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Abbreviations
ATS	� Acidic terminal segment of PfEMP1
CD36	� Cluster of differentiation 36 receptor
CIDR	� Cysteine-rich interdomain regions
CMI	� Cell-mediated immunity
CR1	� Complement receptor 1
CSA	� Chondroitin sulphate A
DBL	� Duffy binding-like domain
HA	� Hyaluronic acid
ICAM-1	� Intercellular adhesion molecule 1
IE	� P. falciparum infected erythrocyte
KAHRP	� Knob-associated histidine-rich protein
MAHRP1	� Membrane-associated histidine-rich protein 1
MC	� Maurer’s clefts
MESA	� Mature infected erythrocyte surface antigen
PfEMP1	� P. falciparum erythrocyte membrane protein 1
PfMC-2TM	� P. falciparum Maurer’s clefts two transmem-

brane protein
REX	� Ring exported proteins
RIFIN	� Repetitive interspersed family proteins
STEVOR	� Subtelomeric variable open reading frame 

proteins
SURFIN	� Surface-associated interspersed gene family 

proteins
VSA	�V ariant surface antigen

Introduction

Plasmodium falciparum is the most virulent form of human 
malaria and is a leading cause of mortality among children 
under 5 years [1]. Plasmodium falciparum has a complex 

Abstract  Understanding the targets and mechanisms of 
human immunity to malaria caused by Plasmodium falcipa-
rum is crucial for advancing effective vaccines and develop-
ing tools for measuring immunity and exposure in popula-
tions. Acquired immunity to malaria predominantly targets the 
blood stage of infection when merozoites of Plasmodium spp. 
infect erythrocytes and replicate within them. During the intra-
erythrocytic development of P. falciparum, numerous para-
site-derived antigens are expressed on the surface of infected 
erythrocytes (IEs). These antigens enable P. falciparum-IEs to 
adhere in the vasculature and accumulate in multiple organs, 
which is a key process in the pathogenesis of disease. IE sur-
face antigens, often referred to as variant surface antigens, are 
important targets of acquired protective immunity and include 
PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are 
highly polymorphic and encoded by multigene families, which 
generate substantial antigenic diversity to mediate immune 
evasion. The most important immune target appears to be 
PfEMP1, which is a major ligand for vascular adhesion and 
sequestration of IEs. Studies are beginning to identify specific 
variants of PfEMP1 linked to disease pathogenesis that may 
be suitable for vaccine development, but overcoming antigenic 
diversity in PfEMP1 remains a major challenge. Much less is 
known about other surface antigens, or antigens on the sur-
face of gametocyte-IEs, the effector mechanisms that mediate 
immunity, and how immunity is acquired and maintained over 
time; these are important topics for future research.

Electronic supplementary material  The online version of this 
article (doi:10.1007/s00018-014-1614-3) contains supplementary 
material, which is available to authorized users.

J.-A. Chan · F. J. I. Fowkes · J. G. Beeson (*) 
Burnet Institute, Melbourne, VIC, Australia
e-mail: beeson@burnet.edu.au

http://dx.doi.org/10.1007/s00018-014-1614-3


3634 J.-A. Chan et al.

1 3

lifecycle involving a mosquito vector and a human host. 
The on-going asexual reproduction during the blood stage 
leads to clinical symptoms of malaria [2]. The pathogen-
esis of human malaria stems from various host and para-
site factors that concurrently influence the severity and out-
come of disease. Key pathophysiological features include 
the sequestration of P. falciparum-infected erythrocytes 
(IEs) in the microvasculature, the induction of proinflam-
matory cytokines and anemia resulting from the suppres-
sion of erythropoiesis [2, 3]. The destruction of uninfected 
erythrocytes and IEs further compromises oxygen delivery 
and exacerbates disease pathogenesis [4]. An important 
virulence property of P. falciparum is the expression of 
parasite-derived antigens on the surface of IEs, generally 
known as variant surface antigens (VSAs; Fig. 1), and its 
strong propensity to adhere in the vasculature. VSAs are 
comprised of novel parasite-derived proteins and include 
P. falciparum erythrocyte membrane protein 1 (PfEMP1) 
[5], repetitive interspersed family (RIFIN) proteins [6–8], 
sub-telomeric variable open reading frame (STEVOR) pro-
teins [9–11], surface-associated interspersed gene family 
(SURFIN) proteins [12] and possibly others such as P. fal-
ciparum Maurer’s cleft two transmembrane (PfMC-2TM) 
proteins [13, 14]. Parasite-modified erythrocyte band 3 
has also been proposed as a surface antigen or ligand for 
IE sequestration [15, 16]. These IE surface proteins are 
antigenically diverse and undergo clonal antigenic vari-
ation because of the selective pressure exerted by human 
immunity. The significance of VSAs as targets of natu-
rally acquired immunity and their potential as vaccine can-
didates is the focus of this review. Acquired immunity to 

blood stage P. falciparum will be addressed, followed by 
a summary of the VSAs expressed on the IE surface and 
finally human antibodies to different VSA families.

Plasmodium falciparum sequestration and cytoadhesion

The virulence of P. falciparum malaria is attributed to the 
adhesion of IEs to the vascular endothelium or to uninfected 
erythrocytes to form rosettes [17–19]. Mature P. falciparum 
disappear from the peripheral circulation and are seques-
tered in various organs throughout the body. The importance 
of splenic clearance of IEs in controlling disease severity 
has been demonstrated by numerous studies. For example, a 
study conducted with Aotus monkeys showed that splenec-
tomised animals developed virulent infections, presumably 
because of enhanced accumulation of IEs in the microvas-
culature [20, 21]. IE sequestration contributes to the patho-
genesis of severe disease syndromes such as cerebral [17, 
22, 23] and placental complications [24, 25]. An important 
feature of IEs that enables P. falciparum to sequester is the 
expression of knob structures on the IE membrane [26–28]. 
The major structural component of knobs is the knob-asso-
ciated histidine-rich protein (KAHRP) [27, 29–32]. Other 
parasite-encoded proteins such as P. falciparum erythrocyte 
membrane protein 3 (PfEMP3) [33] and mature IE surface 
antigen (MESA; also known as PfEMP2) [34, 35] also con-
tribute to knob assembly. KAHRP interacts with cytoskele-
tal components of the erythrocyte such as spectrin and actin 
[36–38], resulting in reduced membrane deformability [39]. 
Knobs present the major virulence factor, PfEMP1 [5], on 
the external surface of the IE membrane, where it mediates 

Fig. 1   Parasite-induced 
modifications to P. falciparum-
infected erythrocytes. A. During 
intra-erythrocytic development, 
P. falciparum expresses knob 
structures and VSAs on the 
surface of pigmented trophozo-
ite IEs. PfEMP1, P. falciparum 
erythrocyte membrane protein 
1; RIFIN, repetitive interspersed 
family; STEVOR, subtelomeric 
variable open reading frame; 
SURFIN, surface-associated 
interspersed gene family; 
KAHRP, knob-associated 
histidine-rich protein. B. Scan-
ning (left) and transmission 
(right) electron microscopy 
(EM) shows the ultrastructural 
features of the IE membrane. 
The IE membrane is distorted 
by surface knob protrusions 
(arrows) that present the major 
virulence factor, PfEMP1
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IE cytoadhesion to the host endothelium under physiologi-
cal flow conditions [40, 41]. Disruption of the kahrp gene 
impairs proper knob formation and leads to a decrease in 
surface-exposed PfEMP1 and reduced cytoadhesion [42]. 
However, the presence of knobs may not necessarily result 
in sequestration [43]; P. malariae has knob structures but 
does not sequester, while P. chabaudi sequesters without 
knobs [16, 43].

