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The great northern snakehead (Channa argus) is one of the most important economic
and conservational fish in China. In this study, the melanocytes in the skin of two distinct
color morphs C. argus were investigated and compared through employment of the
microscopic analysis, hematoxylin and eosin (H&E) and Masson Fontana staining. Our
results demonstrated the uneven distribution of melanocytes with extremely low density
and most of them were in the state of aging or death. Meanwhile, there was no obvious
pigment layer and melanocytes distribution pattern found in the albino-type (AT), while
the melanocytes were evenly distributed with abundance in the bicolor-type (BT). The
transcriptome analysis through Illumina HiSeq sequencing showed that a total of 34.93
Gb Clean Data was obtained, and Q30 base percentage reached 92.66%. The BT
and AT northern snakeheads transcriptome data included a total of 56,039,701 and
60,410,063 clean reads (n = 3), respectively. In gene expression analyses, the sample
correlation coefficients (r) were ranged between 0.92 and 1.00; the contribution of PC1
and PC2 were 50.25 and 13.73% by using PCA cluster analysis, the total number
of DEGs were 1024 (559 up-regulated and 465 down-regulated), and the number
of annotated DEGs was 767 (COG 172, KEGG 262, GO 288, SwissProt 548, Pfam
579 and NR 765). Additionally, 46,363 ± 873 and 44,947 ± 392 single nucleotide
polymorphisms (SNPs) were compiled via genetic structure analysis, respectively. Ten
key pigment-related genes were screened using qRT-PCR. And all of them revealed
extremely higher expression levels in the skin of BT than those of AT.This is the first
study to analyze the mechanism of albino characteristics of Channa via histology and
transcriptomics, and also provide the oretical and practical support for the protection
and development of germplasm resources for C. argus.
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INTRODUCTION

Being the largest number of existing vertebrate subphylums, the
fish have over 32,000 species that are distributed across all of the
aquatic resources worldwide (Nelson et al., 2016). Meanwhile, a
lot of colorful fish varieties have been formed over a long period
of natural selection and geographic evolution, some of them are
for courtship and reproduction, some are for defense, some are
for predation, some are for adapting to the environment, etc.
(Keenleyside, 2012; Johnsson, 2019). The formation of final body
color model is based on the movement and interaction among
the pigment cells (Irion et al., 2016; Bian et al., 2019). Previously,
the body colors of zebrafish have been thoroughly studied,
which showed that the dark band area is mainly dominated by
melanocytes and iridescent cells, while the body color is formed
by the interaction of melanocytes, iridescent and yellow pigment
cells in adult zebrafish (Frohnhöfer et al., 2013; Patterson and
Parichy, 2013; Mahalwar et al., 2014; Fadeev et al., 2016).

As an important and one of the most common phenomenon of
fish genetic variation, albinism is often stably inherited and finally
unique varieties are formed. For instance, the albino of Salvelinus
fontinalis can be stably inherited (Pettis, 1904). Further, the
formation of zebrafish body color model also has a certain
genetic mechanism, including cell–cell interaction band and
agouti signaling protein (ASIP)-mediated formation mechanism
(Ceinos et al., 2015). The albino-type (AT) Channa argus also
showed a stable inheritance with the white body color over the
generations. At the same time, the AT C. argus is only found
in the Jialing River, China (105.05E, 29.58N) (Zhou et al., 2018,
2019). Our previous study showed that the AT has higher protein
content and lower fat content in body composition than that of
the bicolor-type (BT; Wang et al., 2018), which implies a higher
nutritional value of the AT. Meanwhile, the potential ornamental
values of BT are increasing day by day.

A previous study has classified the AT as one of a subspecies of
C. argus (Shih, 1936), but our recent studies evidenced through
molecular markers that the AT should be served as an albino
of the BT C. argus (Zhou et al., 2017a,b, 2018, 2019), which
might assist to modify the previous classification of this species.
In order to further clarify the albino characteristic mechanism
of two distinct color morphs C. argus, we first observed the
distribution and differences of skin melanocytes by H&E staining
and melanin staining in this study. Then, the key differentially
expressed genes (DEGs) related to albinism have been screened
by using high-throughput sequencing, their genetic expressions
in the skin have been further validated by qRT-PCR. In a nutshell,
this study aims to provide certain theoretical and practical basis
for the protection and development of C. argus diversity in
fresh-water resources.

MATERIALS AND METHODS

Sample Collection
Two distinct color morphs of C. argus were collected from
the Jialing River, in Neijiang city (105.05E, 29.58N), Sichuan
province, China. The lengths of fish were 15 ± 1.3 cm and
12± 0.8 cm.

Ethics
The animal study was reviewed and approved by the Animal
Care Committee of South China Agricultural University
(Guangzhou, China).

