationship among the genes in
the network based on identifying the individual DT QTL/genes with RTM-GWAS.

In summary, this study is featured with a relatively thorough identification of QTL-allele/

candidate-gene system, using an efficient RTM-GWAS procedure, on two comprehensive indicators
(MPW and MPH) instead of a single biological characteristic), in a large sample of the CCSP. The key
point of the above results is the establishment of relatively full QTL-allele matrices composed of
numerous gene functions jointly conferring DT, therefore, demonstrates the complexity of DT genetic
system and potential of CCSP in DT breeding.

4. Materials and Methods

4.1. Plant Materials

A core sample of cultivated soybeans from a collection containing more than 20,000 accessions
that were conserved in the National Center for Soybean Improvement, was used in the present
study. The materials were collected from 26 provinces in the six soybean eco-regions in China [36],
including 319 landraces and 245 released cultivars. The germplasm sample, covering a wide range, is a
representative sample of the Chinese cultivated soybean population and designated as CCSP.

4.2. Experiment Design and Drought Tolerance Measurements

The experiment was carried out in pots at Nanjing Agricultural University (32.04◦N, 118.63◦E) in
2011. According to the method reported by Liu et al. [20], the experiment was arranged in a split plot
design with five replications, water treatments in major plot, including water-stress (30 mL of water
per pot every day) versus water-non-stress (100 mL of water per pot every day) and 564 accessions in
sub-plot, including five drought tolerant and five drought sensitive checks. Each pot (Φ25 ×H28 cm)
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was filled with 7 kg of an 85:15 sand-soil mixture. The experiment was conducted in a greenhouse with
day/night air temperatures of (28/22) ± 2 ◦C and 60% relative humidity. To obtain uniform seedlings,
the seeds were germinated and the most uniform seedlings were visually selected and transferred
to pots. The plants were thinned to two per pot and then treated with the two water regimes from
the seventh day after planting. Two growth-related traits, the plant weight and plant height, were
evaluated on the 20th day after treatment to assess the DT. The plant height was measured with a ruler
before harvest, and the whole plant including shoot and root was dried to a constant weight at 65 ◦C
for 48 h and then weighed.

The two DT indicators, MPW and MPH, were calculated according to the following formula [20].
Mik = (Xik−XkS)/ (XkT−XkS), where Mik represents the membership index value of ith genotype,
kth replication, and X is the relative plant weight or plant height under water stress to non-stress
condition. Where XkT and XkS represent the average value of five drought-tolerant and five
drought-sensitive checks, respectively, in replication k. The lager the Mik value is, the stronger
the drought tolerance is.

4.3. Genotyping of CCSP and SNPLDB Assembly

The accessions were sequenced using RAD-seq (restriction-site-associated DNA sequencing)
at BGI Tech (Shenzhen, China). The genomic DNAs from fresh leaves were processed using the
CTAB protocol [37] and sequenced on an HiSeq2000 instrument (Illumina, San Diego, CA, USA)
by multiplexed shotgun genotyping method [38] with DNA fragments of 400~700 bp, generating
1.176 billion paired-end reads of 90-bp (including 6-bp index) read lengths (170.85 Gb of sequence),
with the most having an approximately × 3.86 depth and 4.57% coverage. All sequence reads were
aligned against the genome of Williams 82 [39] using SOAP2 [40]. The RealSFS [41] was used for
population SNP-calling based on the Bayesian estimation of locus frequency. The SNPs of 564 accessions
were polymorphic with a rate of missing and heterozygous allele calls ≤ 30% and a minor allele
frequency (MAF) ≥ 1%. The FastPHASE software [42] was used for genotyping SNP imputation after
heterozygous alleles were turned into missing alleles. The final set of SNPs were used to construct
SNPLDBs through an accelerated EM algorithm with Haploview 4.2 software [43]. The LD blocks were
defined by a default algorithm with 95% confidence intervals except that the maximum distance and
minimum MAF were set to 200 kb and 0.01, respectively [44]. Then the SNPs within a LD block were
organized into a SNPLDB marker with haplotypes as its alleles. Each SNP outside the LD blocks was
also treated as a SNPLDB with only a single SNP. From these analyses, a total of 108,610 SNPs and
24,694 SNPLDBs were identified in the CCSP.