A diverse range of host receptors that mediate IE 
cytoadhesion has been identified [44–46]. The main para-
site ligand responsible for cytoadhesion is PfEMP1 and 
it binds to a range of endothelial and erythrocyte mol-
ecules including CD36 [47], ICAM-1 [48], chondroitin 
sulphate A (CSA) [49, 50], complement receptor 1 (CR1) 
[51], heparan sulfate (HS) [52] and others. IEs are capa-
ble of binding via multiple receptors [53] therefore creat-
ing a synergistic effect on IE adhesion [54]. Most P. falci-
parum isolates adhere to both ICAM-1 and CD36, which 
are widely distributed in the vasculature [53, 55, 56], but 
parasites isolated from infected placentas mainly adhere 
to specific receptors expressed by the syncytiotrophoblasts 
of the infected placenta [57, 58], particularly CSA [56, 59, 
60], and possibly secondary receptors such as hyaluronic 
acid (HA) [61–63] and non-immune IgM [64–66] and IgG 
[67]. The differential expression of endothelial cell recep-
tors in various tissues leads to the preferential binding of 
IEs. For example, it is proposed that ICAM-1-binding para-
sites are more likely to sequester in the brain [46, 68] as the 
brain endothelium expresses ICAM-1. While it has been 
speculated that receptor-specific adhesion (e.g. ICAM-1) 
predisposes to a particular pattern of disease (e.g. cerebral 
malaria), studies to date have been inconclusive. In one 
study, cerebral malaria patients did not show a significant 
association between disease and ICAM-1 binding [69], and 
another study reported that ICAM-1-binding was lowest in 
children with severe malaria [70]. In contrast, post-mortem 
histopathological analyses of infected cerebral vessels pro-
posed a role for ICAM-1 in the manifestation of severe 
disease [68], and another study demonstrated that ICAM-
1-binding was greater in cerebral malaria patients com-
pared to patients with uncomplicated malaria [71]. This 
may propose a role for ICAM-1 in the pathogenesis of cer-
ebral malaria but additional studies are necessary to further 
validate this association. A recent study identified endothe-
lial protein receptor C as a likely mediator of cerebral 
sequestration [72]. Other host receptors implicated in IE 
cytoadherence include thrombospondin (TSP) [73], plate-
let/endothelial cell adhesion molecule (PECAM/CD31) 
[74], P-selectin [75] and vascular cell adhesion molecule-1 
(VCAM-1) [53], but the significance of these receptors in 
disease pathogenesis remains unclear.

The clustering of mature IEs to uninfected erythrocytes, 
known as rosetting [76], is also thought to contribute to 

excessive microvasculature obstruction [77, 78]. Rosetting 
is associated with severe malaria in African children, sug-
gesting that it contributes to disease pathogenesis [79–83]. 
However, a study with Malawian [70] and PNG [84] chil-
dren reported that the rosetting occurred at a similar rate 
between children with severe and uncomplicated malaria, 
suggesting that rosette formation is not always associ-
ated with severe clinical outcomes. The parasite ligand for 
rosetting in P. falciparum has been identified as a specific 
PfEMP1 variant that binds to CR1 [51] or HS proteogly-
cans [85] expressed by the host erythrocyte.

Plasmodium falciparum also causes vascular obstruc-
tion through the clumping of IEs, a feature that was first 
reported as autoagglutination [86]. This adhesive pheno-
type is distinct from rosetting, as autoagglutinating para-
sites do not form rosettes and rosetting parasites do not 
autoagglutinate [86]. Autoagglutination was a common 
feature of infection, although more autoagglutinates were 
observed in children with severe malaria compared to those 
with mild malaria. This suggests that autoagglutination is 
more frequently observed in, but not restricted to, severe 
disease [87]. It was later reported that autoagglutination 
is mediated by platelets and required the expression of the 
platelet glycoprotein CD36 [88]. Scanning electron micros-
copy of platelet-mediated clumping of IEs showed that this 
interaction occurred at the IE knob structures [88]. Stud-
ies with Kenyan children [88] and patients from Thailand 
[89] established that platelet-mediated clumping of IEs was 
associated with severe disease, presumably through local 
disruptions of blood flow. Conversely, binding of platelets 
to IEs has also been implicated in protection against P. fal-
ciparum by directly inhibiting intra-erythrocytic parasite 
growth [90, 91].

VSAs of P. falciparum

The most extensively studied VSA is the major virulence 
factor PfEMP1, an important target of naturally acquired 
immunity [92, 93]. The var genes that encode PfEMP1 
appear to be unique to P. falciparum, but the P. knowlesi 
schizont-infected cell agglutination (SICA) antigens 
encoded by the SICAvar multigene family [94, 95] have 
been described as conceptually similar to PfEMP1 [96]. 
Orthologs of rif and stevor genes have been identified in 
other Plasmodium species, known collectively as the pir 
multigene family (Plasmodium interspersed repeats). These 
include the vir multigene family in P. vivax [97], kir multi-
gene family in P. knowlesi, yir multigene family in P. yoelii, 
bir multigene family in P. berghei and cir multigene family 
in P. chabaudi [98, 99].

Currently, little is known regarding the mechanisms 
that regulate gene transcription in P. falciparum other than 
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the involvement of specific transcription factors and pro-
moter interactions. Exploiting the mutually exclusive tran-
scription of var genes has allowed for the suppression of 
the entire endogenous var multigene family [100, 101], 
thus enabling the specific study of PfEMP1 [102]. Con-
versely, disrupting up to 150 genes such as in the rif fam-
ily is not currently feasible, and knockdowns of rif, stevor 
and pfmc2tm gene families have not been achieved. These 
multigene families share a common activation factor nec-
essary for gene expression, and it has been proposed that 
the downregulation of one multigene family may affect the 
expression of members of other multigene families in some 
conditions [103]. A transcriptionally active rif promoter co-
localised with an active var promoter and the downregula-
tion of members in the stevor multigene family appeared 
to increase transcription of the pfmc-2tm multigene fam-
ily [103]. Further studies must be employed to dissect the 
functional roles of these multigene families.

It is hypothesised that a large proportion of parasite pro-
teins exported into the host erythrocyte supports the cor-
rect trafficking and surface display of PfEMP1 and other 
erythrocyte surface proteins. This also includes alterations 
in the spectrin network and knob protrusions at IE mem-
brane [104]. Many exported proteins contain a penta-
meric sequence, known as the Plasmodium export element 
(PEXEL) [105] or vacuolar translocation signal [106], 
required for the translocation of proteins across the PV 
membrane. Exported parasite proteins such as PfEMP1 
are trafficked via the translocon complex (PTEX; Plas-
modium translocon of exported proteins) located at the 
parasitophorous vacuole (PV) [107, reviewed in 108]. Most 
parasite proteins are destined for the IE cytosol, and only 
a small portion is exposed on the IE surface. Interestingly, 
recent studies have showed that exported parasite proteins 
may play a role in cellular communication between IEs 
through microvesicles [109] and exosome-like vesicles 
[110]. Microvesicles lack components of the knob structure 
like KAHRP and PfEMP1, suggesting that they originate 
from MC structures or regions of the erythrocyte mem-
brane that exclude knobs [109]. It was further demonstrated 
that PfEMP1 is not required for efficient intercellular com-
munication as modified parasites with inhibited PfEMP1 
expression were still able to receive exosome-like vesicles 
[110].

PfEMP1 and var genes

PfEMP1 was first identified by immunoprecipitation with 
immune sera from infected Aotus monkeys [5] and is 
encoded by the highly polymorphic var multigene family 
(~60 genes per genome) [40, 111, 112]. Through mutu-
ally exclusive transcription of var genes, only a single 
PfEMP1 variant is generally expressed on the IE surface at 

a given time [52, 113]. However, a recent study reported 
the potential expression of more than one PfEMP1 vari-
ant on the IE surface as demonstrated by live confocal 
microscopy, in vitro adhesion assays and cell sorting by 
flow cytometry [114]. PfEMP1 is a high-molecular-weight 
protein (200–350 kDa) and is highly sensitive to cleavage 
by mild trypsin treatment of intact IEs (10 μg/ml) [5]. The 
biochemical properties of PfEMP1 (Triton X-100-insolu-
ble and SDS-soluble) demonstrate its anchorage to the IE 
membrane [115].