Sample Treatments for Histological
Observation
The fresh fish were anesthetized with a lethal dose of MS-222
anesthetic (300 ppm). Then the scales on the surface of the
fish were gently scraped off using a scalpel, and the skins were
rinsed and cleaned. The body skins were gently cut into small
pieces of 5–10 mm using a scalpel and tweezers, and washed
with phosphate buffer. The temporary slides were prepared by
using a dissecting needle. Meanwhile, the small sections of skin
were fixed in 4% paraformaldehyde for more than 24 h, and then
placed in a dehydration box. The box was put into the dehydrator
for gradient dehydration with parameters set at 75% alcohol for
4 h, 85% alcohol for 2 h, 90% alcohol for 2 h, 95% alcohol for 1 h,
anhydrous ethanol I for 30 min, anhydrous ethanol II for 30min,
alcohol benzene for 5-10 min, xylene for I5-10 min, Xylene II for
5-10 min, Wax I for 1 h, Wax II for 1 h, and Wax III for 1 h.
Then waxes were embedded in the embedding machine to obtain
the 4 mm baking sheets, for H&E staining melanin staining.
The dyeing steps include the dewaxing of paraffin sections (the
slices were placed turn by turn in xylene I for 20 min, xylene
II for 20 min, absolute ethanol I for 10 min, absolute ethanol
II for 10 min, 95% alcohol for 5 min, 90% alcohol for 5 min,
80% alcohol for 5 min, 70% alcohol for 5 min and washed with
distilled water). For H&E staining, the nuclear dyeing of slices
was performed for 3–8 min with the harris hematoxylin solution,
washed with water and differentiated a few seconds using 1%
hydrochloric acid alcohol, washed with water and turned to blue
with 0.6% ammonia, and washed with water, then the cytoplasmic
dyeing of slices was performed with eosin solution for 1–3 min.
And for Masson-Fontana, the slices were performed with silver
ammonia solution and ark treatment for 12–18 h, washed with
water, then dealt with 5% sodium thiosulfate treatment for 2 min,
and counterstained with Van Giesan dye solution for 20 s, washed
with water. Both the dyed slices were immersed in 95% alcohol I
for 5 min, 95% alcohol II for 5 min, absolute ethanol I for 5 min,
absolute ethanol II for 5 min, xylene I for 5 min, and xylene
II for 5 min. The dehydrated slices were then taken out, dried,
and sealed with neutral gum. Finally, the slices were observed
and photographed with a Leica microscope (DM2500, Wetzlar,
Germany), and photographed with a CCD shooting system and
measured with the system’s own software.

Sample Preparation and Illumine
Sequencing
As per standard instructions from the Ministry of Environment,
China, a total of 18 individuals (AT and BT) from each
species were used for experimental purposes. Total RNA was
extracted from the spin tissues of two distinct color morphs
of C. argus using Trizol Reagent (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions. The
processed RNA was checked for purity and integrity using
Nanodrop-2000 spectrophotometer (Thermo Fisher Scientific,
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Wilmington, DE, United States), Qubit 2.0 (Thermo Fisher
Scientific, United States) and the Bioanalyzer 2100 (Agilent
Technologies, Santa Clara, CA, United States). Each species was
investigated with three pools, and each pool included three
individual samples. The mRNA-seq library was constructed using
the mRNA-seq sample preparation kit (Illumina, San Diego, CA,
United States). In the process, the total RNA was treated with
DNase I and magnetic beads with Oligo (dT) to obtain and purify
poly (A+) mRNA. The purified mRNA was fragmented using
the DNA fragmentation kit (Ambion, Austin, TX, United States)
prior to cDNA synthesis. The short fragments of mRNA were
used to transcribe first-strand cDNA using reverse-transcriptase
(Invitrogen) and random hexamer-primers. The synthesis of
second-strand cDNA was accomplished using DNA polymerase
I (New England BioLabs, Ipswich, MA, United States) and RNase
H (Invitrogen). Then the double-stranded cDNA was purified
using AMPure XP beads. Subsequently, the purified double-
stranded cDNA was end-repaired using T4 DNA polymerase,
the Klenow fragment, and the T4 polynucleotide kinase (New
England BioLabs). The end-repaired cDNA fragments were
connected with PE (Paired-end) Adapter Oligo Mix using T4
DNA ligase (New England BioLabs) at room temperature for
15 min. The selection of fragment size was analyzed also using
AMPure XP beads. Finally, the cDNA library was obtained by
using PCR enrichment. The cDNA library was preliminarily
quantified using Qubit 2.0, and diluted carefully, then the insert
fragment size detected using Bioanalyzer 2100, and the effective
concentration of the cDNA library accurately quantified using
qRT-PCR to ensure library quality. Finally, different cDNA
libraries were pooled into flow cells, and were sequenced using
Illumina high-throughput sequencing platforms (HiSeq/MiSeq)
after cBOTs were clustered.

Analysis of Sequencing Data
The raw data was filtered, and the linker sequence and low-
quality reads were removed to obtain the clean data. Then the
sequence of clean data was aligned with the reference genome
(GeneBank: SRP078899) by using HISAT2 to obtain the mapped
data. The library quality was controlled, and insert size and
randomness were tested to obtain the comparison efficiency and
coverage area of each sample. In order to splice the complete and
accurate genes, the transcript was remodeled using the StringTie
algorithm. In analyzing the gene structure, the potential SNP
locis in gene regions was identified and found using SAM tools
software (Li et al., 2009). The alternative splicing was analyzed
using Astalavista software1. The gene expression was analyzed by
using StringTie software, and FPKM (Fragments Per Kilobase of
transcript per Million fragments mapped) was act as an indicator
for measuring the gene expression (Trapnell et al., 2010):

FPKM = cDNA fragments/mapped reads
(
millions

)
×

transcript length
(
kb

)
cDNA Fragments, the number of fragments aligned on a

transcript; Mapped fragments (Millions), the total number of

1http://genome.crg.es/astalavista/

fragments aligned on the transcript (106); transcript length, the
transcript length (103bp).