4.4. RTM-GWAS and QTL-Allele Matrix of Drought Tolerance in CCSP

The RTM-GWAS software [29] was used to identify the causal loci of DT on the whole genome.
In both stages, the top 10 eigenvectors of the genetic similarity matrix built on SNPLDBs were
incorporated as covariates to correct the population structure bias. In the first stage of a single-locus
model association analysis, a significance level of p = 0.05 was set to pre-select the candidate markers.
In the second stage, these candidate SNPLDBs were used in a stepwise regression under a multi-locus
multi-allele model with the total QTL genetic contribution controlled within the heritability. The QTL
with their allele effects were organized into QTL-allele matrix for the respective traits. Furthermore,
each QTL-allele matrix was split into LRS and RCS matrices to show the population evolutionary
changes from LRS to RCS. In addition, the frequency distribution on each locus was χ2-tested for
detecting the differentiation between LR and RC subpopulations.

4.5. Optimal Cross Prediction

For each indicator, 158,766 possible crosses were predicted from the 564 accessions. In each cross,
10,000 progenies were simulated for their MPW and MPH values based on their respective QTL-allele
matrices. The optimal crosses were predicted according to the simulated progeny distributions. If the
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95th percentiles of the predicted progeny values for the two indicators are simultaneously greater than
the highest parental values, the cross is considered optimal for super-DT-trait. It is because that the
QTL-allele systems of the two indicators are quite different (see Results), and each indicator QTL-allele
system is considered only a part of DT, thus the two indicators compose of a super-DT-trait while each
indicator is a sub-DT trait.

4.6. Identification of the Candidate Gene System of Drought Tolerance

From the identified QTL using RTM-GWAS, the candidate genes related to DT were annotated
according to the reference genome of Glyma.Wm82.a1.v1.1 [39]. To validate the annotated candidate
genes, the qRT-PCR was carried out using the two genotypes selected from the CCSP, drought tolerant
N23644 (T) and drought sensitive N00710 (S), exhibiting contrasting drought stress expressed in
MPW (0.750 vs. 0.098) and MPH (0.236 vs. −1.323). The seeds were germinated, and the uniform
seedlings were transferred to plastic cups filled with culture medium and then grown under greenhouse
conditions (28 ◦C, 16h/8h photoperiod and 60% relative humidity). When the first trifoliate leaves
were unfolded, the RNA samples were extracted from the leaves and roots of at least three uniform
plants [45] after a quick drought stress treatment with 10% PEG 6000 (polyethylene glycol 6000) in
hydroponics at 0 h and 1 h [46]. Then the RNA specimens were used for qRT-PCR. The relative quantity
of gene expression was detected with 2–∆∆CT method [47], using the 60S expression as the internal
standard [48]. A total of 177 confident candidate genes were identified.

In addition to the criterion of high qRT-PCR expressions, the identified 177 confident candidate
genes were further tested for their phenotypic difference among the candidate alleles (obtained and
grouped from the RAD-seq data of the 564 accessions). The accessions were grouped for their allele
type on each locus and F-tested at p = 0.05 for their significant differences among candidate alleles for
the corresponding DT indicator, MPW or MPH. The candidate genes (in a total of 10) that showed
significant differences among their alleles were recognized as confident candidate genes.

5. Conclusions

The previous knowledge on DT QTL was mainly from individual crosses involving only few
parental materials, which needs to expand to broad germplasm resources. A sample composed of
564 accessions of the CCSP was studied for the DT QTL-allele system with MPW and MPH as indicators,
using the innovative RTM-GWAS procedure. In CCSP, DT as a super-trait composed of MPW and
MPH sub-traits was conferred by two different (even more) QTL-allele matrices/systems, each with 75
and 64 QTL with 261 and 207 alleles (2–12 per locus), respectively, in a total of 135 QTL with 468 alleles.
From which, 10 top crosses were predicted to show large transgressive breeding potentials, and found
that 58 LRS alleles disappeared but 16 new ones emerged in RCS during the evolution from LRS to
RCS, and the 177 qRT-PCR-verified candidate genes were grouped into 9 categories as a gene network
with ABA and stress responders as major parts. The key point of the present study is the establishment
of relatively full QTL-allele matrices which includes plentiful QTL with numerous gene functions
jointly conferring DT, therefore, are relevant to breeding for DT and to understanding the DT gene
network in CCSP.
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