The export of PfEMP1 is a highly complex process due 
to its large size, number of membranes to traverse before 
reaching the IE surface and the involvement of various 
chaperone proteins (reviewed in [116, 117]). PfEMP1 mol-
ecules are associated with the Maurer’s clefts (MCs) and 
are ultimately presented by the knob structures at the IE 
surface at approximately 18 h post-invasion [5, 32, 115, 
118–120]. The mechanism of transport of PfEMP1 from 
the parasite to the IE surface as well as its partner proteins 
involved remains a process that is poorly defined.

An important MC-resident protein essential for PfEMP1 
trafficking is the 48  kDa P. falciparum skeleton bind-
ing protein 1 (SBP1) [121–123]. Disruption of the pfsbp1 
gene impaired the loading of PfEMP1 molecules into the 
MCs and resulted in the loss of surface-exposed PfEMP1, 
but the trafficking of other MC proteins such as KAHRP, 
MAHRP1 and REX1 was unaffected in the transgenic para-
sites [122, 123]. A large-scale gene knockout screen fur-
ther identified MC proteins termed P. falciparum PfEMP1 
trafficking protein (PfPTP) involved in the trafficking of 
PfEMP1 to the IE surface [124]. Of the 83 P. falciparum 
genes that were disrupted, 6 genes were specifically found 
to affect the export and surface display of PfEMP1, and 
2 were found to disrupt proper knob formation. In these 
transgenic parasites, PfEMP1 export was arrested either 
at the PVM or the MC structures in the IE cytosol [124]. 
Among the proteins involved in the trafficking of PfEMP1 
are members of the HSP40/DNAJ and PHIST family [124]. 
Recently, an exported parasite-encoded HSP70 known as 
PfHSP70-x was found to complex with HSP40s and colo-
calised with PfEMP1 in the IE cytosol [125]. Other MC-
associated proteins that have been proposed to play a role 
in the trafficking of PfEMP1 include MAHRP [126], REX1 
[127] and Pf332 [128].

Transcription of var genes is epigenetically regulated 
by the SIR complex as gene disruption of PfSIR2 results 
in activation of multiple members of this multigene fam-
ily [129–131]. The rapid switching rate of var genes, of 
up to 2 % per generation [86], was demonstrated to corre-
late with changes in IE adhesive and antigenic phenotypes 
[112, 132]. The typical structure of PfEMP1 includes the 
variable N-terminal segment (NTS) exposed on the IE sur-
face to interact with host receptors [133], a transmembrane 
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domain and a conserved acidic terminal segment (ATS) 
[48]. The cytoplasmic ATS domain interacts with KAHRP 
[134–136], thus anchoring PfEMP1 to the IE membrane. 
The extracellular portion of PfEMP1 consists of Duffy 
binding-like (DBL) adhesive domains, the C2 domain and 
the cysteine-rich interdomain regions (CIDR) [48]. DBL 
domains are grouped as five sequence classes (α, β, γ, δ, ε), 
and CIDR domains are grouped as three distinct classes (α, 
β, γ). While the number of CIDR and DBL domains may 
vary between different PfEMP1 variants, certain domain 
architectures such as DBLαCIDRα or DBLδCIDRβ are 
preferred. This conservation may reflect the biological 
function of PfEMP1 [48]. The binding site of ICAM-1 
resides within the DBL2β and c2 regions of PfEMP1 [137, 
138], while the binding site of CD36 is mapped to the 
CIDRα region [47, 139, 140]. The binding site of CSA in 
pregnancy-associated parasites lies within the DBL1-DBL3 
domain of PfEMP1 [141].

The var genes can be classified into three main sub-
groups based on their upstream promoter regions 
(upsA, upsB and upsC) and the single-copy conserved 
intergenomic genes var1 and var2csa [142–145]. The 
var gene repertoires of clinical isolates can also be clas-
sified according to short sequence tags amplified from 
the DBLα domain [146, 147]. Analyses of the DBLα 
sequences from Kenya showed the presence of two or 
four cysteine residues, with a minority containing one, 
three, five or six cysteines; therefore, var genes were 
sub-grouped according to cys2, cys4 and cysX, respec-
tively [147]. These DBLα sequences were further clas-
sified according to the amino acid motifs occurring at 
four fixed positions within the sequenced region, known 
as “positions of limited variations” (PoLV1-4) [147]. 
Expression of var genes from the cys2 group was asso-
ciated with severe malaria in young children [148, 149]. 
The differential transcription of var gene subgroups has 
been linked to clinical disease. Transcription of group 
A var genes was also associated with rosetting parasites 
[150] and severe malaria in African children [151–153]. 
Furthermore, the elevated expression of group A-like 
var genes was associated with impaired consciousness, 
a key feature of severe disease [154]. Recent studies 
also reported the expression of a restricted subset of var 
genes encoding PfEMP1 variants that bind human brain 
endothelial cells [155, 156]. These var genes belong to 
group B/A genes that are expressed in early childhood 
infections [148, 157] and are associated with more severe 
infections [149, 151]. PfEMP1 variants from group B and 
C var genes are also associated with autoagglutination 
and ICAM-1-binding, features that contribute to severe 
disease [133, 138]. The lack of association between tran-
scription of var group C and clinical presentation sug-
gests that perhaps these var genes are involved in the 

establishment of chronic infections [158]. These findings 
support the correlation between var gene expression pat-
terns and clinical presentations, thus suggesting that pro-
tective immunity could be conferred by antibodies to key 
var gene subgroups [147, 158].

A specific var gene, var2csa, is relatively conserved in 
sequence and is present as a single-copy gene in most iso-
lates. However, some isolates have more than one copy of 
var2csa (e.g. HB3 has two copies of var2csa) [159–161]. 
This gene is upregulated in placental isolates and mediates 
IE adhesion to CSA and other placental receptors such as 
HA and immunoglobulins [162–165]. Polyclonal antibod-
ies generated against recombinant domains of VAR2CSA 
recognised the IE surface of parasites isolated from infected 
placental tissue [166]. Furthermore, sera from pregnant 
women recognised the IE surface of VAR2CSA-expressing 
parasites in a parity-dependent manner [164, 167]. Preg-
nant women with elevated levels of these antibodies had a 
reduced risk of delivering low-birth-weight babies [164]. 
Targeted gene disruption of var2csa in the isolates FCR3 
[168] and 3D7 [169] inhibited CSA adhesion, suggesting 
the central role of var2csa in mediating placental adhe-
sion. In contrast, disruption of var2csa in CS2 parasites 
also ablated CSA binding but repeated selection on CSA 
restored their binding ability [169] presumably through the 
expression of other PfEMP1 variants proposed to bind CSA 
[49]. The use of different parasite lines may reflect the dis-
crepancies between these studies and that the FCR3 or 3D7 
isolates lack the PfEMP1 variants thought to rescue the 
CSA-binding ability.

The var transcripts have also been detected by RT-PCR 
in both immature (I–II) and mature stage gametocyte-IEs 
(IIB–V). Initial studies suggested that the var genes tran-
scribed in gametocyte-IEs were similar or identical to those 
expressed by asexual parasites [170]. However, it was later 
discovered that the var transcript profile was unlinked to 
their asexual progenitors. Furthermore, it appears that the 
most abundant var transcripts found in gametocyte-IEs 
(generated in vitro) belong to the non-subtelomeric group 
C var genes [171]. Data regarding the pattern of PfEMP1 
expression in gametocyte-IEs are conflicting. Early stud-
ies reported the expression of PfEMP1 in all five stages of 
gametocyte development but with stage-specific patterns. 
PfEMP1 staining was visualised at the IE membrane of 
immature gametocyte-IEs (stages I–IIA) but not of mature 
gametocyte-IEs (IIB–V) [170]. A recent study reported low 
levels of PfEMP1 expression on the surface of immature 
gametocyte-IEs, which was absent in mature gametocyte-
IEs [172]. Thus, it is thought that sequestration of imma-
ture gametocyte-IEs is mediated by PfEMP1, after which 
its role is replaced by an alternative ligand present on the 
surface of mature gametocyte-IEs or through mechanical 
effects [173].
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RIFIN proteins