The correlation between samples was evaluated using
Pearson’s Correlation (Schulze et al., 2012). The DESeq2 software
was used for screening DEGs, the selection criteria were log2
|Fold Change| ≥ 1 and False Discovery Rate (FDR) < 0.05. The
overall distribution of expression levels and fold change were
analyzed by using MA and Volcano map. The cluster analysis
heatmap of DEGs was constructed. Swiss-Prot, Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
Cluster of Orthologous Groups (COG), EuKaryotic Orthologous
Groups (KOG), Pfam, and Non-Redundant (NR) analysis were
used for gene feature annotation, classification and enrichment.

qRT-PCR Analysis
The qRT-PCR primers were designed (Table 1), and their
specificities were examined by conventional PCR and melting
curve analyses. β-actin gene was used as the internal control
(Zhou et al., 2018). A three-step method was used for
the following amplification scheme on an iQ5 Real-time
PCR instrument (Bio-Rad, United States): incubation for
2 min at 95◦C, followed by 45 cycles of 10 s at 95◦C,
34 s at 60◦C for optimized temperatures for specific genes,
and 30 s at 72◦C. The melting curve temperature ranged

TABLE 1 | Eight target genes and β-actin validation using Real-time PCR analysis.

Gene primer Primer sequence (5′–3′) TM (◦C) Amplification
efficiency (%)

TYR-F CTGACTAACTGGGAGAATGAGATAAG 60.8 99

TYR-R CCACTTTCCATGAGGAGAAGATAG 61.0

MC1R-F CGCGGTCACCATCATCG 60.3 98

MC1R-R TGGACTGGCGTCTGCTTTTA 61.4

CHP2-like-F AATTTGCTTTCCAGCTGTATGAC 60.0 97

CHP2-like-R TGTGATCGATGTCCACTTTCTC 60.7

MLPH-like-1-F CGCTACAAAGTGATGAGGAAGAG 61.6 97

MLPH-like-1-R CTAACCAGCTCTAGTGGCATAC 60.9

MLPH-like-2-F CAAGGTCATGAGGTCACTCTAC 60.8 98

MLPH-like-2-R TCCACGTCGTTCCTGTAATG 60.5

MITF-like-F ATGCTTCGTATACAGGAGTTGG 60.0 97

MITF-like-R AATCTGGCCGAAGGTTATGG 60.9

EpoR-like-F TGTTCGACTTCTGGCTCATTTC 61.4 96

EpoR-like-R CCACTTTCTCCAGTGACTTCTTG 61.8

SOX10-F TCGGGGAAAGCAGGTGAT 60.3 100

SOX10-R TGGGGGAAGATATTGGTCAAA 58.3

CatS-F CAATATTGGGAAATGGACATGGG 60.3 98

CatS-R CATCAATCGCTACTGAAATGGG 60.0

MAPK11-F GAGAATCATGGAGGTGGTTGGG 64.0 98

MAPK11-R GTGGTACTGTGAGAAATATGGATGGG 63.6

β-actin-F CACTGTGCCCATCTACGAG 61.1 99

β-actin-R CCATCTCCTGCTCGAAGTC 60.8

TYR, tyrosinase; MC1R, melanocortin 1 receptor; CHP2-like, calcineurin
B homologous protein 2-like; MLPH-like-1, melanophilin-like-1; MLPH-like-2,
melanophilin-like-2; MITF-like, microphthalmia associated transcription factor-like;
EpoR-like, erythropoietin receptor-like; SOX10, Sry-related HMg-Box gene 10;
CatS, Cathepsin S; MAPK11, mitogen-activated protein kinase 11.
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from 60 to 98◦C, and analysis was performed to confirm
the presence of a single applicant. Relative expression was
determined using the 2(−1 1 Ct) method (Livak and Schmittgen,
2001).

Statistical Analysis
Gene expression data were analyzed by one-way analysis
of variance (one-way ANOVA) using SPSS 17.0 (SPSS Inc.,
United States) and GraphPad Prism 8 (GraphPad Software,
San Diego, CA, United States). When overall differences
were significant, Tukey’s test was conducted to compare
the means between individual treatments. Differences were
considered significant and highly significant at p < 0.05 and
p < 0.01, respectively.

RESULTS AND DISCUSSION

Histological Observation and Analysis of
Skin
The melanocytes in the skin of two distinct color morphs of
C. argus were observed under an inverted microscope (20×)
and results showed that the main differences were reflected in
their distribution, density, and size, as well as in the dendritic
branching and the growth state of melanocytes. Previously,
the body color and markings of fish were determined by the
number, the distribution area and the state of pigment particles
in pigment cells (Huang, 2008). The shape of the melanocytes
in the epidermal layer of Polyodon spathula was irregular
between the epidermal cells, while they were relatively regular
in the dermis (Zarnescu, 2007). Moreover, the melanocytes
in the skin of Xiphophorus meyeri presented two types, one
was with obvious branches and other was contrary (Zheng
et al., 2014). In the present study, the melanocytes showed very
different morphological characteristics for two color morphs of
C. argus. In the skin of AT, the density of melanocytes was
very small, the distribution was uneven; and the main features
were the decrease or disappearance of dendritic branches, these
indicated that the development of the melanocyte is hampered
and regulated by a series of key albinism-related genes (Yang
and Johnson, 2006; Wang et al., 2008; Walderich et al., 2016;
Weiner et al., 2019) (Figure 1A1). While in BT, the melanin
cells were dense and evenly distributed, the dendritic branches
were numerous and relatively thick, the size was large and
the color was darker, and many melanocytes were in the
growth phase (Figure 1A2). Previously, the H&E and Masson
Fontana staining were used to observe the microstructure of the
cross section of fish skin, and the distribution and enrichment
of melanin (Iaria et al., 2019; Liu et al., 2019; Monteiro
et al., 2019). Our results by these two staining techniques
demonstrated that the skins of two distinct color morphs
of C. argus were composed of epidermis, tomb membrane,
pigment layer, dermis, subcutaneous tissue, and with obvious
boundaries, albeit the epidermisin AT was significantly thin,
and the pigment layer tended to degenerate without obvious
melanocytes. Conversely, the melanocytes in the pigment layer

of BT were relatively concentrated with even and abundant
distribution (Figures 1B,C).

Transcriptome Analysis
The purpose of transcriptomics is to study all the transcripts of
specific cells, tissues or organs during a specific development
period (Wang et al., 2009). RNA-seq technology can quickly
obtain more comprehensive transcriptome expression
information in a specific period and growth state based on
new generation high-throughput sequencing (Brenner et al.,
2000; Lin et al., 2019). The skins of two Oujiang carp with
different body color phenotypes were detected by RNA-Seq and
63 SNP sites were obtained for red and white carp (Wang et al.,
2014). Moreover, high-quality transcriptome data were obtained
from 12 tissues of Triplophysa rosa to explore the genetic basis
of the albinism by using RNA-Seq technique (Xiao, 2017). The
reliable transcriptome information of three phenotypic Pristella
maxillaris was obtained to analyze molecular regulation of the
body color (Bian, 2019). In the present study, the Illumina HiSeq
sequencing of two distinct color morphs of C. argus generate a
total of 56,039,701 (BT) and 60,410,063 clean reads (AT) (n = 3)
with a mean histogram of insert sizes length (324.91 ± 4.74 bp)
and (328.83 ± 4.44 bp), respectively. The percentages of GC
Content were (48.12± 1.23)% and (48.51± 0.71)% and the Phred
values greater than or equal to 30 as percentages of the total bases
(Q30) were (93.27 ± 0.41)% and (93.01 ± 0.32)%, respectively.
After being aligned with the reference genome (GeneBank:
SRP078899), the aligned reads were 33,420,418 ± 5,911,223 and
34,739,940 ± 4,998,924, and the comparison efficiencies were
(88.99 ± 9.79)% and (86.94 ± 7.27)%, the exonic reads were
13,556,090 ± 2,237,166 and 14,714,228 ± 2,085,045; the intronic
reads were 7,123,563 ± 1,233,264 and 7,118,554 ± 1,020,042;
the intergenic reads were 9,903,693 ± 1,928,563 and
9,978,757 ± 1,443,047, respectively. The overall statistics of
transcript reconstruction results showed that the genes and
mRNAs between the reference and query were 20541, 27134 and
20541, 43201; and the proportion of novel exons, novel introns,
and novel loci were 12.9, 4.5, and 24.4% based on transcript
reconstruction and comparison with the annotation of the
previous reference sequence. The transcript reconstruction is
conducive to more complete and accurate gene reconstruction,
and to better predict gene expression levels (Blanquart et al.,
2016; Liu and Dickerson, 2017; Song et al., 2019). The analysis of
SNP loci showed that the SNP number, transition, transversion,
Ti/Tv, heterozygosity and homozygosity were 46,363 ± 873 and
44,947 ± 392, 27,221 ± 755 and 26,404 ± 245, 19,141 ± 120
and 18,543 ± 162, 1.42 ± 0.03 and 1.42 ± 0.01, 30,107 ± 696
and 27,971 ± 399, and 16,256 ± 178 and 16,976 ± 14. The
analysis of alternative splicing shows that the number of all
the alternative events is 13396. The summary of transcriptome
assembly is shown in Table 2. We found that the quality
control effect was relatively high and there was no difference.
The clean Data of AT were more than BT, and the mapping
data also showed no significant difference. But the quantity
of new genes and mRNAs were significantly higher than
that of the reference. The analysis of gene structure showed
that all the indicators of SNP in BT were higher than that of
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FIGURE 1 | The microscopic and staining analyses of skin melanocytes of two distinct color morphs of C. argus. (A1,A2) Light microscope observation of skin;
(B1,B2) H&E staining; (C1,C2) Masson Fontana staining. A1, B1 and C1 are albino-type C. argus (AT); A2, B2 and C2 are bicolor-type C. argus (BT). EC, epithelial
cells; MC, mucous cells; BC, basal cells; P, pigmented layer; SS, stratum spongiosum.