The rif multigene family (150–200 genes per genome) 
encoding a group of clonally variant RIFIN proteins rep-
resents the largest multigene family identified in P. falcipa-
rum [6–8]. Transcription of rif genes occurs approximately 
12  h post-invasion, but RIFIN proteins are thought to 
appear on the IE surface at the same time as PfEMP1 [174]. 
In contrast to var genes, a single parasite simultaneously 
transcribes several rif genes, resulting in the expression of 
multiple RIFIN variants on the IE surface [8]. All RIFIN 
sequences contain the PEXEL motif required for correct 
export [105]. Surface exposure of RIFIN was evident from 
immunoprecipitation and Western blot analyses. Bands of 
expected size corresponding to RIFIN (30–45  kDa) were 
absent after IEs were treated with high concentrations of 
trypsin (>100  μg/ml), a concentration much greater than 
that needed to cleave the highly trypsin-sensitive PfEMP1 
[7, 8]. Some variants of the large RIFIN family are also 
expressed in other developmental stages such as merozo-
ites, sporozoites and gametocytes [175–177]. Bioinfor-
matic analyses of RIFIN sequences revealed two major 
subgroups of the RIFIN family [178] that are simultane-
ously expressed in a single parasite. A-type RIFINs asso-
ciate with the MCs and are destined for the IE surface, 
whereas B-type RIFINs remain confined within the parasite 
[176]. Although the biological function of RIFIN remains 
unknown, the exposure of their highly polymorphic V2 
epitope on the IE surface suggests they contribute to anti-
genic variation of P. falciparum [6, 179]. Although direct 
evidence is lacking, RIFIN was proposed to play a role in 
rosetting [7, 8].

STEVOR proteins

The stevor multigene family, encoding STEVOR proteins 
(~30–40  kDa), is the third largest identified in P. falci-
parum (reviewed in [10]). First described as 7h8, stevor 
was detected by a monoclonal antibody as an expressed 
sequence [6]. Each parasite genome is predicted to con-
tain approximately 30–40 copies of stevor genes. Like var 
and rif, stevor genes are located at the telomeres of most 
P. falciparum chromosomes [6]. Similar to rif, multiple 
stevor transcripts were detected in a single parasite. Peak 
stevor transcription occurs at 28  h post-invasion during 
late trophozoites and early schizonts, where they appear 
to localise in the IE cytosol. As the parasite matures, STE-
VOR co-localises with PfSBP1 and PfEMP3 at the MCs 
[9, 180] in immunofluorescence microscopy with fixed IEs 
[10, 11]. Immunofluorescence microscopy with live, intact 
schizont stage IEs suggests the surface localisation of STE-
VOR, which was removed upon IE trypsinisation [11, 181]. 
A recent study demonstrated that stevor overexpression 

contributes to increased IE rigidity [182], together with 
other IE cytoskeletal members such as RESA [183]. It is 
proposed that the STEVOR-increased stiffness of IEs 
enhances PfEMP1-mediated IE sequestration [182]. The 
biological function of STEVOR remains unclear. Because 
STEVOR is clonally variant [13, 184], it may be involved 
in immune evasion concurrently with PfEMP1 and RIFIN 
[10, 11, 13]. In addition, STEVOR has been proposed to 
play a role in parasite invasion [185]. STEVOR proteins 
are also expressed in merozoites [10, 186, 187], sporo-
zoites [175] and gametocytes [9]. Interestingly, the same 
STEVOR variants are transcribed in gametocytes and their 
asexual progenitors, suggesting that perhaps STEVOR 
plays a similar role in these lifecycle stages [171].

SURFIN proteins

Little is known about the surf multigene family (10 
genes), which encodes high-molecular-weight antigens 
(~280–300  kDa) known as SURFIN proteins [12]. The 
expression of surf genes is differentially transcribed 
according to different stages of the intra-erythrocytic par-
asite. The expression of surf1.3, surf4.2 and surf8.3 genes 
was detected throughout parasite development while 
other surf genes were either not detected or restricted to 
later developmental stages [188]. A variant expressed 
by 3D7 and FCR3 parasites, SURFIN4.2 was identified 
by mass spectrometric analysis of proteins cleaved off 
the surface of intact IEs by trypsin [12]. SURFIN4.2 was 
only detected in a subpopulation of cultured IEs (~25 %) 
with increasing protein expression during mature devel-
opmental stages (24–44  h post-invasion). Immunoelec-
tron microscopy showed the presence of SURFIN4.2 at 
the knob structures suggesting its co-localisation with 
PfEMP1 at the IE surface [12]. However, attempts to 
verify the surface localisation of SURFIN4.2 proteins 
with live, intact IEs were inconclusive. Another vari-
ant, SURFIN4.1, localised to the parasitophorous vacuole 
(PV) but not within the erythrocyte cytosol in mature IEs 
(>30  h post-invasion) [188]. SURFIN antibodies did not 
agglutinate mature IEs and no fluorescence was observed 
with live IEs, suggesting that SURFIN4.1 is not exposed 
on the IE surface [188]. Whether SURFIN proteins poten-
tially elicit humoral immunity or mediate immune evasion 
has not been determined.

Other membrane proteins

Plasmodium falciparum Maurer’s clefts two-transmem-
brane protein (PfMC-2TM) is encoded by a novel gene 
family (~13 members) located at the subtelomeric regions 
of several P. falciparum chromosomes [14, 142]. PfMC-
2TM is highly conserved within the N-terminus, both 
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transmembrane domains and the C-terminus. The short 
loop between the transmembrane domains is highly poly-
morphic, similar to that proposed for RIFIN and STEVOR 
[13, 184]. The diversity within this loop region proposed 
the inclusion of pfmc-2tm as a variant multigene family 
together with var, rif and stevor [13, 14]. It has not been 
determined whether PfMC-2TM is associated with the IE 
membrane or exposed on the IE surface.

Another IE membrane protein is modified erythro-
cyte band 3, which has been proposed as a ligand for IE 
adhesion to CD36 [189] and thrombospondin [190, 191]. 
Chemical modifications of band 3 led to a reduction in 
CD36 binding but not thrombospondin, thus supporting 
its role in CD36 adhesion [189]. Synthetic peptides based 
on the exofacial loops of band 3 and antibodies gener-
ated against these peptides were capable of inhibiting IE 
adhesion to C32 amelanotic melanoma cells. Addition-
ally, intravenous infusion of these peptides into Aotus and 
Saimiri monkeys infected with P. falciparum isolates pre-
vented IE sequestration [192]. However, its significance in 
relation to PfEMP1 as an adhesive ligand remains unclear. 
In our recent study, parasites with suppressed PfEMP1 
expression were found to retain a substantial proportion 
of CD36 binding, but not ICAM-1, thus raising the possi-
bility that additional surface antigens contribute to CD36 
adhesion [102].

Naturally acquired immunity to malaria

Protective immunity to malaria is elicited through com-
plex interactions between both humoral and cell-mediated 
responses [193–195]. This protection against symptomatic 
malaria in humans develops gradually after repeated expo-
sure to P. falciparum infections (reviewed in [196]). In 
malaria-endemic areas, the risk of severe disease is greatest 
during the first few years of life, after which the risk rap-
idly declines as children begin to acquire natural immunity. 
A study of young African children reported that immunity 
to non-cerebral severe malaria may develop after several 
infections and is almost complete by the age of 5 [197]. 
Adolescents and adults eventually develop protection from 
severe illness and death, although sterile immunity is rarely 
or perhaps never achieved [198]. Maternal antibodies trans-
ferred across the placenta are also thought to confer pro-
tection in young infants [199, 200]. It is becoming increas-
ingly clear that effective immunity to malaria involves 
immune responses to multiple antigens expressed at differ-
ent parasite stages and requires multiple immune effector 
mechanisms [195]. It is likely that the development of a 
highly effective malaria vaccine will require the inclusion 
of multiple antigens and that single-antigen vaccines will 
not be optimally efficacious.