AT. These results indicate that the BT has a higher genetic
diversity during the species evolution (Zhou et al., 2018,
2019). The data of RNA-seq have been submitted to NGDC
(https://bigd.big.ac.cn/) under bioproject accession number:
PRJCA002700. And the upload information can be found in
https://bigd.big.ac.cn/gsa/s/a37YRDtz.

Gene Expression Analysis
In order to truly reflect the transcript expression level, the
numbers of mapped reads and transcript lengths are normalized.
The FPKM acted as an indicator of transcript or gene expression
(Shahriyari, 2019). A boxplot was made to see not only the
dispersion degree of gene expression level distribution in a single
sample, but the comparison of overall gene expression levels in
different samples (Hänzelmann et al., 2013), we can see that
the dispersion degree of the same biological repeats have a
certain difference, while a significant difference between two
distinct color morphs (Figure 2A). These indicated that there
are differences in overall gene expression levels among different
samples. The Pearson’s Correlation Coefficient (r) analysis is
a key step in analyzing the data of RNA-Seq to assess the
reliability of biological repeats, which has been widely used
in the RNA-Seq field (Schulze et al., 2012). In our study,
the PCA cluster diagram and Pearson’s Correlation Coefficient
(r) were calculated and constructed among six samples base
on the FPKM values (Figures 2B,C). The contribution of
samples differences are 50.25 and 13.7% of PC1 and PC2,
and the difference among AT1-3 is less than that of BT1-
3. Meanwhile, the arrangement of r values is 0.9152–0.9995,

this indicates that the correlation is very high between each
sample.

Analysis of Differentially Expressed
Genes
In order to further analyze the DEGs of two distinct color morphs
of C. argus, we screened the number of DEGs using the AT1-3
as a control group. In previous studies, a large number of DEGs
were found in black and light skin of freshwater sticklebacks
(Greenwood et al., 2012); and a total of 244 DEGs (177 up- and
67 down-regulated) were found in normal and albino Triplophysa
rosa (Xiao, 2017); and over 3000 DEGs were obtained in three
phenotypic Pristella maxillaris (Bian, 2019), and 18,087, 61,751,
and 87,737 DEGs between marble and brown trout were grouped
by using GO analysis (Djurdjevič et al., 2019). In this study,
a total of 1024 DEGs were found, including 559 up- and 465
down-regulated. The Volcano Plot shows that most DEGs are
concentrated in±5-fold change (Figure 3).

The hierarchical cluster analyses have been widely used as
tools for exploring gene expression data in RNA-seq, and the
results of DEGs heatmap cluster analyses can used to further
study the tissue-specific genes and provide insight into gene
networks and functions (Severin et al., 2010; Si et al., 2014; Reeb
et al., 2015; Kumar et al., 2020). In this study, the DEGs were
analyzed by hierarchical clustering of all the samples (Figure 4),
and we cluster the genes with the similar expression pattern.
The DEGs tree is divided into six parts based on the expression
levels [log2 (FPKM + 0.001)]. The parts one and three showed
no significant differences, and the parts two, four, five, and six
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TABLE 2 | Summary of transcriptome assembly after Illumina HiSeq sequencing of two distinct color morphs C. argus.

Assembly Features BT AT

Clean Data X ± SD X ± SD

Read Number 18,679,900 ± 1,366,626 20,136,687 ± 4,002,559

Base Number (bp) 5,603,970,100 ± 409,987,999 6,041,006,300 ± 1,200,767,725

GC Content% 48.12 ± 1.23 48.51 ± 0.71

% ≥ Q30 93.27 ± 0.41 93.01 ± 0.32

MappingData

Aligned reads 33,420,418 ± 5,911,223 34,739,940 ± 4,998,924

Exonic reads 13,556,090 ± 2,237,166 14,714,228 ± 2,085,045

Intronic reads 7,123,563 ± 1,233,264 7,118,554 ± 1,020,042

Intergenic reads 9,903,693 ± 1,928,563 9,978,757 ± 1,443,047

Histogram of insert size (bp) 324.91 ± 4.74 328.83 ± 4.44

Genes (Query/Reference) 27134/20541

mRNAs (Query/Reference) 43201/20541

Novel exons 35247/273952 (12.9%)

Novel introns 10409/230776 (4.5%)

Novel loci 6624/27134 (24.4%)

SNP loci

SNP number 46,363 ± 873 44,947 ± 392

Transition 27,221 ± 755 26,404 ± 245

Transverrsion 19,141 ± 120 18,543 ± 162

Ti/Tv 1.42 ± 0.03 1.42 ± 0.01

Heterozygosity 30,107 ± 696 27,971 ± 399

Homozygosity 16,256 ± 178 16,976 ± 14

Alternative splicing Number

Exon skipping events 5504

Alternative acceptor sites 3386

Alternative donor sites 2989

Intron retention events 1517

All events 13396

revealed significant differences. These results indicate that the
genes show significant expression pattern differences between
two distinct color morphs of C. argus.

Functional Annotation and Enrichment
Analysis
Comparative Analysis of all Genes, New Genes and
Differentially Expressed Genes
In order to obtain complete and effective annotation of functional
genetic information, different annotation databases were used to
analyze the RNA-seq data (Lu et al., 2008; Zheng and Wang, 2008;
Ma et al., 2020). Different annotation databases revealed clear
differences between the enrichment and annotation information,
and GO is the most widely and commonly used among them
(Bauer et al., 2008; Eden et al., 2009; Zheng et al., 2019).
In the present study, all genes (AGs), new genes (NGs), and
DEGs have been annotated functionally, and the number of
annotated genes has been counted by using Swiss-Prot, GO,
KEGG, COG, KOG, Pfam, and NR databases. We found that
the number of AGs, DEGs, and NGs annotated by different
databases were extremely different, the NR database exhibited
the largest numbers 21820, 767, and 2305, and the COG

database has the smallest numbers of 6930, 172, and 184,
respectively. Furthermore, the number of different fragment
lengths (300 = length < 1000 and length = 1000) showed the same
results (Table 3).

GO enrichment analysis of AGs, DEGs, and NGs showed
that the cellular component, molecular function and biological
process had different gene enrichment and distribution trends
(Young et al., 2010; Kim et al., 2019). In the classification
of cellular component, the largest proportion of secondary
functions genes were enriched in cell (3431), virion (3427),
membrane-enclosed lumen (2714), organelle (2109), organelle
part (2124), and membrane part (1049); for AGs (≥1000),
in cell (152), cell junction (150), protein-containing complex
(128), extracellular region part (96), membrane part (83); for
NGs (≥80), and in cell (105), membrane (85), membrane part
(73), and cell part (105); for DEGs (≥70), which indicate that
the number of NGs and DEGs were obviously consistent with
that of AGs. In the classification of molecular function, the
largest proportion of secondary functions genes were enriched
in structural molecule activity (4971 and 253), binding (3591
and 244) both for AGs (≥ 1000) and NGs (≥80), but in
catalytic activity (101) and binding (152) for DEGs (≥70). In
the classification of biological process, the largest proportion
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FIGURE 2 | The box plot of the FPKM values (A), PCA cluster diagram (B), and Pearson correlation (C) for BT1-3 and AT1-3 C. argus. (B) PC1 and PC2 represent
the first and second principal component; the percentages in parentheses indicate the contribution of the principal components to the differences in the samples.
(C) The lower left corner is a scatter plot of expression and the upper right corner is the heat map of the correlation between samples. The color and number
represent the degree of relevance.

of secondary functions genes were enriched in cellular process
(4502), metabolic process (4105), biological regulation (3040),
response to stimulus (1576), locallzation (1511), signaling
(1156), multicellular organismal process (1016), developmental
process (1044); for AGs (≥1000), and in metabolic process
(267 and 112), cellular process (236 and 105), biological
regulation (135 and 80) both for NGs (≥80) and DEGs (≥70),
respectively. These results reveal that all the secondary functions
of genes in NGs and DEGs are belong to AGs, and the
metabolic and cellular process, biological regulation are the
most important factor between two distinct color morphs of
C. argus. The GO annotation classification statistics are showed
in Figure 5.

GO Analysis of DEGs
To further excavate the functional genes with significant
differences, the up- and down-regulated genes were selected
for enrichment and annotation based on AT1-3 vs BT1-3
(Figure 6). We can see that there are 465 down-regulated
and 559 up-regulated genes in the BT group, compared
to the AT group. In other studies focusing on skin color
showed that the DEGs of three different skin colored Red
Tilapia showed significant difference (Zhu et al., 2016),
there are 3683 and 3434 genes that were up-regulated in red
and white crucian carp based on FDR < 0.0001 and |log2

(Fold Change)| ≥ 1 (Zhang et al., 2017), and a total of 785
unique genes (385 up-regulated and 400 down-regulated
genes) were differentially expressed in albino individuals
of Acipenseriformes gueldenstaedtii (Gong et al., 2019).
Meanwhile, the topGO analysis (Alexa and Rahnenfuhrer,
2010) show the most significant enrichment of 10 nodes
are peptide antigen binding, oxygen binding, oxygen
transporter activity, threonine-type endopeptidase activity,
serine-type endopeptidase activity, guanylate cyclase activity,
miRNA binding, RasGTPase binding, lipid binding and
carboxy-lyase activity.

The transcription factors (TFs) regulate many cellular
processes, which can repress or activate the transcription of
target genes (Berest et al., 2019). The activity of signaling
pathways can be replaced by the change of TFs activity (Kim
et al., 2007; Whyte et al., 2013). And the TFs can act as
transcriptional activators and repressors (Han et al., 2018).
The TFs of DEGs are also annotated and mined in this
study. A total of 40 TFs were found and classified to 16 TFs
families (Figure 7). The Homeobox (7), bHLH (6), zf-C2H2
(6), TF_bZIP (4), and zf-H2C2_2 (4) have large numbers of
distributions. Previous studies have shown that the basic helix-
loop-helix-leucine zipper (bHLH-ZIP) can activate tyrosinase
(TYR) promoter E-box, and then activates the expression of
TYR gene and its related proteins, and TYR is the most critical
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FIGURE 3 | The Volcano Plot of DEGs of two distinct color morphs of C. argus. Fold Change: Ratio of expression between the two groups; FDR: Corrected value of
the significance difference p-value. The gray plots are no DEGs; the green plots are the significantly down-regulated genes, the red plots are the significantly
up-regulated genes.

enzyme in melanin synthesis (Hodgkinson et al., 1993; Ferguson
and Kidson, 1996; Steingrímsson et al., 2004). Our results in
accordance with previous studies provide good molecular clues
for the albino body color of AT. At the same time, the TFs that
regulate immunity were also found, such as interferon regulatory
factor (IRF), which can positively regulate IFN expression and
play an extremely important role in the fish immune system
(Honda and Taniguchi, 2006; Tamura et al., 2008; Zhao et al.,
2020).