Cell‑mediated immunity to VSAs

While the significance of humoral immunity to P. falcipa-
rum is well established in humans, the role of cell-medi-
ated immunity (CMI) remains poorly understood. CMI acts 
through complex interactions with the innate and adaptive 
immune response (reviewed in [195, 201]). Most stud-
ies of CMI have been based on murine models of malaria 
(reviewed in [202]). Early studies showed that mice inca-
pable of making B cells have the ability to control infec-
tion [203], suggesting the importance of CMI in protection 
against malaria. Antigen-presenting cells process parasite 
antigens for display on major histocompatibility complex 
molecules to recruit antigen-specific CD4+ T cells. Th1 
cells produce proinflammatory cytokines such as TNF-
α and IFN-γ, which lead to monocyte activation and the 
release of toxic mediators that limit P. falciparum growth 
[204]. In a study of Gabonese children, IFN-γ responses 
to erythrocytic antigens were associated with lower rates 
of P. falciparum reinfection [205]. Despite this protective 
potential, CMI responses have also been implicated in dis-
ease pathogenesis and the development of severe malaria 
(reviewed in [206]).

Although data on CMI responses to VSAs are limited, 
studies have reported that parasites may modulate CMI 
to evade host immune responses. For example, the matu-
ration of dendritic cells cultured in vitro was suppressed 
following exposure to erythrocytes infected with P. fal-
ciparum [207]. It was later reported that the modulation 
of dendritic cells was not dependent on the interaction 
between PfEMP1 and CD36 [208]. Interaction between 
IEs and natural killer (NK) cells leads to their activa-
tion, including production of IFN-γ [209]. A recent study 
using a humanised mouse model has reported that NK 
cell binding of IEs leads to the activation of NK cells and 
the elimination of IEs [210]. Using parasites with modi-
fied PfEMP1 expression, others reported that PfEMP1 
appeared to suppress innate IFN-γ production by naïve 
CD4+ T cells and NK cells [211]. The CIDR1α domain 
of PfEMP1 was found to induce polyclonal B cell acti-
vation that contributes to the evasion of host immune 
responses [212–214] and stimulates CD4+ T cells from 
both malaria-exposed and non-exposed individuals [215]. 
The addition of recombinant CIDR1α to naïve human 
peripheral blood mononuclear cells resulted in the acti-
vation of CD4+ T cells and NK cells, leading to IFN-γ 
production [216]. It appears that a fine balance between 
protective immunity and immunopathology must be 
achieved in CMI. The lack of CMI-related studies in 
human malaria and the difficulty of inferring results from 
murine models are continuing obstacles in our under-
standing of the role of CMI and a priority topic for fur-
ther research.
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Human antibodies to VSAs

The development of protective immunity to P. falciparum 
is characterised by a decrease in disease severity over sev-
eral years after repeated infections [217]. Sterile immu-
nity to P. falciparum is rarely achieved, as adults living in 
malaria-endemic regions remain susceptible to asympto-
matic infection and often experience persistent low levels 
of parasitaemia without clinical disease [196, 198]. The 
passive transfer of gamma-globulin from immune indi-
viduals to P. falciparum-infected individuals confers pro-
tection against malaria infection [218]. Antibodies to both 
merozoite antigens [219–221] and VSAs appear to play an 
important role in mediating acquired immunity. The focus 
of this review is on VSAs, and the significance of merozo-
ite antigens as immune targets is reviewed in detail else-
where [222]. In brief, numerous antigens on the surface 
of merozoites (e.g. merozoite surface protein 1, 2, and 3) 
and erythrocyte invasion ligands (e.g. erythrocyte-binding 
antigens, PfRh invasion ligands and apical membrane anti-
gen 1) have been identified as important targets of acquired 
immunity and promising vaccine candidates [219–221, 
223, 224]. Although it is highly likely that antibodies to 
VSA and merozoite antigens contribute to immunity and 
a strong response to both types of antigens may be essen-
tial for highly effective immunity, there are few reports on 
the relationship between these responses and how they may 
interact to mediate immunity [225]; this is an important 
question for further research.

Naturally acquired antibodies against VSAs typically 
demonstrate a high degree of strain specificity [132, 226]. 
Antigenic diversity by P. falciparum enables repeated infec-
tions to occur over time, as new infections appear to exploit 
gaps in the repertoire of previously acquired variant-spe-
cific antibodies [226]. Antibodies to polymorphic VSAs 
expressed on the IE surface, such as PfEMP1, have been 
proposed to play a key role in mediating protective immu-
nity [93, 226–228]. Most published studies used agglu-
tination assays to describe antigenic variation in PfEMP1 
as switches in the agglutination phenotype are correlated 
with switches in var gene expression [112] or PfEMP1 
[132]. However, it is difficult to determine PfEMP1-spe-
cific antibody responses because of the number of antigens 
expressed on the IE surface; therefore, antibodies measured 
to the IE surface are hereafter classified as antibodies to all 
VSAs (studies summarised in Table S1).

Early studies that measured agglutination antibody 
responses to P. falciparum infections in Pakistan [229], 
Papua New Guinea [230] and Africa [226, 231] reported 
that children developed isolate-specific antibodies to VSAs 
after infection. Mixed agglutination assays that allowed 
the determination of shared epitopes on the IE surface also 
showed that acquired human antibodies are predominantly 

variant specific while cross-reactive antibodies are rare 
[231]. However, antibodies from convalescent sera from 
adults were capable of agglutinating diverse P. falciparum 
isolates [232], and antibodies acquired towards placental-
binding parasites expressing VAR2CSA have a significant 
amount of cross-reactivity against different isolates, despite 
polymorphisms in VAR2CSA [159, 233]. Furthermore, 
an acute P. falciparum infection in returned travellers was 
sufficient to induce broadly cross-reactive antibodies that 
were relatively long lived (>20 weeks post-infection) [208], 
thus suggesting that cross-reactive antibodies are prevalent 
following infection. The molecular basis for this remains 
unclear but may be due to extensive sharing of polymor-
phic epitopes between PfEMP1 variants [159, 234]. In an 
early study, parasite isolates from ten Gambian children 
were tested in a checkerboard manner with the acute and 
convalescent sera collected from each child [226]. Most of 
the acute sera were not reactive towards the parasite isolate 
from that same child, whereas each of the serum samples 
collected during convalescence were highly reactive to the 
IE surface of the isolate from the same child but not from 
other children [226]. This study suggested that the VSAs 
expressed on the IE surface are highly diverse and children 
tend to acquire antibodies towards the variants expressed 
by the parasite causing that particular episode. Moreover, 
hyperimmune sera from Gambian adults agglutinated IEs 
from those ten children, suggesting that by adulthood most 
individuals have acquired a broad range of antibodies that 
protect against numerous parasite variants [226], and the 
presence of cross-reactive antibodies was also proposed. A 
large prospective study of young Kenyan children further 
showed that parasite variants expressed during episodes 
of clinical infection were less likely to be recognised by 
homologous sera collected before infection. This suggests 
that the variants are exploiting gaps in the pre-existing 
antibody repertoire in order to cause subsequent infections 
[227]. Consistent with that observation, antibodies from 
Sudanese children measured after the malaria season could 
agglutinate a broader range of isolates tested compared 
with antibodies measured before the season [235]. This 
suggests that natural P. falciparum infections are capable 
of inducing high antibody titres directed towards VSAs of 
the infecting parasite. In a cross-sectional study of Kenyan 
children during the low transmission season, antibodies to 
VSAs were higher in parasitaemic individuals, suggesting 
that these antibodies were induced by current infections 
[236]. Furthermore, plasma antibody levels were positively 
correlated with age, indicating an age-related and expo-
sure-related component in the acquisition of VSA-specific 
antibodies [237].