COG and KOG Analysis of DEGs
Cluster of Orthologous Groups and KOG are databases
for prokaryotic and eukaryotic species, which are also
employed for orthologous classification of protein
sequences (Luan et al., 2017; Nie et al., 2020). Cluster of
Orthologous Groups and KOG analysis could provide useful
information about the possible function of DEGs (Figure 8).
A total of 184 (COG) and KOG (419) with 25 functional
definitions were obtained.

KEGG Analysis of DEGs
Kyoto Encyclopedia of Genes and Genomes is a genomic
information database with a systematic analysis of gene
function, and it can identify the most important biochemical
metabolic pathways and signal transduction pathways involved
in DEGs (Kanehisa and Goto, 2000; Aoki and Kanehisa,
2005). The annotation results of DEGs were classified
according to the pathway types in KEGG of BT vs AT

group (Figure 9). A total of 262 DEGs were assigned to
130 different pathways in present study, and six primary and
35 secondary metabolic pathways were classified. Meanwhile,
the signal transduction (31) and signaling molecules and
interaction (37) of environmental information processing, global
and overview maps (30) of metabolism showed the highest
proportion according to the KEGG pathway classification.
These results indicate that the environmental factors may
have a huge contribution to the formation of different body
colors of aquatic species (Cheng, 2008; Yadufashije and
Samuel, 2019), and we inferred that the different body colors
of C. argus might be closely related to the geographical
environment, but further research and verification need to
be investigated.

The statistics of pathway enrichment are measured by using
enrichment factor, Q-value and the number of genes enriched in
the pathway. The top 20 most reliable enriched pathways were
screened and identified according to the DEGs of BT vs AT group
(Figure 10). We can see that the most numbers and the highest
degree of enrichment genes were associated with cell adhesion
molecules pathway, and then with the phagosome pathway,
and the phenylalanine, tyrosine and tryptophan biosynthesis
pathway, this provides clues for the mechanism of skin albinism
and also points out the direction for subsequent research. The
DEGs of two different carps were mainly enriched in the
melanin synthesis, WNT and MAPK signaling pathways by using
transcriptome detection and these DEGs may participate in the
formation of body color (Jiang et al., 2014). 46 DEGs related to
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FIGURE 4 | The DEGs heatmap for two distinct color morphs of C. argus. Different rows represent different genes. The color represents the level of gene expression
in BT1-3 and AT1-3.

TABLE 3 | Functional annotation and enrichment analysis of all genes of two distinct color morphs of C. argus based on different databases.

Annotation Database Number of genes 300 bp ≤ length < 1000 bp Length ≥ 1000 bp

AGs NGs DEGs AGs NGs DEGs AGs NGs DEGs

COG 6930 184 148 1736 80 41 5127 84 106

KEGG 9677 392 262 2627 170 85 6848 151 169

GO 9840 517 288 3339 219 127 6221 206 148

KOG 14879 677 359 4121 313 126 10455 252 225

Swiss-Prot 16485 813 548 4616 368 200 11546 332 335

Pfam 18561 848 579 5504 392 212 12685 338 357

NR 21820 2280 765 7148 1067 314 13876 827 422

All 21851 2305 767 7167 1080 316 13885 836 422

AGs, all genes; NGs, new genes; DEGs, differentially expressed genes.

body color were screened out from the skins of different body
color (Henning et al., 2013). Meanwhile, some immune-related
pathways, such asNF-kappa B signaling pathway, intestinal
immune network for IgA production pathway, and vibrio
cholerae infection pathway, may be closely related with the
collected tissue of skin. In a previous study, we found that
the skin of Channa could secrete a large amount of mucus
under stress to stimulate its non-specific immune function
(Zou and Zhuo, 2010). These results also indicate that there is
difference in immunity between two distinct color morphs of
C. argus.

Validation of the Data Reliability by
qRT-PCR
In order to verify the RNA-seq results, ten pigment-related genes
(Casp et al., 2002; Bhoumik et al., 2007; Mirmohammadsadegh
et al., 2010; Liu et al., 2013; Hammam et al., 2014;
Wang et al., 2017; Yang et al., 2018; Li et al., 2020) were
selected to quantify their mRNA expression levels in the skin
of two distinct color morphs of C. argus by using qRT-PCR
(Figure 11). The expressions of all the selected genes of BT
were extremely higher than that of AT, consistent with the
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FIGURE 5 | The annotated AGs (A), NGs (B), and DEGs (C) were classified into the cellular component, molecular function and biological process according to the
GO terms.
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FIGURE 6 | GO classification of up-regulated and down-regulated genes in the BT group, compared to the AT group. The left panel shows the proportions of up-
and down-regulated genes according to the GO terms. The right panel shows the numbers of up- and down-regulated genes.