The importance of antibodies to VSAs is evident 
through their role in mediating protective immunity to 
malaria (studies are summarised in Table 1). For example, 
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in a longitudinal study conducted with young Gambian 
children, acquired antibodies to VSAs from several differ-
ent isolates were consistently associated with protection 
from clinical malaria [228]. In Gabonese children, higher 
levels of IgG to VSAs were associated with lower rates of 
malaria [238]. A study of Ghanian children demonstrated 
that those with pre-existing antibodies before the malaria 
season were less likely to contract malaria than those with 
low levels of antibodies [239]. Furthermore, the presence of 
antibodies to a Ghanian isolate was significantly associated 
with protection from malaria [240]. However, the ability of 
sera from Kenyan children to recognise VSAs expressed by 
a Kenyan isolate was not associated with protection from 
malaria [227]. It appears that anti-VSA antibodies to some 
but not all parasite isolates are associated with protection 
[236, 239, 240], and presumably this depends on the prev-
alence of the parasite variant and its virulence properties. 
Nonetheless, evidence from all of the studies presented 
above supports the important contribution of anti-VSA 
antibodies to protection against malaria.

Despite the apparent role of PfEMP1 antibodies in 
mediating protection against malaria, the immense diver-
sity of PfEMP1 limits its potential as a vaccine candidate. 
Although the repertoire of PfEMP1 variants is large, stud-
ies have suggested the expression of a dominant subset 
of variants that are restricted by their biological function 
in clinical disease. Immune sera from distinct geographic 
regions agglutinated IEs from other populations, sug-
gesting that antibodies targeted cross-reactive epitopes 
expressed by many isolates [241]. Another study demon-
strated that plasma antibodies were capable of recognis-
ing various parasite isolates regardless of the geographic 
origin of those IEs, suggesting that the repertoire of VSA-
specific antibodies may be conserved over different popula-
tions [242]. A study in Kenya demonstrated that parasites 
isolated from children presenting with severe malaria were 
recognised by heterologous plasma antibodies, suggesting 
the expression of common PfEMP1 variants in this popula-
tion [92]. Similarly, IEs from young Ghanian children with 
severe malaria were more commonly recognised by plasma 
antibodies from other children than those with uncompli-
cated malaria [243]. This suggests that a restricted subset 
of variants is expressed during severe disease to which anti-
bodies are rapidly acquired [197]. These studies propose 
that the infecting parasites causing severe disease may be 
expressing a commonly expressed subset of VSA variants 
[236, 237]. A limitation of these studies is that they were 
only able to measure antibodies directed towards all VSAs 
expressed on the IE surface and not the proportion of anti-
bodies to individual VSAs such as PfEMP1.

Little is known about antibody responses directed at 
antigens expressed on the surface of erythrocytes infected 
with gametocytes during their development in the human 

host. Such antigens could potentially elicit immune 
responses, similar to those of asexual parasites, which may 
result in the clearance of gametocytes in the host. Sera 
from Gambian children were reported to be highly reac-
tive towards the surface of mature stage gametocyte-IEs 
but not towards immature stage gametocyte-IEs [244]. This 
may suggest that the antigens recognised by the serum anti-
bodies in mature gametocyte-IEs are distinct from those 
expressed by immature gametocyte-IEs [244]. However, 
another study showed that sera from children in Papua New 
Guinea (PNG) were highly reactive to the surface of imma-
ture gametocyte-IE, similar to that observed with asexual 
trophozoite IEs, but not towards the surface of mature 
gametocyte-IEs [245]. These conflicting results demon-
strate that further work is needed to better understand the 
antibody response directed towards antigens on the surface 
of gametocyte-IEs. Antibodies targeting these surface anti-
gens represent potential vaccine candidates as they may 
mediate gametocyte clearance from the circulation, thus 
leading to reduced malaria transmission. More importantly, 
understanding the humoral response elicited by antigens 
on the surface of gametocyte-IEs will shed light on how 
these antibodies potentially act in synchrony with antibod-
ies to other parasite stages to clear parasitaemia and reduce 
transmission.

Human antibodies to PfEMP1

Epidemiological data have demonstrated that naturally 
acquired antibodies predominantly target variant-specific 
epitopes on the IE surface and PfEMP1 is thought to be a 
major antibody target. Lacking the molecular tools required 
to evaluate the significance of PfEMP1 independently of 
other VSAs, most studies have relied on the use of recom-
binant purified PfEMP1 domains to study human antibody 
responses to PfEMP1 (studies summarised in Table S2). 
A recent study in PNG used a DBLα protein microarray 
to demonstrate that the magnitude of the anti-PfEMP1 
response was limited and variant specific in young chil-
dren (<3 years of age), after which a broader spectrum of 
antibody recognition was achieved. By adulthood, serum 
antibodies were capable of recognising at least 20 different 
variants indicating an expansion of the PfEMP1 antibody 
repertoire [246]. Consistent with the preferential expres-
sion of PfEMP1 variants in severe disease [151, 152], the 
acquisition of anti-PfEMP1 antibodies by Tanzanian chil-
dren was reported to be highly structured. Antibodies to 
different recombinant PfEMP1 domains were sequentially 
acquired, with children first acquiring antibodies to par-
ticular variants encoded by group A var genes [157, 247]. 
These findings were supported by another study whereby 
PfEMP1 DBLα domains were linked to young host 
age, disease severity and low levels of immunity [148]. 
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Furthermore, they complement the finding that immunity to 
severe disease may be rapidly acquired after several infec-
tions [197].

Others have reported that while sera from Gabonese 
adults recognised most of the recombinant PfEMP1 based 
on the DBLα region, sera from children were less reac-
tive to the different variants [248]. Interestingly, they also 
showed that antibodies from highly reactive adults chosen 
from previous assays were capable of recognising syn-
thetic peptides based on conserved regions of DBLα [248], 
suggesting that antibodies to both variant-specific and 
conserved regions of PfEMP1 are co-acquired. Similarly, 
serum antibodies from Ghanian [239] and Sudanese [249] 
children recognised a recombinant peptide derived from a 
conserved epitope of the DBLα domain, with higher anti-
body levels observed in asymptomatic individuals com-
pared to those with febrile malaria suggesting that antibod-
ies against conserved epitopes of PfEMP1 may play a role 
in protective immunity. However, there was no association 
observed between these antibodies and protection from 
malaria in Ghanian children, because the recombinant 
peptide originated from a domain that is inaccessible to 
antibodies [239]. Since conserved epitopes are not consist-
ent with being key antibody targets, the role of these anti-
bodies in protective immunity remains unclear. Few stud-
ies have evaluated the protective effect of anti-PfEMP1 
antibodies (studies summarised in Table  2) and results 
have been inconsistent. A longitudinal study with Gha-
nian children did not find a correlation between protection 
and antibodies to the DBLα domain of PfEMP1 [239]. No 
protective association was observed with antibodies to the 
recombinant PfEMP1 domains derived from the A4 para-
site line [250].

Quantifying the importance of different VSAs as tar-
gets of human antibodies is important for understanding 
immunity to malaria, but has been challenging to achieve. 
Recently, we developed a novel approach using genetically 
modified P. falciparum with inhibited PfEMP1 expression 
to evaluate the significance of PfEMP1 and other antigens 
as targets of acquired antibodies [102]. Suppressed PfEMP1 
surface expression was achieved by the transfection of P. 
falciparum with a construct that encodes a var promoter 
without a downstream var gene [100, 101]. During in vitro 
culture with drug-selectable markers, the var promoter 
is expressed, which causes the silencing of all the other 
endogenous var promoters and thus suppresses PfEMP1 
expression [100, 101] (Fig. 2). This approach was applied 
to human studies in Kenya to quantify serum antibodies to 
VSAs. We found that among malaria-exposed individuals, 
IgG binding to the surface of erythrocytes infected with the 
transgenic parasites was markedly reduced compared to 
that seen with parental parasites expressing PfEMP1. This 
suggests that the majority of the acquired human antibody 

response to the IE surface targets PfEMP1, while other 
VSAs appear to play a minor role as antibody targets. Our 
longitudinal studies further showed that individuals with 
PfEMP1-specific antibodies had a reduced risk of symp-
tomatic disease while antibodies to other VSAs were not 
associated with protective immunity. Together, our findings 
demonstrate the significance of PfEMP1 as a major target 
of humoral immunity to malaria [102].

Human antibodies to RIFIN and STEVOR

Data suggest that RIFIN and STEVOR may play signifi-
cant roles as targets of malaria immunity; however, they 
have been little studied compared to PfEMP1. In an area of 
intense malaria transmission in Gabon, high levels of anti-
bodies to recombinant RIFIN were detected in a majority 
of the adult population. Although RIFIN antibodies were 
also detected in children, the prevalence of these antibod-
ies was much lower [179]. Despite the high copy number 
of rif genes, most adult sera were capable of recognis-
ing more than one RIFIN variant suggesting the genera-
tion of a large anti-RIFIN repertoire. In addition, elevated 
levels of RIFIN antibodies were associated with rapid 
parasite clearance in children [251]. Longitudinal studies 
with these children showed that although RIFIN antibod-
ies were not correlated with a reduced rate of reinfection, 
RIFIN antibodies were long lived (~2  years) [251]. Fur-
thermore, higher levels of RIFIN antibodies were detected 
in asymptomatic children than in those with severe disease, 
suggesting a protective effect of these antibodies [251]. 
The preadsorption of immune sera on recombinant RIFIN 
resulted in a marked reduction in the overall antibody 
reactivity to the IE surface [252]. This study proposed that 
in addition to PfEMP1, RIFIN is a key contributor to the 
overall anti-VSA response [252]. Others have shown that 
severe malaria patients in Ghana had substantially higher 
antibody levels to recombinant RIFIN than asymptomatic 
controls, suggesting the effect of antibody boosting during 
a malaria episode [253].

Little has been done on naturally acquired antibodies to 
STEVOR. Adult plasma had elevated levels of STEVOR 
antibodies suggesting the immunogenicity of STEVOR 
during a natural infection [254]. A longitudinal study with 
9-month-old infants found no correlation between STE-
VOR antibodies and protective immunity, but revealed an 
increase in the frequency of parasitaemic episodes in those 
with high levels of antibodies [254]. The explanation for 
this observation remains unclear, but it is speculated that 
STEVOR is not involved in mediating immunity and acts 
as a marker of malaria exposure instead [254]. Further 
studies are necessary to elucidate the importance of anti-
bodies against native STEVOR to fully understand its bio-
logical role. As noted above, our study using parasites with 
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suppressed PfEMP1 expression demonstrated that PfEMP1 
is the dominant target of human antibodies. However, a 
proportion of antibody reactivity to the transgenic parasites 
was observed, suggesting that antibodies to other VSAs, 
such as RIFIN and STEVOR, may still play an important 
role in immunity [102].

Function of antibodies to VSAs

The mechanism by which antibodies to VSAs mediate 
protective immunity is only partially understood. Anti-
bodies targeting VSAs are also thought to confer pro-
tection by interfering with IE sequestration or rosetting, 
features that contribute to malaria pathogenesis [79, 
255]. Immune sera from infected Aotus monkeys blocked 
the binding of IEs to endothelial cells [18, 256]. Serum 
samples from pregnant women were capable of inhibit-
ing IE adhesion to CSA [156, 257–259] and these anti-
bodies were associated with improved birth outcomes in 
some studies [58, 260, 261]. In contrast, few studies have 
addressed adhesion inhibition in non-pregnant individu-
als. Convalescent serum from PNG children with symp-
tomatic malaria inhibited the binding of homologous iso-
lates to melanoma cells [230]. Antibodies from immune 
African adults inhibited the binding of a recombinant 
PfEMP1 domain to ICAM-1 [262]. Taken together, these 

results suggest the importance of antibodies that inhibit 
adhesion. Plasma antibodies from children presenting 
with mild malaria were capable of disrupting rosette for-
mation in vitro, whereas those from children with severe 
malaria could not, suggesting that acquired antibodies 
are protective through rosette inhibition [79, 80, 150]. 
Furthermore, polyclonal antibodies against recombinant 
PfEMP1 domains disrupted existing rosettes and inhibited 
the formation of new rosettes [263].

Antibodies to VSAs also play a role in opsonising IEs 
for phagocytosis, an important mechanism of parasite 
clearance [264, 265]. A study with pregnant Malawian 
women showed that high levels of opsonising antibodies 
targeting VSAs correlated with parasite clearance and a 
decreased risk of maternal anaemia [266]. Immunisation of 
rabbits with recombinant PfEMP1 domains generated anti-
bodies capable of inducing the opsonic phagocytosis of IEs 
[263]. Studies have also found that co-infection with HIV 
impaired the opsonic activity of antibodies for phagocy-
tosis, thus leading to an increased risk of clinical malaria 
[267, 268]. Our recent data further identified PfEMP1 as a 
major target of naturally acquired antibodies that function 
to opsonise IEs for phagocytic clearance [102]. Individuals 
with high levels of antibodies to native PfEMP1 expressed 
on the IE surface promoted opsonic phagocytosis activity 
compared to transgenic parasites with inhibited PfEMP1 
expression [102].
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Fig. 2   Evaluating the antibody response to PfEMP1 using transgenic 
P. falciparum P. falciparum-infected erythrocytes transfected with 
a construct that inhibits PfEMP1 expression but does not appear to 
have an impact on the expression of other VSAs (referred to as ‘var 
promoter knockdown’). This provides a novel approach to quantify 
antibodies to PfEMP1 and assess its importance as an immune tar-
get. The figure shows a representative selection of serum samples 
that were tested for IgG binding to parental and transgenic parasites 

[102]. Samples were from malaria-exposed Kenyan adults (K2-
K16) and non-exposed Melbourne residents (Control). IgG binding 
to the surface of erythrocytes infected with the transgenic parasites 
was markedly reduced compared to parental parasites as previously 
reported [102]. The horizontal dotted line represents the mean level 
of IgG binding to parental parasites (n = 8); bars represent mean and 
range of samples tested in duplicate; IgG levels are expressed as geo-
metric mean fluorescence intensity for both graphs
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Vaccine studies on PfEMP1

The importance of PfEMP1 as an immune target strongly 
supports the development of PfEMP1 as a major vaccine 
candidate. However, a major challenge to its develop-
ment as a vaccine is substantial antigenic diversity. Studies 
with animal models have provided evidence that recombi-
nant PfEMP1 is capable of mounting a protective immune 
response. Immunisation of Aotus monkeys with the CIDRα 
domain of PfEMP1 protected against a lethal parasite chal-
lenge with the homologous, but not the heterologous para-
site strain [269]. To overcome the variant-specific limita-
tions of PfEMP1 antibodies, studies have used different 
combinations of PfEMP1 domains to elicit a broader anti-
body response. Mice immunised with a combination of 
CIDRα domains developed antibodies capable of aggluti-
nating IEs using various parasite lines [270, 271]. Using an 
in vivo model of P. falciparum-IE sequestration, rats immu-
nised with diverse NTS-DBLα domains induced protective 
antibodies that reduced IE sequestration [272]. This was 
supported by a recent study in The Netherlands where naïve 
volunteers, who were infected with P. falciparum, gener-
ated cross-reactive antibodies that recognised PfEMP1 
from different parasite genomes [273]. Taken together, 
these studies suggest that it may be possible to induce suf-
ficient cross-reactive antibodies to protect against several 
PfEMP1 variants, provided that the specific combinations 
of domains are known. A recent study further demonstrated 
that rabbits immunised with different recombinant proteins 
based on the extracellular domains of PfEMP1 recognised 
native PfEMP1 on intact IEs [263]. These antibodies were 
also capable of inhibiting rosette formation and promoting 
the opsonic phagocytosis of IEs [263], suggesting that the 
inclusion of multiple domains is necessary for effective 
immunity.

Research efforts on PfEMP1-specific vaccines have 
centred on the DBLα domain because it is one of the most 
conserved domains of PfEMP1 and is involved in rosetting 
[274]. Immunisation of rats with recombinant protein based 
on the DBLα domain induced antibodies that recognised 
conserved PfEMP1 peptides [275]. However, these anti-
bodies were not reactive towards the IE surface of intact, 
mature trophozoites or towards full-length PfEMP1 from 
different laboratory strains [275]. They were also unable 
to agglutinate different parasite lines or disrupt rosette for-
mation [275]. Antibodies against recombinant DBLα were 
reported to inhibit rosette formation in another study [276]. 
The discrepancy between these two studies [275, 276] may 
be reflected by different methods of protein expression as 
the latter, but not the former, utilised protein refolding tech-
niques to obtain conformational-dependent epitopes that 
may be necessary for antibody recognition [276]. Moreo-
ver, antibodies induced by a recombinant mini-PfEMP1 

(DBLα-TM-ATS) disrupted preformed rosettes and pre-
vented in vivo sequestration [277]. The importance of the 
DBLα domain was further supported by the marked reduc-
tion in IE sequestration in DBLα-immunised animal mod-
els [278].