FIGURE 7 | The transcription factors (TFs) of DEGs between two distinct color morphs of C. argus.

results obtained through transcriptome analysis. Moreover,
the development of melanocytes is controlled by many factors
and these factors cooperate with each other to form a gene

network that regulates the development and differentiation
of melanocytes derived from neural crests (Setty et al., 2007;
Mort et al., 2015). The TYR is a key and rate-limiting enzyme
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FIGURE 8 | Clusters of COG and KOG of DEGs in two distinct color morphs of C. argus. (A,B) COG and KOG function classification of DEGs.

FIGURE 9 | KEGG classifications of DEGs. The right and left ordinate is the primary and secondary metabolic pathway of KEGG; the abscissa is the number of
genes annotated to the KEEG pathway and their proportion.
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FIGURE 10 | The statistics of top 20 most reliable enriched pathways. Pathway Name: KEGG tertiary metabolic pathway; Q-value: Significance statistics of
enrichment, the smaller the Q-value, the higher the degree of enrichment.

that controls melanin synthesis, the low expression level of
TYR may directly and closely relate to the albinism of the skin
(Koga and Hori, 1997; Li et al., 2014; Hirobe and Ishikawa,

FIGURE 11 | Relative mRNA expressions of DEGs according to RNA-seq
focus on pigment-related genes.

2015; Kaur and Dua, 2015; Jiang et al., 2019). Meanwhile,
the MITF is an upstream TF that can directly regulate the
TYR gene (Bharti et al., 2012; Raviv et al., 2014), and some
genes such as SOX10, MAPK, CATs act directly or indirectly
on the MITF gene to regulate the development, growth and
differentiation melanocytes (Hou et al., 2000). In addition,
the MLPH, CHP2, and EpoR play roles in the formation,
transportation, development and other processes of pigment
cells and melanoma (Bhoumik et al., 2007; Liu et al., 2013;
Hammam et al., 2014; Li et al., 2020). Previous studies showed
that the differential expression of albino-related genes regulated
the development and differentiation of body color, and over
95 and 38 body color development related genes were found
in zebrafish and Oryziaslatipes (Hidehito et al., 1994; Dooley
et al., 2013). The development, differentiation and migration
of pigment cells were regulated by multiple genes and complex
gene regulatory networks (Kelsh et al., 2000; Ceinos et al., 2015).
As a key enzyme for controlling the melanin synthesis, the
expression and activity of TYR directly determine the rate and
yield of melanin production (Ito et al., 2000). MITF and SOX10
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FIGURE 12 | Heatmap of DEGs according to RNA-seq focus on pigment-
related genes. The smallest value of green is 0.93, the baseline value of black
is 120, and the largest value of red is 62881.

are the core transport regulators in pigment cell development,
the MITF activates TYR gene expression by acting on the TYR
promoter E-box, and SOX10 acts as a powerful activator to
directly regulate the expression of MITF (Lang et al., 2005;
Sarkar and Hochedlinger, 2013). Meanwhile, the MLPH-1 and
-2 also act as linker proteins between the melanosome and
MYO5A-bound actin filament (Provance et al., 2002; Kuroda
et al., 2003; Li et al., 2020). Melanocortin 1 receptor (MC1R) plays
a key role in the differentiation of adult melanocytes (Ozdeslik
et al., 2019). Other albino-related genes also play important
roles impacticting on the survival, proliferation, migration and
differentiation of the pigment cell (Aizawa et al., 2005; Johnstone
et al., 2005; Hammam et al., 2014; Hadrian et al., 2019). The
heatmap indicates that there is a significant difference between
two distinct color morphs of C. argus and the expressions of
different genes (Figure 12).

CONCLUSION

The regulation mechanism of fish body color is relatively
complex, and the influencing factors are also diverse. Genetics,
habitat, neuroendocrine and feed nutrition are considered to
be the most important factors. Observation of skin histology
can intuitively show the albino characteristics of different color
types of C. argus, and serves to help understand the internal
mechanism of albinism. Our results imply that the lack of
melanocytes and melanin deposits, the low density and imperfect
development of melanosome in skin are the histological reasons
that cause the albinism of C. argus. As an effective and reliable
molecular biology technique, the Illumina HiSeq sequencing can
discover key functional genes and their regulatory networks.
And a total of 767 DEGs were screened from the transcriptome
data, most of them were distributed in the functions of cell

(210), catalytic activity (101) and binding (152), metabolic
and cellular process (112 and 105), biological regulation (80),
including a large number of DEGs involved in body color
formation, which were located in the melanin synthesis, WNT
and MAPK signaling pathways. Meanwhile, the expression of
ten key pigment-related genes in skins of two color type
of C. argus were compared and verified, the results showed
that their low expression was one of the key factors for the
appearance of whitening characteristics. These findings indicate
thatthe RNA-Seq technology can be well used to study the
genetic mechanism of fish body color formation. In addition,
our results can provide a molecular basis to further reveal
the regulation mechanism of fish body color development and
theoretical support for the protection and development of rare
germplasm resources.
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