The PfEMP1 variant, VAR2CSA, is a vaccine candidate 
for protection against malaria in pregnancy. High levels 
of antibodies to multiple VAR2CSA domains in acquired 
pregnant women through natural exposure were associ-
ated with reduced placental infection with P. falciparum 
[279, 280] in some studies. Furthermore, antibodies gener-
ated against full-length [160, 281] and single domains of 
VAR2CSA [282] by immunisation inhibited adhesion of 
IEs to CSA, suggesting that vaccine-induced antibodies 
may have a protective function in vivo.

A major obstacle in the development of PfEMP1 as a 
vaccine against P. falciparum malaria is its substantial level 
of antigenic diversity. Several strategies can be pursued as 
an approach to overcome antigenic diversity (reviewed in 
[283]; Fig.  3). One approach would be to develop a mul-
tivalent PfEMP1 vaccine that can induce a broad reper-
toire of antibodies against most variants. A priority of this 
approach would be to determine the extent of diversity in 
PfEMP1 and define a combination of PfEMP1 variants that 
is needed to generate a broad immune response (Table 3). 
This approach has been used successfully with the mero-
zoite protein apical membrane antigen 1 to overcome anti-
genic diversity [284, 285]. Another approach would be to 
target conserved epitopes of PfEMP1 such that induced 
antibodies may recognise most PfEMP1 variants expressed. 
However, identifying conserved epitopes exposed on the IE 
surface and understanding the tertiary/quaternary structure 
of PfEMP1 remains highly challenging. Further studies and 
innovative approaches to target antibody responses towards 
conserved PfEMP1 epitopes are needed. Studies have dem-
onstrated that naturally acquired cross-reactive antibod-
ies do occur [232, 233] and can be induced by immunisa-
tion [271]. Additionally, defining effector mechanisms of 
PfEMP1 immunity and creating a reference panel of para-
site isolates for the evaluation of vaccine candidates must 
be a priority. Of further importance is a detailed knowledge 
of the acquisition, boosting and maintenance of antibod-
ies to PfEMP1, as this will impact on vaccine efficacy and 
durability, but only limited data are currently available. Ide-
ally, malaria vaccines would induce long-lived protection 
via immune responses that were sustained for an extended 
period after vaccination and boosted after exposure. One 
study suggested that antibodies to some VSAs may be 
short-lived, whereas other responses are sustained [286]. 
A recent study in pregnant women suggested that antibod-
ies to VAR2CSA may be maintained for several decades, 
whereas antibodies to merozoite antigens declined more 
quickly [287]. The durability of vaccine-induced immune 
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responses is not well known, but is an important issue for 
the development of highly efficacious vaccines against 
malaria (Table 3).

It is likely that a highly effective malaria vaccine will 
require a multi-antigen, multi-stage approach. Therefore, 

it is anticipated that any PfEMP1-based vaccine antigens 
would have to be included as part of a vaccine containing 
antigens from other stages of the parasite life cycle, such as 
merozoite antigens to enhance blood-stage immunity and 
circumsporozoite protein for induction of pre-erythrocytic 

Fig. 3   Approaches to over-
come antigenic diversity of 
PfEMP1 in vaccine develop-
ment. Antigenic diversity is the 
major challenge to developing 
PfEMP1 as a vaccine against 
malaria. The flow chart provides 
an overview of the two broad 
approaches to overcoming 
antigenic diversity in PfEMP1 
and the steps involved in 
progressing vaccine candidates 
to the clinical trial stage. One 
approach is to develop a mul-
tivalent vaccine comprised of 
a mixture of common PfEMP1 
variants that induces a broad 
repertoire of antibodies. A sec-
ond approach is to identify con-
served epitopes on PfEMP1 and 
develop a vaccine that targets 
these epitopes to induce broadly 
cross-reactive antibodies. As 
discussed in the text, there 
are significant challenges to 
overcome for each approach. It 
is likely that any PfEMP1 can-
didate vaccine antigen(s) would 
be included in a multi-antigen 
approach that includes antigens 
from other parasite life stages 
to ensure the development of a 
highly effective vaccine

Strategies to develop a PfEMP1 vaccine

Key challenge : Overcome antigenic diversity

Approach 1:

Multivalent vaccine

Approach 2:

Conserved epitope vaccine

A. Understand structure and exposure 
of conserved regions of PfEMP1

B. Identify conserved epitopes

A. Define extent of antigenic diversity
B. Identify subset of common PfEMP1 

variants with restricted diversity

Identify combinations of PfEMP1 variants that 
generate broadly reactive antibodies

Design recombinant constructs that 
induce cross-reactive antibodies

Select vaccine with broad reactivity against 
different isolates

Pre-clinical evaluation

Clinical trials

Inclusion in a multi-antigen vaccine

Table 3   Research priorities for 
the development of PfEMP1 
vaccines

General priorities Define effector mechanisms of PfEMP1 immune responses and quantify 
their importance

Understand how antibodies to PfEMP1 are acquired, boosted and main-
tained over time

Define antigenically conserved and diverse regions of PfEMP1
Create a reference panel of isolates for testing/evaluating vaccine candi-

dates

Development of a  
multivalent vaccine

Determine the extent of local/global antigenic diversity in PfEMP1
Understand the evolution of diversity that may lead to vaccine escape
Define the number of variants/domains to be included
Identify specific domains of PfEMP1 for possible vaccine inclusion

Development of a vaccine  
targeting conserved epitopes

Understand the tertiary and quaternary structure of PfEMP1
Identify conserved epitopes exposed on the surface of IEs
Create innovative approaches/technologies for identifying and targeting 

conserved epitopes
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immunity, and the inclusion of gametocyte antigens for 
transmission-blocking immunity. We suggest that after lead 
PfEMP1-based vaccine antigens have been identified and 
prioritised, they will then need to be evaluated in combina-
tion with other vaccine antigens before proceeding further 
to clinical trials.

Conclusion

Understanding the targets and mechanisms of human 
immunity is crucial for informing and advancing the 
development of highly effective malaria vaccines and 
for developing tools for measuring immunity and expo-
sure in populations to help evaluate the impact of malaria 
control interventions and identify populations at risk of 
malaria. Multiple studies in different populations now pro-
vide strong evidence that IE surface antigens, or VSAs, 
are important targets of acquired protective immunity. 
The most important of these antigens is PfEMP1, which 
is a major virulence factor enabling vascular adhesion and 
sequestration of IEs. Studies are beginning to identify spe-
cific variants of PfEMP1 that may be common in popula-
tions or linked to disease pathogenesis and that may be 
targeted in vaccine development. However, there are still 
major gaps in our knowledge on this topic, and these are 
important questions for future research. Little is known 
about other known or proposed surface antigens and their 
significance as targets of immunity and new strategies, and 
approaches are needed to clearly define their significance 
in immunity. Similarly, knowledge on surface antigens of 
IEs with P. vivax, the second major cause of malaria, is 
very limited. The role of surface antigens on gametocyte-
IEs needs to be determined, as antibodies to these anti-
gens may help clear gametocyte-IEs and thereby reduce 
malaria transmission; currently there is great interest glob-
ally in transmission-blocking vaccines, but there are few 
strong candidates in development. A greater understanding 
of effector mechanisms that mediate immunity is needed, 
including both humoral and cell-mediated responses, and 
additional assays to measure antibody functional activity in 
studies of acquired immunity and in vaccine trials would be 
valuable. Finally, strategies to overcome antigenic diversity 
in PfEMP1 would provide an exciting new opportunity in 
malaria vaccine development.
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